Search results for: Induced properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10993

Search results for: Induced properties

10603 Simulated Mechanical Analysis on Hydroxyapatite Coated Porous Polylactic Acid Scaffold for Bone Grafting

Authors: Ala Abobakr Abdulhafidh Al-Dubai

Abstract:

Bone loss has risen due to fractures, surgeries, and traumatic injuries. Scientists and engineers have worked over the years to find solutions to heal and accelerate bone regeneration. The bone grafting technique has been utilized, which projects significant improvement in the bone regeneration area. An extensive study is essential on the relation between the mechanical properties of bone scaffolds and the pore size of the scaffolds, as well as the relation between the mechanical properties of bone scaffolds with the development of bioactive coating on the scaffolds. In reducing the cost and time, a mechanical simulation analysis is beneficial to simulate both relations. Therefore, this study highlights the simulated mechanical analyses on three-dimensional (3D) polylactic acid (PLA) scaffolds at two different pore sizes (P: 400 and 600 μm) and two different internals distances of (D: 600 and 900 μm), with and without the presence of hydroxyapatite (HA) coating. The 3D scaffold models were designed using SOLIDWORKS software. The respective material properties were assigned with the fixation of boundary conditions on the meshed 3D models. Two different loads were applied on the PLA scaffolds, including side loads of 200 N and vertical loads of 2 kN. While only vertical loads of 2 kN were applied on the HA coated PLA scaffolds. The PLA scaffold P600D900, which has the largest pore size and maximum internal distance, generated the minimum stress under the applied vertical load. However, that same scaffold became weaker under the applied side load due to the high construction gap between the pores. The development of HA coating on top of the PLA scaffolds induced greater stress generation compared to the non-coated scaffolds which is tailorable for bone implantation. This study concludes that the pore size and the construction of HA coating on bone scaffolds affect the mechanical strength of the bone scaffolds.

Keywords: hydroxyapatite coating, bone scaffold, mechanical simulation, three-dimensional (3D), polylactic acid (PLA).

Procedia PDF Downloads 30
10602 Factors That Contribute to Noise Induced Hearing Loss Amongst Employees at the Platinum Mine in Limpopo Province, South Africa

Authors: Livhuwani Muthelo, R. N. Malema, T. M. Mothiba

Abstract:

Long term exposure to excessive noise in the mining industry increases the risk of noise induced hearing loss, with consequences for employee’s health, productivity and the overall quality of life. Objective: The objective of this study was to investigate the factors that contribute to Noise Induced Hearing Loss amongst employees at the Platinum mine in the Limpopo Province, South Africa. Study method: A qualitative, phenomenological, exploratory, descriptive, contextual design was applied in order to explore and describe the contributory factors. Purposive non-probability sampling was used to select 10 male employees who were diagnosed with NIHL in the year 2014 in four mine shafts, and 10 managers who were involved in a Hearing Conservation Programme. The data were collected using semi-structured one-on-one interviews. A qualitative data analysis of Tesch’s approach was followed. Results: The following themes emerged: Experiences and challenges faced by employees in the work environment, hearing protective device factors and management and leadership factors. Hearing loss was caused by partial application of guidelines, policies, and procedures from the Department of Minerals and Energy. Conclusion: The study results indicate that although there are guidelines, policies, and procedures available, failure in the implementation of one element will affect the development and maintenance of employees hearing mechanism. It is recommended that the mine management should apply the guidelines, policies, and procedures and promptly repair the broken hearing protective devices.

Keywords: employees, factors, noise induced hearing loss, noise exposure

Procedia PDF Downloads 99
10601 Structural and Electromagnetic Properties of CoFe2O4-ZrO2 Nanocomosites

Authors: Ravinder Reddy Butreddy, Sadhana Katlakunta

Abstract:

The nanocomposites of CoFe2O4-xZrO2 with different loadings of ZrO2 (x = 0.025, 0.05, 0.075, 0.1 and 1.5) were prepared using ball mill method. All the samples were prepared at 980°C/1h using microwave sintering method. The x-ray diffraction patterns show the existence of tetragonal/monoclinic phase of ZrO2 and cubic phase of CoFe2O4. The effects of ZrO2 on structural and microstructural properties of CoFe2O4 composite ceramics were investigated. It is observed that the density of the composite decreases and porosity increases with x. The magnetic properties such as saturation magnetization (Ms), and Coercive field were calculated at room temperature. The Ms is decreased with x while coercive field is increased with x. The dielectric parameters exhibit the relaxation behavior in high-frequency region and showing increasing trend with ZrO2 concentration, showing suitable

Keywords: dielectric properties, magnetic properties, microwave sintering, nanocomposites

Procedia PDF Downloads 215
10600 Evaluating the Use of Swedish by-Product Foundry Sand in Asphalt Mixtures

Authors: Dina Kuttah

Abstract:

