Search results for: Library of Support Vector Machines (LIBSVM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8829

Search results for: Library of Support Vector Machines (LIBSVM)

8439 Integrated Social Support through Social Networks to Enhance the Quality of Life of Metastatic Breast Cancer Patients

Authors: B. Thanasansomboon, S. Choemprayong, N. Parinyanitikul, U. Tanlamai

Abstract:

Being diagnosed with metastatic breast cancer, the patients as well as their caretakers are affected physically and mentally. Although the medical systems in Thailand have been attempting to improve the quality and effectiveness of the treatment of the disease in terms of physical illness, the success of the treatment also depends on the quality of mental health. Metastatic breast cancer patients have found that social support is a key factor that helps them through this difficult time. It is recognized that social support in different dimensions, including emotional support, social network support, informational support, instrumental support and appraisal support, are contributing factors that positively affect the quality of life of patients in general, and it is undeniable that social support in various forms is important in promoting the quality of life of metastatic breast patients. However, previous studies have not been dedicated to investigating their quality of life concerning affective, cognitive, and behavioral outcomes. Therefore, this study aims to develop integrated social support through social networks to improve the quality of life of metastatic breast cancer patients in Thailand.

Keywords: social support, metastatic breath cancer, quality of life, social network

Procedia PDF Downloads 149
8438 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 20
8437 Sentiment Analysis on the East Timor Accession Process to the ASEAN

Authors: Marcelino Caetano Noronha, Vosco Pereira, Jose Soares Pinto, Ferdinando Da C. Saores

Abstract:

One particularly popular social media platform is Youtube. It’s a video-sharing platform where users can submit videos, and other users can like, dislike or comment on the videos. In this study, we conduct a binary classification task on YouTube’s video comments and review from the users regarding the accession process of Timor Leste to become the eleventh member of the Association of South East Asian Nations (ASEAN). We scrape the data directly from the public YouTube video and apply several pre-processing and weighting techniques. Before conducting the classification, we categorized the data into two classes, namely positive and negative. In the classification part, we apply Support Vector Machine (SVM) algorithm. By comparing with Naïve Bayes Algorithm, the experiment showed SVM achieved 84.1% of Accuracy, 94.5% of Precision, and Recall 73.8% simultaneously.

Keywords: classification, YouTube, sentiment analysis, support sector machine

Procedia PDF Downloads 109
8436 Investigating Problems and Social Support for Mothers of Poor Households

Authors: Niken Hartati

Abstract:

This study provides a description of the problem and sources of social support that given to 90 mothers from poor households. Data were collected using structured interviews with the three main questions: 1) what kind of problem in mothers daily life, 2) to whom mothers ask for help to overcome it and 3) the form of the assistances that provided. Furthermore, the data were analyzed using content analysis techniques were then coded and categorized. The results of the study illustrate the problems experienced by mothers of poor households in the form of: subsistence (37%), child care (27%), management of money and time (20%), housework (5%), bad place of living (5%), the main breadwinner (3%), and extra costs (3%). While the sources of social support that obtained by mothers were; neighbors (10%), extended family (8%), children (8%), husband (7%), parents (7%), and siblings (5%). Unfortunately, more mothers who admitted not getting any social support when having problems (55%). The form of social support that given to mother from poor household were: instrumental support (91%), emotional support (5%) and informational support (2%). Implications for further intervention also discussed in this study.

Keywords: household problems, social support, mothers, poor households

Procedia PDF Downloads 365
8435 Analysis of Different Space Vector Pulse Width Modulation Techniques for a Five-Phase Inverter

Authors: K. A. Chinmaya, M. Udaya Bhaskar

Abstract:

Multiphase motor drives are now a day considered for numerous applications due to the advantages that they offer when compared to their three-phase counterparts. Proper modeling of inverters and motors are important in devising an appropriate control algorithm. This paper develops a complete modeling of a five-phase inverter and five-phase space vector modulation schemes which can be used for five-phase motor drives. A novel modified algorithm is introduced which enables the sinusoidal output voltages up to certain voltage value. The waveforms of phase to neutral voltage are compared with the different modulation techniques and also different modulation indexes in terms of Low-order Harmonic (LH) voltage of 3rd and 7th present. A detailed performance evolution of existing and newly modified schemes is done in terms of Total Harmonic Distortion (THD).

