Search results for: the creative learning process
17117 New Approach to Interactional Dynamics of E-mail Correspondence
Authors: Olga Karamalak
Abstract:
The paper demonstrates a research about theoretical understanding of writing in the electronic environment as dynamic, interactive, dialogical, and distributed activity aimed at “other-orientation” and consensual domain creation. The purpose is to analyze the personal e-mail correspondence in the academic environment from this perspective. The focus is made on the dynamics of interaction between the correspondents such as contact setting, orientation and co-functions; and the text of an e-letter is regarded as indices of the write’s state or affordances in terms of ecological linguistics. The establishment of consensual domain of interaction brings about a new stage of cognition emergence which may lead to distributed learning. The research can play an important part in the series of works dedicated to writing in the electronic environment.Keywords: consensual domain of interactions, distributed writing and learning, e-mail correspondence, interaction, orientation, co-function
Procedia PDF Downloads 58417116 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.Keywords: artificial intelligence, air quality prediction, neural networks, pattern recognition, PM-10
Procedia PDF Downloads 23517115 An Empirical Investigation of Big Data Analytics: The Financial Performance of Users versus Vendors
Authors: Evisa Mitrou, Nicholas Tsitsianis, Supriya Shinde
Abstract:
In the age of digitisation and globalisation, businesses have shifted online and are investing in big data analytics (BDA) to respond to changing market conditions and sustain their performance. Our study shifts the focus from the adoption of BDA to the impact of BDA on financial performance. We explore the financial performance of both BDA-vendors (business-to-business) and BDA-clients (business-to-customer). We distinguish between the five BDA-technologies (big-data-as-a-service (BDaaS), descriptive, diagnostic, predictive, and prescriptive analytics) and discuss them individually. Further, we use four perspectives (internal business process, learning and growth, customer, and finance) and discuss the significance of how each of the five BDA-technologies affects the performance measures of these four perspectives. We also present the analysis of employee engagement, average turnover, average net income, and average net assets for BDA-clients and BDA-vendors. Our study also explores the effect of the COVID-19 pandemic on business continuity for both BDA-vendors and BDA-clients.Keywords: BDA-clients, BDA-vendors, big data analytics, financial performance
Procedia PDF Downloads 12717114 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience
Authors: Amanda Kavner, Richard Lamb
Abstract:
Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience
Procedia PDF Downloads 12617113 Read-Aloud with Multimedia Enhancement Strategy as an Effective Strategy to Use in the Classroom
Authors: Rahime Filiz Kiremit
Abstract:
This study identifies six different articles to explain which strategies are most effective for kindergarten English Language Learners. The literature review project has information about six different research articles, purpose of the studies, and results of the studies. There are several strategies can be used for ELL students to help them to develop their English language skills. Some articles mention technology as a multimedia integrated into the curriculum, some of them mention writing as a method of learning English as a second language. However, they all have a common strategy that is shared reading. According to these six articles, shared reading has a big role of ELL students’ language developmental process. All in all, read-aloud with multimedia enhancement strategy is the best strategy to use in the classroom, because this strategy is based on shared reading and also integrated with technology.Keywords: bilingual education, effective strategies, english language learners, kindergarten
Procedia PDF Downloads 29817112 Predictive Semi-Empirical NOx Model for Diesel Engine
Authors: Saurabh Sharma, Yong Sun, Bruce Vernham
Abstract:
Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model. Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.Keywords: diesel engine, machine learning, NOₓ emission, semi-empirical
Procedia PDF Downloads 11617111 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 13117110 Harnessing Emerging Creative Technology for Knowledge Discovery of Multiwavelenght Datasets
Authors: Basiru Amuneni
Abstract:
Astronomy is one domain with a rise in data. Traditional tools for data management have been employed in the quest for knowledge discovery. However, these traditional tools become limited in the face of big. One means of maximizing knowledge discovery for big data is the use of scientific visualisation. The aim of the work is to explore the possibilities offered by emerging creative technologies of Virtual Reality (VR) systems and game engines to visualize multiwavelength datasets. Game Engines are primarily used for developing video games, however their advanced graphics could be exploited for scientific visualization which provides a means to graphically illustrate scientific data to ease human comprehension. Modern astronomy is now in the era of multiwavelength data where a single galaxy for example, is captured by the telescope several times