It is well known that recycling of by-product materials saves natural resources, reduces by-product volumes, and reduces the need for virgin materials. The steel industry produces a myriad of metal components for industrial chains, which in turn generates mineral discarded sand molds. Although these sands are clean before their use, after casting, they may contain contaminants. Therefore, huge quantities of excess by-product foundry sand (BFS) end up occupying large volumes in landfills. In Sweden, approximately 200000 tonnes of excess BFS end up in landfills. The transportation and construction industries have the greatest potential for reuse by-products because they use vast quantities of earthen materials annually. Accordingly, experimental work has been undertaken to evaluate the possible use of two chosen BFS from two Swedish foundries in a conventional Swedish asphalt mixture. The experimental procedure of this research has focused on the dosage, environmental and technical properties of the same mixture type ABT 11 and the same bitumen (160/220) but at different replacement proportions of the conventional fine sand with the two BFS. The environmental requirements, in addition to the technical requirements, namely, void ratio, static indirect tensile strength ratio, and resilient modulus before and after moisture-induced sensitivity tests of the asphalt mixtures, have been investigated in the current study. The test results demonstrated that the BFS from both foundries can be incorporated in the selected asphalt mixture at specified replacement proportions of the conventional fine sand fraction 0-2 mm, as discussed in the paper.

Keywords: asphalt mixtures, by-product foundry sand, indirect tensile strength, moisture induced sensitivity tests, resilient modulus

Procedia PDF Downloads 110
10599 Amelioration of Arsenic and Mercury Induced Vasoconstriction by Eugenol, Linalool and Carvone

Authors: Swati Kundu, Seemi Farhat Basir, Luqman A. Khan

Abstract:

Acute and chronic exposure to arsenic and mercury is known to produce vasoconstriction. Pathways involved in this hypercontraction and their relative contribution are not understood. In this study, we measure agonist-induced contraction of isolated rat aorta exposed to arsenic and mercury aorta and delineate pathways mediating this effect. PE-induced hypercontraction of 37% and 32% was obtained with 25 µM As(III) and 6 nM Hg(II), respectively. Isometric contraction measurements in the presence of apocynin, verapamil and sodium nitroprusside indicates that the major cause of increased contraction is reactive oxygen species and depletion of nitric oxide. Calcium influx plays a minor role in both arsenic and mercury caused hypercontraction. In the unexposed aorta, eugenol causes relaxation by inhibiting ROS and elevating NO, linalool by blocking voltage dependent calcium channel (VDCC) and elevating NO, and carvone by blocking calcium influx through VDDC. Since arsenic and mercury caused hypercontraction is mediated by increased ROS and depletion of nitric oxide, we hypothesize that molecules which neutralize ROS or elevate NO will be better ameliorators. In line with this argument, we find eugenol to be the best ameliorator of arsenic and mercury hypercontraction followed by linalool and carvone.

Keywords: carvone, eugenol, linalool, mercury

Procedia PDF Downloads 301
10598 A Study on the Magnetic and Mechanical Properties of Nd-Fe-B Sintered Magnets According to Sintering Temperature

Authors: J. H. Kim, S. Y. Park, K. M. Lim, S. K. Hyun

Abstract:

The effect of sintering temperature on the magnetic and mechanical properties of Nd-Fe-B sintered magnets has been investigated in this study. The sintering temperature changed from 950°C to 1120°C. While remanence and hardness of the magnets increased with increasing sintering temperature, the coercivity first increased, and then decreased. The optimum magnetic and mechanical properties of the magnets were obtained at the sintering temperature of 1050°C. In order to clarify the reason for the variation on magnetic and mechanical properties of the magnets, we systematically analyzed the microstructure.

Keywords: magnetic and mechanical property, microstructure, permanent magnets, sintered Nd-Fe-B magnet

Procedia PDF Downloads 308
10597 Effect of Zinc Additions on the Microstructure and Mechanical Properties of Mg-3Al Alloy

Authors: Erkan Koç, Mehmet Ünal, Ercan Candan

Abstract:

In this study, the effect of zinc content (0.5-3.0 wt.%) in as-cast Mg-3Al alloy which were fabricated with high-purity raw materials towards the microstructure and mechanical properties was studied. Microstructure results showed that increase in zinc content changed the secondary phase distribution of the alloys. Mechanical test results demonstrate that with the increasing Zn addition the enhancement of the hardness value by 29%, ultimate tensile strength by 16% and yield strength by 15% can be achieved as well as decreasing of elongation by 33%. The improvement in mechanical properties for Mg-Al–Zn alloys with increasing Zn content up to 3% of weight may be ascribed to second phase strengthening.

Keywords: magnesium, zinc, mechanical properties, Mg17Al12

Procedia PDF Downloads 396
10596 A Derivative of L-allo Threonine Alleviates Asthmatic Symptoms in vitro and in vivo

Authors: Kun Chun, Jin-Chun Heo, Sang-Han Lee

Abstract:

Asthma is a chronic airway inflammatory disease characterized by the infiltration of inflammatory cells and tissue remodeling. In this study, we examined the anti-asthmatic activity of a derivative of L-allo threonine by in vitro and in vivo anti-asthmatic assays. Ovalbumin (OVA)-induced C57BL/6 mice were used to analyze lung inflammation and cytokine expressions for exhibiting anti-atopic activity of the derivative. LX519290, a derivative of L-allo threonine, induced an increased IFN-γ and a decreased IL-10 mRNA level. This compound exhibited potent anti-asthmatic activity by decreasing immune cell infiltration in the lung, and IL-4 and IL-13 cytokine levels in the serum of OVA-induced mice. These results indicated that chronic airway injury was decreased by LX519290. We also assessed that LX519290 inhibits infiltration of immune cell, mucus release and cytokine expression in an in vivo model. Our results collectively suggest that the L-allo threonine is effective in alleviating asthmatic symptoms by treating inflammatory factors in the lung.