Keywords: multi-phase drives, space vector modulation, voltage source inverter, low order harmonic voltages, total harmonic distortion

Procedia PDF Downloads 404
8434 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)

Procedia PDF Downloads 367
8433 The Relationship between Selfesteem, Social Support, and Mental Health among High School Students in Iran

Authors: Mohsen Shahbakhti

Abstract:

The aim of this study was to examine the relationship between self-esteem, social support and mental health in a sample of government high school students in Eshtehard city in Alborz Province in Iran. Three hundred and eleven students (boys) were included in this study. All participants completed the General Health Questionnaire (GHQ 12), Multidimensional Scale of Perceived Social Support (MSPSS -12), and Self-Esteem Scale (SS-10). The results revealed that self-esteem was positively associated with social support. Self-esteem and social support negatively associated with psychological distress. Self-esteem and social support to influence on mental health.

Keywords: self-esteem, social support, mental health, high school students

Procedia PDF Downloads 484
8432 E-Resource Management: Digital Environment for a Library System

Authors: Vikram Munjal, Harpreet Munjal

Abstract:

A few years ago we could hardly think of Libraries' strategic plan that includes the bold and amazing prediction of a mostly digital environment for a library system. However, sheer hard work by the engineers, academicians, and librarians made it feasible. However, it requires huge expenditure and now a day‘s spending for electronic resources (e-resources) have been growing much more rapidly than have the materials budgets of which such resources are usually a part. And many libraries are spending a huge amount on e-resources. Libraries today are in the midst of a profound shift toward reliance on e-resources, and this reliance seems to have deepened in recent years as libraries have shed paper journal subscriptions to help pay for online access. This has been exercised only to cater user behavior and attitudes that seem to be changing even more quickly in this dynamic scenario.

Keywords: radio frequency identification, management, scanning, barcodes, checkout and tags

Procedia PDF Downloads 404
8431 Reading Behavior of Undergraduate Students at Suan Sunandha Rajabhat University

Authors: Ratanavadee Takerngsukvatana

Abstract:

The purposes of this research were to study reading behavior of undergraduate students at Suan Sunandha Rajabhat University. A stratified random sample of 380 participants was collected. A Likert five-scale questionnaire was developed to collect data and to obtain students’ opinions regarding their reading behavior. The findings revealed that the majority of respondents read mainly for academic purpose. They preferred to read magazines. The majority of respondents read an average of 3-7 pages a day. The places to read were home and library. Buying with their own money and borrowing from the library were two main sources of books. The suggested activity to promote is planning the curriculum to suit students’ reading behavior.

Keywords: reading, reading behavior, undergraduate students, Suan Sunandha Rajabhat University

Procedia PDF Downloads 303
8430 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components

Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea

Abstract:

Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.

Keywords: assessment, part of speech, sentiment analysis, student feedback

Procedia PDF Downloads 142
8429 Characteristics of Double-Stator Inner-Rotor Axial Flux Permanent Magnet Machine with Rotor Eccentricity

Authors: Dawoon Choi, Jian Li, Yunhyun Cho

Abstract:

Axial Flux Permanent Magnet (AFPM) machines have been widely used in various applications due to their important merits, such as compact structure, high efficiency and high torque density. This paper presents one of the most important characteristics in the design process of the AFPM device, which is a recent issue. To design AFPM machine, the predicting electromagnetic forces between the permanent magnets and stator is important. Because of the magnitude of electromagnetic force affects many characteristics such as machine size, noise, vibration, and quality of output power. Theoretically, this force is canceled by the equilibrium of force when it is in the middle of the gap, but it is inevitable to deviate due to manufacturing problems in actual machine. Such as large scale wind generator, because of the huge attractive force between rotor and stator disks, this is more serious in getting large power applications such as large. This paper represents the characteristics of Double-Stator Inner –Rotor AFPM machines when it has rotor eccentricity. And, unbalanced air-gap and inclined air-gap condition which is caused by rotor offset and tilt in a double-stator single inner-rotor AFPM machine are each studied in electromagnetic and mechanical aspects. The output voltage and cogging torque under un-normal air-gap condition of AF machines are firstly calculated using a combined analytical and numerical methods, followed by a structure analysis to study the effect to mechanical stress, deformation and bending forces on bearings. Results and conclusions given in this paper are instructive for the successful development of AFPM machines.