Keywords: asthma, L -allo threonine, LX519290, mice

Procedia PDF Downloads 357
10595 Effects of Biocompatible Substrates on the Electrical Properties of Graphene

Authors: M. Simchi, M. Amiri, E. Rezvani, I. Mirzaei, M. Berahman, A. Simchi, M. Fardmanesh

Abstract:

Graphene is a single-atomic two-dimensional crystal of carbon atoms that has considerable properties due to its unique structure and physics with applications in different fields. Graphene has sensitive electrical properties due to its atomic-thin structure. Along with the substrate materials and their influence on the transport properties in graphene, design and fabrication of graphene-based devices for biomedical and biosensor applications are challenging. In this work, large-area high-quality graphene nanosheets were prepared by low pressure chemical vapor deposition using methane gas as carbon source on copper foil and transferred on the biocompatible substrates. Through deposition of titanium and gold contacts, current-voltage response of the transferred graphene on four biocompatible substrates, including PDMS, SU-8, Nitrocellulose, and Kapton (Fig. 2) were experimentally determined. The considerable effect of the substrate type on the electrical properties of graphene is shown. The sheet resistance of graphene is changed from 0.34 to 14.5 kΩ/sq, depending on the substrate.

Keywords: biocompatible substrates, electrical properties, graphene, sheet resistance

Procedia PDF Downloads 112
10594 Synthesis and Electromagnetic Property of Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄ Grafted with Polyaniline Fibers

Authors: Jintang Zhou, Zhengjun Yao, Tiantian Yao

Abstract:

Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄(LZFO) grafted with polyaniline (PANI) fibers was synthesized by in situ polymerization. FTIR, XRD, SEM, and vector network analyzer were used to investigate chemical composition, micro-morphology, electromagnetic properties and microwave absorbing properties of the composite. The results show that PANI fibers were grafted on the surfaces of LZFO particles. The reflection loss exceeds 10 dB in the frequency range from 2.5 to 5 GHz and from 15 to 17GHz, and the maximum reflection loss reaches -33 dB at 15.9GHz. The enhanced microwave absorption properties of LZFO/PANI-fiber composites are mainly ascribed to the combined effect of both dielectric loss and magnetic loss and the improved impedance matching.

Keywords: Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄, polyaniline, electromagnetic properties, microwave absorbing properties

Procedia PDF Downloads 409
10593 Cytotoxicity and Androgenic Potential of Antifungal Drug Substances on MDA-KB2 Cells

Authors: Benchouala Amira, Bojic Clement, Poupin Pascal, Cossu Leguille-carole

Abstract:

The objective of this study is to evaluate in vitro the cytotoxic and androgenic potential of several antifungal molecules (amphotericin B, econazole, ketoconazole and miconazole) on MDA-Kb2 cell lines. This biological model is an effective tool for the detection of endocrine disruptors because it responds well to the main agonist of the androgen receptor (testosterone) and also to an antagonist: flutamide. The cytotoxicity of each chemical compound tested was measured using an MTT assay (tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) which measures the activity of the reductase function of mitochondrial succinate dehydrogenase enzymes of cultured cells. This complementary cytotoxicity test is essential to ensure that the effects of reduction in luminescence intensity observed during androgenic tests are only attributable to the anti-androgenic action of the compounds tested and not to their possible cytotoxic properties. Tests of the androgenic activity of antifungals show that these compounds do not have the capacity to induce transcription of the luciferase gene. These compounds do not exert an androgenic effect on MDA-Kb2 cells in culture for the environmental concentrations tested. The addition of flutamide for the same tested concentrations of antifungal molecules reduces the luminescence induced by amphotericin B, econazole and miconazole, which is explained by a strong interaction of these molecules with flutamide which may have a greater toxic effect than when tested alone. The cytotoxicity test shows that econazole and ketoconazole can cause cell death at certain concentrations tested. This cell mortality is perhaps induced by a direct or indirect action on deoxyribonucleic acid (DNA), ribonucleic acid (RNA) or proteins necessary for cell division.

Keywords: cytotoxicity, androgenic potential, antifungals, MDA-Kb2

Procedia PDF Downloads 16
10592 The Change in the Temporomandibular Joint Bone in Osteoarthritis Induced Mice

Authors: Boonyalitpun P., Pruckpattranon P., Thonghom A., Rotpenpian N.