Keywords: axial flux permanent magnet machine, inclined air gap, unbalanced air gap, rotor eccentricity

Procedia PDF Downloads 219
8428 Sound Analysis of Young Broilers Reared under Different Stocking Densities in Intensive Poultry Farming

Authors: Xiaoyang Zhao, Kaiying Wang

Abstract:

The choice of stocking density in poultry farming is a potential way for determining welfare level of poultry. However, it is difficult to measure stocking densities in poultry farming because of a lot of variables such as species, age and weight, feeding way, house structure and geographical location in different broiler houses. A method was proposed in this paper to measure the differences of young broilers reared under different stocking densities by sound analysis. Vocalisations of broilers were recorded and analysed under different stocking densities to identify the relationship between sounds and stocking densities. Recordings were made continuously for three-week-old chickens in order to evaluate the variation of sounds emitted by the animals at the beginning. The experimental trial was carried out in an indoor reared broiler farm; the audio recording procedures lasted for 5 days. Broilers were divided into 5 groups, stocking density treatments were 8/m², 10/m², 12/m² (96birds/pen), 14/m² and 16/m², all conditions including ventilation and feed conditions were kept same except from stocking densities in every group. The recordings and analysis of sounds of chickens were made noninvasively. Sound recordings were manually analysed and labelled using sound analysis software: GoldWave Digital Audio Editor. After sound acquisition process, the Mel Frequency Cepstrum Coefficients (MFCC) was extracted from sound data, and the Support Vector Machine (SVM) was used as an early detector and classifier. This preliminary study, conducted in an indoor reared broiler farm shows that this method can be used to classify sounds of chickens under different densities economically (only a cheap microphone and recorder can be used), the classification accuracy is 85.7%. This method can predict the optimum stocking density of broilers with the complement of animal welfare indicators, animal productive indicators and so on.

Keywords: broiler, stocking density, poultry farming, sound monitoring, Mel Frequency Cepstrum Coefficients (MFCC), Support Vector Machine (SVM)

Procedia PDF Downloads 162
8427 Use of Social Support for Fathers with Developmental Disabilities in Japan

Authors: Shiori Ishida, Hiromi Okuno, Hisato Igarashi, Akemi Yamazaki, Hiroko Takahashi

Abstract:

The purpose of this study was to clarify the differences and similarities regarding the social support of fathers and mothers towards considering increased assistance for the paternity of children with developmental disabilities. Written questionnaires were completed by fathers (n=85) and mothers (n=101) of children using rehabilitation facilities between infancy and 5 years of age. The survey contained multiple-choice questions on four categories: information support (6 items), emotional support (7 items), evaluation support (3 items), and daily living support (3 items). Regarding information support, fathers answered ‘spouse’ as the provider in over 50% of cases for all 6 items, which was significantly different compared with mothers (all p < 0.001). For emotional support, fathers were significantly more likely to get support from the workplace (p < 0.001) and from spouse (p < 0.001). The ‘evaluation support’ did not have significant differences for fathers in all the items, but the most frequent support providers were ‘spouses’. ‘Daily living support’ was significantly different from fathers in the workplace (p < 0.000) in terms of make allowances for work and duties. Thus, it appeared that fathers had fewer social support sources as compared with mothers and limited non-spouse support. The understanding of developmental disabilities, acquisition of methods of rehabilitation, and sources of support might have been inadequately addressed among fathers, which could be a hindrance to the involvement of fathers in the rearing of children with developmental disabilities. On the other hand, we also observed that some fathers were involved in the care of developmentally troubled children while providing mental support for their spouse, cooperating with housework, and adjusting their work life. However, the results on the external and social backgrounds of fathers indicated a necessity for greater empowerment and peer support to improve the paternal care of children with developmental disabilities in the family survey.

Keywords: children with developmental disabilities, family support, father, social support

Procedia PDF Downloads 132
8426 Digital Learning Repositories for Vocational Teaching and Knowledge Sharing

Authors: Prachyanun Nilsook, Panita Wannapiroon

Abstract:

The purpose of this research is to study a Digital Learning Repository System (DLRS) on vocational teachers and teaching in Thailand. The innobpcd.net is a DLRS being utilized by the Office of Vocational Education Commission and operationalized by the Bureau of Personnel Competency Development for vocational education teachers. The aim of the system is to support and enhance the process of vocational teaching and to improve staff development by providing teachers with a variety of network connections and information. The system provides centralized hosting and access to content, and the ability to share digital objects or files, to set permissions and controls for access to content that can be used vocational education teachers for their teaching and for their own development. The elements of DLRS include; Digital learning system, Media Library, Knowledge-based system and Mobile Application. The system aims to link vocational teachers to the most effective emerging technologies available for learning, so they are better resourced to support their vocational students. The initial results from this evaluation indicate that there is a range of services provided by the system being used by vocational teachers and this paper indicates which facilities have the greatest usage and impact on vocational teaching in Thailand.

Keywords: digital learning repositories, vocational education, knowledge sharing, learning objects

Procedia PDF Downloads 466
8425 Automatic Verification Technology of Virtual Machine Software Patch on IaaS Cloud

Authors: Yoji Yamato

Abstract:

In this paper, we propose an automatic verification technology of software patches for user virtual environments on IaaS Cloud to decrease verification costs of patches. In these days, IaaS services have been spread and many users can customize virtual machines on IaaS Cloud like their own private servers. Regarding to software patches of OS or middleware installed on virtual machines, users need to adopt and verify these patches by themselves. This task increases operation costs of users. Our proposed method replicates user virtual environments, extracts verification test cases for user virtual environments from test case DB, distributes patches to virtual machines on replicated environments and conducts those test cases automatically on replicated environments. We have implemented the proposed method on OpenStack using Jenkins and confirmed the feasibility. Using the implementation, we confirmed the effectiveness of test case creation efforts by our proposed idea of 2-tier abstraction of software functions and test cases. We also evaluated the automatic verification performance of environment replications, test cases extractions and test cases conductions.

Keywords: OpenStack, cloud computing, automatic verification, jenkins

Procedia PDF Downloads 489
8424 Two-Stage Flowshop Scheduling with Unsystematic Breakdowns

Authors: Fawaz Abdulmalek

Abstract:

The two-stage flowshop assembly scheduling problem is considered in this paper. There are more than one parallel machines at stage one and an assembly machine at stage two. The jobs will be processed into the flowshop based on Johnson rule and two extensions of Johnson rule. A simulation model of the two-stage flowshop is constructed where both machines at stage one are subject to random failures. Three simulation experiments will be conducted to test the effect of the three job ranking rules on the makespan. Johnson Largest heuristic outperformed both Johnson rule and Johnson Smallest heuristic for two performed experiments for all scenarios where each experiments having five scenarios.

Keywords: flowshop scheduling, random failures, johnson rule, simulation

Procedia PDF Downloads 339
8423 The Influence of Teacher Support on School Belonging in Chinese Students: A Moderated Mediation Model

Authors: Yuting Tan, Benchao Fan, Xiaoman Wei, Tao Yang

Abstract:

In order to investigate the relationship between students’ perceived teacher support, parental emotional support, mastery goal orientation and school belonging, the questionnaire data of 11,898 15-year-olds (5,699 girls and 6,199 boys) in four Chinese provinces and cities (Beijing, Shanghai, Jiangsu and Zhejiang) that participated in PISA 2018 were used. The results showed that: (1) teacher support can positively and significantly predict students' school belonging; (2) mastery goal orientation played the mediating role in the relationship between teacher support and school belonging; (3) the second half path of students’ mastery goal orientation to the mediation process of teacher support and school belonging was regulated by parental emotional support. The results have important educational practice enlightenment for effectively promoting the school belonging of Chinese students.