Abstract:

Osteoarthritis is a musculoskeletal and neuromuscular abnormality, masticatory muscle, and other tissue that causes pain and breaks down the articular surface of the temporomandibular joint (TMJ). The aim of this study is to investigate the change in the mandibular condyle, in terms of thickness and porosity, and osteoclast marker in the mandibular condyle of TMJ induced osteoarthritis mice (TMJ-OA mice). We investigated the bony changes in the TMJ structure of a complete Freund adjuvant (CFA)-injected TMJ in a mice model over 28 days. On day 28, we observed any change in the TMJ by a micro computed tomography scan (micro-CT scan) in the parameters of trabecular microarchitecture. Then we studied the thickness of the condyles by hematoxylin and eosin staining. Moreover, we calculated the area around the TMJ’s condylar head containing the osteoclast expression by TRAP (Tartrate-resistant acid phosphatase) immunohistochemistry staining. The result found that the parameter of a micro-CT scan was no different from microarchitecture in the TMJ compared with the control group; however, mandibular condyles of the TMJ-OA group was significantly thinner than the control groups, and the osteoclast expression significantly increased in the TMJ-OA group. Therefore, our findings suggest that CFA-induced TMJ-OA represents an expression of osteoclast mandibular condyle of the TMJ, which is the proposed mechanism for a TMJ-OA model.

Keywords: condyle, osteoarthritis, osteoclast, temporomandibular joint

Procedia PDF Downloads 76
10591 Development and Characterization of Ethiopian Bamboo Fiber Polypropylene Composite

Authors: Tigist Girma Kedane

Abstract:

The purpose of this paper is to evaluate the properties of Ethiopian bamboo fiber polymer composites for headliner materials in the automobile industry. Accurate evaluation of its mechanical properties is thus critical for predicting its behavior during a vehicle's interior impact assessment. Conventional headliner materials are higher in weight, nonbiodegradable, expensive in cost, and unecofriendly during processing compared to the current researched materials. Three representatives of bamboo plants are harvested in three regions of bamboo species, three groups of ages, and two harvesting months. The statistical analysis was performed to validate the significant difference between the mean strength of bamboo ages, harvesting seasons, and bamboo species. Two-year-old bamboo fibers have the highest mechanical properties in all ages and November has higher mechanical properties compared to February. Injibara and Kombolcha have the highest and the lowest mechanical properties of bamboo fibers, respectively. Bamboo fiber epoxy composites have higher mechanical properties compared to bamboo fiber polypropylene composites. The flexural strength of bamboo fibre polymer composites has higher properties compared to tensile strength. Ethiopian bamboo fibers and their polymer composites have the best mechanical properties for the composite industry, which is used for headliner materials in the automobile industry compared to conventional headliner materials.

Keywords: bampoo species, culm age, harvesting seasons, mechanical properties, polymer composite

Procedia PDF Downloads 39
10590 Luminescent Dye-Doped Polymer Nanofibers Produced by Electrospinning Technique

Authors: Monica Enculescu, A. Evanghelidis, I. Enculescu

Abstract:

Among the numerous methods for obtaining polymer nanofibers, the electrospinning technique distinguishes itself due to the more growing interest induced by its proved utility leading to developing and improving of the method and the appearance of novel materials. In particular, production of polymeric nanofibers in which different dopants are introduced was intensively studied in the last years because of the increased interest for the obtaining of functional electrospun nanofibers. Electrospinning is a facile method of obtaining polymer nanofibers with diameters from tens of nanometers to micrometrical sizes that are cheap, flexible, scalable, functional and biocompatible. Besides the multiple applications in medicine, polymeric nanofibers obtained by electrospinning permit manipulation of light at nanometric dimensions when doped with organic dyes or different nanoparticles. It is a simple technique that uses an electrical field to draw fine polymer nanofibers from solutions and does not require complicated devices or high temperatures. Different morphologies of the electrospun nanofibers can be obtained for the same polymeric host when different parameters of the electrospinning process are used. Consequently, we can obtain tuneable optical properties of the electrospun nanofibers (e.g. changing the wavelength of the emission peak) by varying the parameters of the fabrication method. We focus on obtaining doped polymer nanofibers with enhanced optical properties using the electrospinning technique. The aim of the paper is to produce dye-doped polymer nanofibers’ mats incorporating uniformly dispersed dyes. Transmission and fluorescence of the fibers will be evaluated by spectroscopy methods. The morphological properties of the electrospun dye-doped polymer fibers will be evaluated using scanning electron microscopy (SEM). We will tailor the luminescent properties of the material by doping the polymer (polyvinylpyrrolidone or polymethylmetacrilate) with different dyes (coumarins, rhodamines and sulforhodamines). The tailoring will be made taking into consideration the possibility of changing the luminescent properties of electrospun polymeric nanofibers that are doped with different dyes by using different parameters for the electrospinning technique (electric voltage, distance between electrodes, flow rate of the solution, etc.). Furthermore, we can evaluated the influence of the concentration of the dyes on the emissive properties of dye-doped polymer nanofibers using different concentrations. The advantages offered by the electrospinning technique when producing polymeric fibers are given by the simplicity of the method, the tunability of the morphology allowed by the possibility of controlling all the process parameters (temperature, viscosity of polymeric solution, applied voltage, distance between electrodes, etc.), and by the absence of necessity of using harsh and supplementary chemicals such as the ones used in the traditional nanofabrication techniques. Acknowledgments: The authors acknowledge the financial support received through IFA CEA Project No. C5-08/2016.