Keywords: school belonging, teacher support, mastery goal orientation, parental emotional support

Procedia PDF Downloads 86
8422 Concrete Cracking Simulation Using Vector Form Intrinsic Finite Element Method

Authors: R. Z. Wang, B. C. Lin, C. H. Huang

Abstract:

This study proposes a new method to simulate the crack propagation under mode-I loading using Vector Form Intrinsic Finite Element (VFIFE) method. A new idea which is expected to combine both VFIFE and J-integral is proposed to calculate the stress density factor as the crack critical in elastic crack. The procedure of implement the cohesive crack propagation in VFIFE based on the fictitious crack model is also proposed. In VFIFIE, the structure deformation is described by numbers of particles instead of elements. The strain energy density and the derivatives of the displacement vector of every particle is introduced to calculate the J-integral as the integral path is discrete by particles. The particle on the crack tip separated into two particles once the stress on the crack tip satisfied with the crack critical and then the crack tip propagates to the next particle. The internal force and the cohesive force is applied to the particles.

Keywords: VFIFE, crack propagation, fictitious crack model, crack critical

Procedia PDF Downloads 335
8421 Power Control of a Doubly-Fed Induction Generator Used in Wind Turbine by RST Controller

Authors: A. Boualouch, A. Frigui, T. Nasser, A. Essadki, A.Boukhriss

Abstract:

This work deals with the vector control of the active and reactive powers of a Double-Fed Induction generator DFIG used as a wind generator by the polynomial RST controller. The control of the statoric power transfer between the machine and the grid is achieved by acting on the rotor parameters and control is provided by the polynomial controller RST. The performance and robustness of the controller are compared with PI controller and evaluated by simulation results in MATLAB/simulink.

Keywords: DFIG, RST, vector control, wind turbine

Procedia PDF Downloads 658
8420 Development of Gamma Configuration Stirling Engine Using Polymeric and Metallic Additive Manufacturing for Education

Authors: J. Otegui, M. Agirre, M. A. Cestau, H. Erauskin

Abstract:

The increasing accessibility of mid-priced additive manufacturing (AM) systems offers a chance to incorporate this technology into engineering instruction. Furthermore, AM facilitates the creation of manufacturing designs, enhancing the efficiency of various machines. One example of these machines is the Stirling cycle engine. It encompasses complex thermodynamic machinery, revealing various aspects of mechanical engineering expertise upon closer inspection. In this publication, the application of Stirling Engines fabricated via additive manufacturing techniques will be showcased for the purpose of instructive design and product enhancement. The performance of a Stirling engine's conventional displacer and piston is contrasted. The outcomes of utilizing this instructional tool in teaching are demonstrated.

Keywords: 3D printing, additive manufacturing, mechanical design, stirling engine.

Procedia PDF Downloads 51
8419 Simultaneous Targeting of MYD88 and Nur77 as an Effective Approach for the Treatment of Inflammatory Diseases

Authors: Uzma Saqib, Mirza S. Baig

Abstract:

Myeloid differentiation primary response protein 88 (MYD88) has long been considered a central player in the inflammatory pathway. Recent studies clearly suggest that it is an important therapeutic target in inflammation. On the other hand, a recent study on the interaction between the orphan nuclear receptor (Nur77) and p38α, leading to increased lipopolysaccharide-induced hyperinflammatory response, suggests this binary complex as a therapeutic target. In this study, we have designed inhibitors that can inhibit both MYD88 and Nur77 at the same time. Since both MYD88 and Nur77 are an integral part of the pathways involving lipopolysaccharide-induced activation of NF-κB-mediated inflammation, we tried to target both proteins with the same library in order to retrieve compounds having dual inhibitory properties. To perform this, we developed a homodimeric model of MYD88 and, along with the crystal structure of Nur77, screened a virtual library of compounds from the traditional Chinese medicine database containing ~61,000 compounds. We analyzed the resulting hits for their efficacy for dual binding and probed them for developing a common pharmacophore model that could be used as a prototype to screen compound libraries as well as to guide combinatorial library design to search for ideal dual-target inhibitors. Thus, our study explores the identification of novel leads having dual inhibiting effects due to binding to both MYD88 and Nur77 targets.

Keywords: drug design, Nur77, MYD88, inflammation

Procedia PDF Downloads 305
8418 Vector-Based Analysis in Cognitive Linguistics

Authors: Chuluundorj Begz

Abstract:

This paper presents the dynamic, psycho-cognitive approach to study of human verbal thinking on the basis of typologically different languages /as a Mongolian, English and Russian/. Topological equivalence in verbal communication serves as a basis of Universality of mental structures and therefore deep structures. Mechanism of verbal thinking consisted at the deep level of basic concepts, rules for integration and classification, neural networks of vocabulary. In neuro cognitive study of language, neural architecture and neuro psychological mechanism of verbal cognition are basis of a vector-based modeling. Verbal perception and interpretation of the infinite set of meanings and propositions in mental continuum can be modeled by applying tensor methods. Euclidean and non-Euclidean spaces are applied for a description of human semantic vocabulary and high order structures.

Keywords: Euclidean spaces, isomorphism and homomorphism, mental lexicon, mental mapping, semantic memory, verbal cognition, vector space

Procedia PDF Downloads 519
8417 A Decision Support System to Detect the Lumbar Disc Disease on the Basis of Clinical MRI

Authors: Yavuz Unal, Kemal Polat, H. Erdinc Kocer

Abstract:

In this study, a decision support system comprising three stages has been proposed to detect the disc abnormalities of the lumbar region. In the first stage named the feature extraction, T2-weighted sagittal and axial Magnetic Resonance Images (MRI) were taken from 55 people and then 27 appearance and shape features were acquired from both sagittal and transverse images. In the second stage named the feature weighting process, k-means clustering based feature weighting (KMCBFW) proposed by Gunes et al. Finally, in the third stage named the classification process, the classifier algorithms including multi-layer perceptron (MLP- neural network), support vector machine (SVM), Naïve Bayes, and decision tree have been used to classify whether the subject has lumbar disc or not. In order to test the performance of the proposed method, the classification accuracy (%), sensitivity, specificity, precision, recall, f-measure, kappa value, and computation times have been used. The best hybrid model is the combination of k-means clustering based feature weighting and decision tree in the detecting of lumbar disc disease based on both sagittal and axial MR images.

Keywords: lumbar disc abnormality, lumbar MRI, lumbar spine, hybrid models, hybrid features, k-means clustering based feature weighting

Procedia PDF Downloads 520
8416 Utilization of Logging Residue to Reduce Soil Disturbance of Timber Harvesting

Authors: Juang R. Matangaran, Qi Adlan

Abstract:

Industrial plantation forest in Indonesia was developed in 1983, and since then, several companies have been successfully planted a total area of concessionaire approximately 10 million hectares. Currently, these plantation forests have their annual harvesting period. In the timber harvesting process, amount part of the trees generally become logging residue. Tree parts such as branches, twigs, defected stem and leaves are unused section of tree on the ground after timber harvesting. The use of heavy machines in timber harvesting area has caused damage to the forest soil. The negative impact of such machines includes loss of topsoil, soil erosion, and soil compaction. Forest soil compaction caused reduction of forest water infiltration, increase runoff and causes difficulty for root penetration. In this study, we used logging residue as soil covers on the passages passed by skidding machines in order to observe the reduction soil compaction. Bulk density of soil was measured and analyzed after several times of skidding machines passage on skid trail. The objective of the research was to analyze the effect of logging residue on reducing soil compaction. The research was taken place at one of the industrial plantation forest area of South Sumatra Indonesia. The result of the study showed that percentage increase of soil compaction bare soil was larger than soil surface covered by logging residue. The maximum soil compaction occurred after 4 to 5 passes on soil without logging residue or bare soil and after 7 to 8 passes on soil cover by logging residue. The use of logging residue coverings could reduce soil compaction from 45% to 60%. The logging residue was effective in decreasing soil disturbance of timber harvesting at the plantation forest area.