Keywords: electrospinning, luminescence, polymer nanofibers, scanning electron microscopy

Procedia PDF Downloads 183
10589 Physical and Thermo-Physical Properties of High Strength Concrete Containing Raw Rice Husk after High Temperature Effect

Authors: B. Akturk, N. Yuzer, N. Kabay

Abstract:

High temperature is one of the most detrimental effects that cause important changes in concrete’s mechanical, physical, and thermo-physical properties. As a result of these changes, especially high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a very well-known method. In this study, using RRH as a sustainable material instead of PP fiber in HSC to prevent spallings and improve physical and thermo-physical properties were investigated. Therefore, seven HSC mixtures with 0.25 water to binder ratio were prepared, incorporating silica fume and blast furnace slag. PP and RRH were used at 0.2-0.5% and 0.5-3% by weight of cement, respectively. All specimens were subjected to high temperatures (20 (control), 300, 600 and 900˚C) with a heating rate of 2.5˚C/min and after cooling, residual physical and thermo-physical properties were determined.

Keywords: high temperature, high strength concrete, polypropylene fiber, raw rice husk, thermo-physical properties

Procedia PDF Downloads 240
10588 Evaluation of the Synergistic Inhibition of Enterovirus 71 Infection by Interferon-α Coupled with Pleconaril in RD Cells

Authors: Wen-Yu Lin, Yi-Ching Chung, Tzyy-Rong Jinn

Abstract:

It is well known that enterovirus 71 (EV71) causes recurring outbreaks of hand, foot and mouth disease (HFMD) and encephalitis leading to complications or death in young children. And, several HFMD of EV71 with high mortalities occurred in Asia countries, such as Malaysia (1997), Taiwan (1998) and China (2008). Thus, more effective antiviral drugs are needed to prevent or reduce EV71-related complications. As reported, interferon-α protects mice from lethal EV71 challenge by the modulation of innate immunity and then degrade enterovirus protease 3Cᵖʳᵒ. On the other side, pleconaril by targeting enterovirus VP1 protein and then block virus entry and attachment. Thus, the aim of this study was to evaluate the synergistic antiviral activity of interferon-α and pleconaril against enterovirus 71 infection. In a preliminary study showed that pleconaril at concentrations of 50, 100 and 300 µg/mL reduced EV71-induced CPE to 52.0 ± 2.5%, 40.2 ± 3.5% and 26.5 ± 1.5%, respectively, of that of the EV71-infected RD control cells (taken as 100%). Notably, 1000 IU/mL of interferon-α in combination with pleconaril at concentrations of 50, 100 and 300µg/mL suppressed EV71-induced CPE by 30.2 ± 3.8%, 16.5 ± 1.3% and 2.8 ± 2.0%, respectively, of that of the pleconaril alone treated with the infected RD cells. These results indicated that interferon-α 1000 IU/mL combination with pleconaril (50, 100 and 300µg/mL) inhibited EV71-induced CPE more effectively than treated with pleconaril alone in the infected RD cells.

Keywords: enterovirus 71, interferon-α, pleconaril, RD cells

Procedia PDF Downloads 120
10587 Ab Initio Study of Structural, Elastic, Electronic and Thermal Properties of Full Heusler

Authors: M. Khalfa, H. Khachai, F. Chiker, K. Bougherara, R. Khenata, G. Murtaza, M. Harmel

Abstract:

A theoretical study of structural, elastic, electronic and thermodynamic properties of Fe2VX, (with X = Al and Ga), were studied by means of the full-relativistic version of the full-potential augmented plane wave plus local orbitals method. For exchange and correlation potential we used both generalized-gradient approximation (GGA) and local-density approximation (LDA). Our calculated ground state properties like as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA approximation, and these results agree very well with the available experimental and theoretical data. Further, prediction of the thermal effects on some macroscopic properties of Fe2VAl and Fe2VGa are given in this paper using the quasi-harmonic Debye model in which the lattice vibrations are taken into account. We have obtained successfully the variations of the primitive cell volume, volume expansion coefficient, heat capacities and Debye temperature with pressure and temperature in the ranges of 0–40 GPa and 0–1500 K.

Keywords: full Heusler, FP-LAPW, electronic properties, thermal properties

Procedia PDF Downloads 463
10586 Tailoring Structural, Thermal and Luminescent Properties of Solid-State MIL-53(Al) MOF via Fe³⁺ Cation Exchange

Authors: T. Ul Rehman, S. Agnello, F. M. Gelardi, M. M. Calvino, G. Lazzara, G. Buscarino, M. Cannas

Abstract:

Metal-Organic Frameworks (MOFs) have emerged as promising candidates for detecting metal ions owing to their large surface area, customizable porosity, and diverse functionalities. In recent years, there has been a surge in research focused on MOFs with luminescent properties. These frameworks are constructed through coordinated bonding between metal ions and multi-dentate ligands, resulting in inherent fluorescent structures. Their luminescent behavior is influenced by factors like structural composition, surface morphology, pore volume, and interactions with target analytes, particularly metal ions. MOFs exhibit various sensing mechanisms, including photo-induced electron transfer (PET) and charge transfer processes such as ligand-to-metal (LMCT) and metal-to-ligand (MLCT) transitions. Among these, MIL-53(Al) stands out due to its flexibility, stability, and specific affinity towards certain metal ions, making it a promising platform for selective metal ion sensing. This study investigates the structural, thermal, and luminescent properties of MIL-53(Al) metal-organic framework (MOF) upon Fe3+ cation exchange. Two separate sets of samples were prepared to activate the MOF powder at different temperatures. The first set of samples, referred to as MIL-53(Al), activated (120°C), was prepared by activating the raw powder in a glass tube at 120°C for 12 hours and then sealing it. The second set of samples, referred to as MIL-53(Al), activated (300°C), was prepared by activating the MIL-53(Al) powder in a glass tube at 300°C for 70 hours. Additionally, 25 mg of MIL-53(Al) powder was dispersed in 5 mL of Fe3+ solution at various concentrations (0.1-100 mM) for the cation exchange experiment. The suspension was centrifuged for five minutes at 10,000 rpm to extract MIL-53(Al) powder. After three rounds of washing with ultrapure water, MIL-53(Al) powder was heated at 120°C for 12 hours. For PXRD and TGA analyses, a sample of the obtained MIL-53(Al) was used. We also activated the cation-exchanged samples for time-resolved photoluminescence (TRPL) measurements at two distinct temperatures (120 and 300°C) for comparative analysis. Powder X-ray diffraction patterns reveal amorphization in samples with higher Fe3+ concentrations, attributed to alterations in coordination environments and ion exchange dynamics. Thermal decomposition analysis shows reduced weight loss in Fe3+-exchanged MOFs, indicating enhanced stability due to stronger metal-ligand bonds and altered decomposition pathways. Raman spectroscopy demonstrates intensity decrease, shape disruption, and frequency shifts, indicative of structural perturbations induced by cation exchange. Photoluminescence spectra exhibit ligand-based emission (π-π* or n-π*) and ligand-to-metal charge transfer (LMCT), influenced by activation temperature and Fe3+ incorporation. Quenching of luminescence intensity and shorter lifetimes upon Fe3+ exchange result from structural distortions and Fe3+ binding to organic linkers. In a nutshell, this research underscores the complex interplay between composition, structure, and properties in MOFs, offering insights into their potential for diverse applications in catalysis, gas storage, and luminescent devices.

Keywords: Fe³⁺ cation exchange, luminescent metal-organic frameworks (LMOFs), MIL-53(Al), solid-state analysis

Procedia PDF Downloads 30
10585 Production of Chromium Matrix Composite Reinforced by WC by Powder Metallurgy

Authors: Ahmet Yonetken, Ayhan Erol

Abstract:

Intermetallic materials advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %80Cr-%10Ti and %10WC powders were investigated using specimens produced by tube furnace sintering at 1000-1400°C temperature. A composite consisting of ternary additions, a metallic phase, Ti,Cr and WC have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %80Cr-%10Ti and %10WC at 1400°C suggest that the best properties as 292HV and 5,34g/cm3 density were obtained at 1400°C.

Keywords: ceramic-metal, composites, powder metallurgy, sintering

Procedia PDF Downloads 443
10584 Electronic/Optoelectronic Property Tuning in Two-Dimensional Transition Metal Dichalcogenides via High Pressure

Authors: Juan Xia, Jiaxu Yan, Ze Xiang Shen

Abstract:

The tuneable interlayer interactions in two-dimensional (2D) transition metal dichlcogenides (TMDs) offer an exciting platform for exploring new physics and applications by material variety, thickness, stacking sequence, electromagnetic filed, and stress/strain. Compared with the five methods mentioned above, high pressure is a clean and powerful tool to induce dramatic changes in lattice parameters and physical properties for 2D TMD materials. For instance, high pressure can strengthen the van der Waals interactions along c-axis and shorten the covalent bonds in atomic plane, leading to the typical first-order structural transition (2Hc to 2Ha for MoS2), or metallization. In particular, in the case of WTe₂, its unique symmetry endows the significant anisotropy and the corresponding unexpected properties including the giant magnetoresistance, pressure-induced superconductivity and Weyl semimetal states. Upon increasing pressure, the Raman peaks for WTe₂ at ~120 cm⁻¹, are gradually red-shifted and totally suppressed above 10 GPa, attributed to the possible structural instability of orthorhombic Td phase under high pressure and phase transition to a new monoclinic T' phase with inversion symmetry. Distinct electronic structures near Fermi level between the Td and T' phases may pave a feasible way to achieve the Weyl state tuning in one material without doping.

Keywords: 2D TMDs, electronic property, high pressure, first-principles calculations

Procedia PDF Downloads 208
10583 Properties of Rhizophora Charcoal for Product Design

Authors: Tanutpong Phriwanrat

Abstract:

This research investigated the properties of Rhizophora charcoal for product design on 3 aspects: electrical conductor, impurity absorption, and fresh fruit shelf life. After the study, the properties of Rhizophora charcoal were applied to produce local product model at Ban Yisarn, Ampawa District, Samudsongkram Province which can add value to the Rhizophora charcoal as one of the OTOP (One-Tambon-One product). The results showed that the Rhizophora charcoal is not an electrical conductor but good liquid impurity absorber and it can extend fresh fruit shelf life.