Keywords: bulk density, logging residue, plantation forest, soil compaction, timber harvesting

Procedia PDF Downloads 405
8415 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data

Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali

Abstract:

The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.

Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors

Procedia PDF Downloads 69
8414 Job Shop Scheduling: Classification, Constraints and Objective Functions

Authors: Majid Abdolrazzagh-Nezhad, Salwani Abdullah

Abstract:

The job-shop scheduling problem (JSSP) is an important decision facing those involved in the fields of industry, economics and management. This problem is a class of combinational optimization problem known as the NP-hard problem. JSSPs deal with a set of machines and a set of jobs with various predetermined routes through the machines, where the objective is to assemble a schedule of jobs that minimizes certain criteria such as makespan, maximum lateness, and total weighted tardiness. Over the past several decades, interest in meta-heuristic approaches to address JSSPs has increased due to the ability of these approaches to generate solutions which are better than those generated from heuristics alone. This article provides the classification, constraints and objective functions imposed on JSSPs that are available in the literature.

Keywords: job-shop scheduling, classification, constraints, objective functions

Procedia PDF Downloads 444
8413 UKIYO-E: User Knowledge Improvement Based on Youth Oriented Entertainment, Art Appreciation Support by Interacting with Picture

Authors: Haruya Tamaki, Tsugunosuke Sakai, Ryuichi Yoshida, Ryohei Egusa, Shigenori Inagaki, Etsuji Yamaguchi, Fusako Kusunoki, Miki Namatame, Masanori Sugimoto, Hiroshi Mizoguchi

Abstract:

Art appreciation is important as part of children education. Art appreciation can enrich sensibility and creativity. To enrich sensibility and creativity, the children have to learning knowledge of picture such as social and historical backgrounds and author intention. High learning effect can acquire by actively learning. In short, it is important that encourage learning of the knowledge about pictures actively. It is necessary that children feel like interest to encourage learning of the knowledge about pictures actively. In a general art museum, comments on pictures are done through writing. Thus, we expect that this method cannot arouse the interest of the children in pictures, because children feel like boring. In brief, learning about the picture information is difficult. Therefore, we are developing an art-appreciation support system that will encourage learning of the knowledge about pictures actively by children feel like interest. This system uses that Interacting with Pictures to learning of the knowledge about pictures. To Interacting with Pictures, children have to utterance by themselves. We expect that will encourage learning of the knowledge about pictures actively by Interacting with Pictures. To more actively learning, children can choose who talking with by information that location and movement of the children. This system must be able to acquire real-time knowledge of the location, movement, and voice of the children. We utilize the Microsoft’s Kinect v2 sensor and its library, namely, Kinect for Windows SDK and Speech Platform SDK v11 for this purpose. By using these sensor and library, we can determine the location, movement, and voice of the children. As the first step of this system, we developed ukiyo-e game that use ukiyo-e to appreciation object. Ukiyo-e is a traditional Japanese graphic art that has influenced the western society. Therefore, we believe that the ukiyo-e game will be appreciated. In this study, we applied talking to pictures to learn information about the pictures because we believe that learning information about the pictures by talking to the pictures is more interesting than commenting on the pictures using only texts. However, we cannot confirm if talking to the pictures is more interesting than commenting using texts only. Thus, we evaluated through EDA measurement whether the user develops an interest in the pictures while talking to them using voice recognition or by commenting on the pictures using texts only. Hence, we evaluated that children have interest to picture while talking to them using voice recognition through EDA measurement. In addition, we quantitatively evaluate that enjoyed this game or not and learning information about the pictures for primary schoolchildren. In this paper, we summarize these two evaluation results.