Keywords: design, product design, properties of rhizophora, rhizophora charcoal

Procedia PDF Downloads 369
10582 Ni-B Coating Production on Magnesium Alloy by Electroless Deposition

Authors: Ferhat Bülbül

Abstract:

The use of magnesium alloys is limited due to their susceptibility to corrosion although they have many attractive physical and mechanical properties. To increase mechanical and corrosion properties of these alloys, many deposition method and coating types are used. Electroless Ni–B coatings have received considerable interest recently due to its unique properties such as cost-effectiveness, thickness uniformity, good wear resistance, lubricity, good ductility and corrosion resistance, excellent solderability and electrical properties and antibacterial property. In this study, electroless Ni-B coating could been deposited on AZ91 magnesium alloy. The obtained coating exhibited an amorphous and rougher structure.

Keywords: magnesium, electroless Ni–B, X-ray diffraction, amorphous

Procedia PDF Downloads 311
10581 Theoretical Investigations on Optical Properties of GaFeMnN Quaternary Compound

Authors: H. A. Bentounes, A. Abbad, W. Benstaali

Abstract:

Using first principles calculations based on the density functional theory and local spin density approximation, we investigate optical properties of GaFeMnN quaternary compound. Results show that optical properties confirm that GaFeMnN can be a good candidate in the design of thin film solar cells in the visible and ultraviolet parts of the spectrum, and a good sensor in the infrared

Keywords: GaN, optical absorption, semi-metallic, dielectric function

Procedia PDF Downloads 354
10580 In2S3 Buffer Layer Properties for Thin Film Solar Cells Based on CIGS Absorber

Authors: A. Bouloufa, K. Djessas

Abstract:

In this paper, we reported the effect of substrate temperature on the structural, electrical and optical properties of In2S3 thin films deposited on soda-lime glass substrates by physical vapor deposition technique at various substrate temperatures. The In2Se3 material used for deposition was synthesized from its constituent elements. It was found that all samples exhibit one phase which corresponds to β-In2S3 phase. Values of band gap energy of the films obtained at different substrate temperatures vary in the range of 2.38-2.80 eV and decrease with increasing substrate temperature.

Keywords: buffer layer, In2S3, optical properties, PVD, structural properties

Procedia PDF Downloads 296
10579 Tuneability Sub-10-nm WO3 Nano-Flakes and Their Electrical Properties

Authors: S. Zhuiykov, E. Kats

Abstract:

Electrical properties and morphology of orthorhombic β–WO3 nano-flakes with thickness of ~7-9 nm were investigated at the nano scale using energy dispersive X-ray diffraction (XRD), X-ray photo electron spectroscopy (XPS) and current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNATM). CSFS-AFM analysis established good correlation between the topography of the developed nano-structures and various features of WO3 nano-flakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β–WO3 nano-flakes annealed at 550ºC possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro- and nano-structured WO3 synthesized at alternative temperatures.

Keywords: electrical properties, layered semiconductors, nano-flake, sol-gel, exfoliation WO3

Procedia PDF Downloads 218
10578 Piezoelectric and Dielectric Properties of Poly(Vinylideneflouride-Hexafluoropropylene)/ZnO Nanocomposites

Authors: P. Hemalatha, Deepalekshmi Ponnamma, Mariam Al Ali Al-Maadeed

Abstract:

The Poly(vinylideneflouride-hexafluoropropylene) (PVDF-HFP)/ zinc oxide (ZnO) nanocomposites films were successfully prepared by mixing the fine ZnO particles into PVDF-HFP solution followed by film casting and sandwich techniques. Zinc oxide nanoparticles were synthesized by hydrothermal method. Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structure and properties of the obtained nanocomposites. The dielectric properties of the PVDF-HFP/ZnO nanocomposites were analyzed in detail. In comparison with pure PVDF-HFP, the dielectric constant of the nanocomposite (1wt% ZnO) was significantly improved. The piezoelectric co-efficients of the nanocomposites films were measured. Experimental results revealed the influence of filler on the properties of PVDF-HFP and enhancement in the output performance and dielectric properties reflects the ability for energy storage capabilities.

Keywords: dielectric constant, hydrothermal, nanoflowers, organic compounds

Procedia PDF Downloads 260
10577 Effects of a Bioactive Subfraction of Strobilanthes Crispus on the Tumour Growth, Body Weight and Haematological Parameters in 4T1-Induced Breast Cancer Model

Authors: Yusha'u Shu'aibu Baraya, Kah Keng Wong, Nik Soriani Yaacob

Abstract:

Strobilanthes crispus (S. crispus), is a Malaysian herb locally known as ‘Pecah kaca’ or ‘Jin batu’ which have demonstrated potent anticancer effects in both in vitro and in vivo models. In particular, S. crispus subfraction (SCS) significantly reduced tumor growth in N-methyl-N-Nitrosourea-induced breast cancer rat model. However, there is paucity of information on the effects of SCS in breast cancer metastasis. Thus, in this study, the antimetastatic effects of SCS (100 mg/kg) was investigated following 30 days of treatment in 4T1-induced mammary tumor (n = 5) model. The response to treatment was assessed based on the outcome of the tumour growth, body weight and hematological parameters. The results demonstrated that tumor bearing mice treated with SCS (TM-S) had significant (p<0.05) reduction in the mean tumor number and tumor volume as well as tumor weight compared to the tumor bearing mice (TM), i.e. tumor untreated group. Also, there was no secondary tumor formation or tumor-associated lesions in the major organs of TM-S compared to the TM group. Similarly, comparable body weights were observed among the TM-S, normal (uninduced) mice treated with SCS and normal (untreated/control) mice (NM) groups compared to the TM group (p<0.05). Furthermore, SCS administration does not cause significant changes in the hematological parameters as compared to the NM group, which indicates no sign of anemia and toxicity related effects. In conclusion, SCS significantly inhibited the overall tumor growth and metastasis in 4T1-induced breast cancer mouse model suggesting its promising potentials as therapeutic agent for breast cancer treatment.

Keywords: 4T1-cells, breast cancer, metastasis, Strobilanthes crispus

Procedia PDF Downloads 128
10576 Spectral Analysis Approaches for Simultaneous Determination of Binary Mixtures with Overlapping Spectra: An Application on Pseudoephedrine Sulphate and Loratadine

Authors: Sara El-Hanboushy, Hayam Lotfy, Yasmin Fayez, Engy Shokry, Mohammed Abdelkawy

Abstract:

Simple, specific, accurate and precise spectrophotometric methods are developed and validated for simultaneous determination of pseudoephedrine sulphate (PSE) and loratadine (LOR) in combined dosage form based on spectral analysis technique. Pseudoephedrine (PSE) in binary mixture could be analyzed either by using its resolved zero order absorption spectrum at its λ max 256.8 nm after subtraction of LOR spectrum or in presence of LOR spectrum by absorption correction method at 256.8 nm, dual wavelength (DWL) method at 254nm and 273nm, induced dual wavelength (IDWL) method at 256nm and 272nm and ratio difference (RD) method at 256nm and 262 nm. Loratadine (LOR) in the mixture could be analyzed directly at 280nm without any interference of PSE spectrum or at 250 nm using its recovered zero order absorption spectrum using constant multiplication(CM).In addition, simultaneous determination for PSE and LOR in their mixture could be applied by induced amplitude modulation method (IAM) coupled with amplitude multiplication (PM).

Keywords: dual wavelength (DW), induced amplitude modulation method (IAM) coupled with amplitude multiplication (PM), loratadine, pseudoephedrine sulphate, ratio difference (RD)

Procedia PDF Downloads 293
10575 Design of a Chaotic Trajectory Generator Algorithm for Mobile Robots

Authors: J. J. Cetina-Denis, R. M. López-Gutiérrez, R. Ramírez-Ramírez, C. Cruz-Hernández

Abstract:

This work addresses the problem of designing an algorithm capable of generating chaotic trajectories for mobile robots. Particularly, the chaotic behavior is induced in the linear and angular velocities of a Khepera III differential mobile robot by infusing them with the states of the H´enon chaotic map. A possible application, using the properties of chaotic systems, is patrolling a work area. In this work, numerical and experimental results are reported and analyzed. In addition, two quantitative numerical tests are applied in order to measure how chaotic the generated trajectories really are.

Keywords: chaos, chaotic trajectories, differential mobile robot, Henon map, Khepera III robot, patrolling applications

Procedia PDF Downloads 283
10574 The Simulation of Superfine Animal Fibre Fractionation: The Strength Variation of Fibre

Authors: Sepehr Moradi

Abstract:

This study investigates the contribution of individual Australian Superfine Merino Wool (ASFW) and Inner Mongolia Cashmere (IMC) fibres strength behaviour to the breaking force variation (CVBF) and minimum fibre diameter (CVₘFD) induced by actual single fibre lengths and the combination of length and diameter groups. Mid-side samples were selected for the ASFW (n = 919) and IMC (n = 691) since it is assumed to represent the average of the whole fleece. The average (LₘFD) varied for ASFW and IMC by 36.6 % and 33.3 % from shortest to longest actual single fibre length and -21.2 % and -21.7 % between longest-coarsest and shortest-finest groups, respectively. The tensile properties of single animal fibres were characterised using Single Fibre Analyser (SIFAN 4). After normalising for diversity in fibre diameter at the position of breakage, the parameters, which explain the strength behaviour within actual fibre lengths and combination of length-diameter groups, were the Intrinsic Fibre Strength (IFS) (MPa), Min IFS (MPa), Max IFS (MPa) and Breaking force (BF) (cN). The average strength of single fibres varied extensively within actual length groups and within a combination of length-diameter groups. IFS ranged for ASFW and IMC from 419 to 355 MPa (-15.2 % range) and 353 to 319 (-9.6 % range) and BF from 2.2 to 3.6 (63.6 % range) and 3.2 to 5.3 cN (65.6 % range) from shortest to longest groups, respectively. Single fibre properties showed no differences within actual length groups and within a combination of length-diameter groups, or was there a strong interaction between the strength of single fibre (P > 0.05) within remaining and removing length-diameter groups. Longer-coarser fibre fractionation had a significant effect on BF and IFS and all of the length groups showed a considerable variance in single fibre strength that is accounted for by diversity in the diameter variation along the fibre. There are many concepts for the improvement of the stress-strain properties of animal fibres as a means of raising a single fibre strength by simultaneous changes in fibre length and diameter. Fibre fractionation over a given length directly for single fibre strength or using the variation traits of fibre diameter is an important process used to increase the strength of the single fibre.

Keywords: single animal fibre fractionation, actual length groups, strength variation, length-diameter groups, diameter variation along fibre

Procedia PDF Downloads 172