Keywords: actively learning, art appreciation, EDA, Kinect V2

Procedia PDF Downloads 285
8412 Difference between 'HDR Ir-192 and Co-60 Sources' for High Dose Rate Brachytherapy Machine

Authors: Md Serajul Islam

Abstract:

High Dose Rate (HDR) Brachytherapy is used for cancer patients. In our country’s prospect, we are using only cervices and breast cancer treatment by using HDR. The air kerma rate in air at a reference distance of less than a meter from the source is the recommended quantity for the specification of gamma ray source Ir-192 in brachytherapy. The absorbed dose for the patients is directly proportional to the air kerma rate. Therefore the air kerma rate should be determined before the first use of the source on patients by qualified medical physicist who is independent from the source manufacturer. The air kerma rate will then be applied in the calculation of the dose delivered to patients in their planning systems. In practice, high dose rate (HDR) Ir-192 afterloader machines are mostly used in brachytherapy treatment. Currently, HDR-Co-60 increasingly comes into operation too. The essential advantage of the use of Co-60 sources is its longer half-life compared to Ir-192. The use of HDRCo-60 afterloading machines is also quite interesting for developing countries. This work describes the dosimetry at HDR afterloading machines according to the protocols IAEA-TECDOC-1274 (2002) with the nuclides Ir-192 and Co-60. We have used 3 different measurement methods (with a ring chamber, with a solid phantom and in free air and with a well chamber) in dependence of each of the protocols. We have shown that the standard deviations of the measured air kerma rate for the Co-60 source are generally larger than those of the Ir-192 source. The measurements with the well chamber had the lowest deviation from the certificate value. In all protocols and methods, the deviations stood for both nuclides by a maximum of about 1% for Ir-192 and 2.5% for Co-60-Sources respectively.

Keywords: Ir-192 source, cancer, patients, cheap treatment cost

Procedia PDF Downloads 236
8411 Early Installation Effect on the Machines’ Generated Vibration

Authors: Maitham Al-Safwani

Abstract:

Motor vibration issues were analyzed by several studies. It is generally accepted that vibration issues result from poor equipment installation. We had a water injection pump tested in the factory and exceeded the pump the vibration limit. Once the pump was brought to the site, its half-size shim plates were replaced with full-size shims plates that drastically reduced the vibration. In this study, vibration data was recorded for several similar motors run at the same and different speeds. The vibration values were recorded -for two and a half hours- and the vibration readings were analyzed to determine when the readings became consistent. This was as well supported by recording the audio noises produced by some machines seeking a relationship between changes in machine noises and machine abnormalities, such as vibration.

Keywords: vibration, noise, installation, machine

Procedia PDF Downloads 183
8410 Biodegradable Drinking Straws Made From Naturally Dried and Fallen Coconut Leaves: Impact on Rural Circular Economy and Environmental Sustainability

Authors: Saji Varghese

Abstract:

Naturally dried and fallen coconut leaves and found in abundance in India and other coconut growing regions of the world. These fallen coconut leaves are usually burnt by farmers in landfills and open kitchens, leading to CO2 and particulate emissions. The innovation of biodegradable drinking straws from naturally dried and fallen coconut leaves by this researcher and his team has opened up opportunities to create value out of this agri-waste leading to i. prevention of burning of these discarded leaves ii. income generating opportunities to women in rural areas of coconut growing regions iii. an alternative to single use plastic straws. The team has developed five special purpose machines, which are deployed in the three villages on a pilot basis where 36 women are employed. The women are trained in the use of these machines, and the straws which are in good demand are sold globally. The present paper analyses the prospective impact of this innovation on the incomes of women working at the straw production centres and the consequent impact on their standards of living, The paper also analyses the impact of this innovation in the reduction of CO2 and particulate emissions and makes a case for support from Govt and Non Govt organizations in coconut growing regions to set up straw production centres to boost rural circular economy and to reduce carbon footprint and eliminate plastic pollution

Keywords: drinking straws, coconut leaves, circular economy, sustainability

Procedia PDF Downloads 138