and at different electromagnetic wavelength to have a more comprehensive picture of the physical characteristics of the galaxy. Visualising this in an immersive environment would be more intuitive and natural for an observer. This work presents a standalone VR application that accesses galaxy FITS files. The application was built using the Unity Game Engine for the graphics underpinning and the OpenXR API for the VR infrastructure. The work used a methodology known as Design Science Research (DSR) which entails the act of ‘using design as a research method or technique’. The key stages of the galaxy modelling pipeline are FITS data preparation, Galaxy Modelling, Unity 3D Visualisation and VR Display. The FITS data format cannot be read by the Unity Game Engine directly. A DLL (CSHARPFITS) which provides a native support for reading and writing FITS files was used. The Galaxy modeller uses an approach that integrates cleaned FITS image pixels into the graphics pipeline of the Unity3d game Engine. The cleaned FITS images are then input to the galaxy modeller pipeline phase, which has a pre-processing script that extracts, pixel, galaxy world position, and colour maps the FITS image pixels. The user can visualise image galaxies in different light bands, control the blend of the image with similar images from different sources or fuse images for a holistic view. The framework will allow users to build tools to realise complex workflows for public outreach and possibly scientific work with increased scalability, near real time interactivity with ease of access. The application is presented in an immersive environment and can use all commercially available headset built on the OpenXR API. The user can select galaxies in the scene, teleport to the galaxy, pan, zoom in/out, and change colour gradients of the galaxy. The findings and design lessons learnt in the implementation of different use cases will contribute to the development and design of game-based visualisation tools in immersive environment by enabling informed decisions to be made.Keywords: astronomy, visualisation, multiwavelenght dataset, virtual reality
Procedia PDF Downloads 9817109 The Effect of Attention-Deficit/Hyperactivity Disorder on Additional Language Learning: Voices of English as a Foreign Language Teachers in Poland
Authors: Agnieszka Kałdonek-Crnjaković
Abstract:
Research on Attention-Deficit/Hyperactivity Disorder (ADHD) is abundant but not in the field of applied linguistics and foreign or second language education. To fill this research gap, the present study aimed to investigate the effect of ADHD on skills and systems development in a second and foreign language from the teacher's perspective. The participants were 51 English as a foreign language (EFL) teachers in Poland working in state pre-, primary, and high schools. Research questions were as follows: Do ADHD-type behaviors affect EFL learning of the individual with the condition and their classmates to the same extent considering different educational settings and specific skills and systems? And To what extent do ADHD-type behaviors affect ESL/EFL skills and systems considering different ADHD presentations? Data were collected by means of a questionnaire distributed via a Google form. It contained 14 statements on a six-point Likert scale related to the effect of ADHD on specific language skills and systems in the context of an individual with the condition and their classmates and situations related to inattention and hyperactivity/impulsivity presentations of the condition, where the participants needed to identify skills and systems affected by the given ADHD manifestation. The results show that ADHD affects all language skills and systems development in both the individual with the condition and their classmates, but this effect is more significant in the latter. However, ADHD affected skills and systems to a different degree; writing skills were reported as the most affected by this disorder. Also, the effect of ADHD differed depending on the educational setting, being the highest in high school and lowest in the first three grades of primary school. These findings will be discussed in the context of foreign/second language teaching in the school context, considering different phases of education as well as future research on ADHD and language learning and teaching.Keywords: ADHD, EFL teachers, foreign/second language learning, language skills and systems development
Procedia PDF Downloads 7717108 Identifying and Exploring Top 10 Sustainable Leadership Practices of a School Leader to Improve School Leadership and Student Learning Outcomes
Authors: Sapana Purandare
Abstract:
The landscape of school leadership is evolving with the changing world of the 21st century. In this era, it is crucial to adapt our approaches to school leadership, with the school leader playing an important role in shaping the educational system. During the implementation of the LEAD project, the volume of 67 practices was impractical for any school leader to effectively incorporate. Consequently, this study aims to address this issue by administering a questionnaire to school leaders, including those from Kotak Education Foundation partner schools and others operating within similar contexts. The goal is to pinpoint the practices that can enhance school leadership and Student Learning Outcomes (SLO) both presently and in the near future. Utilizing the Qualtrics tool, a survey was conducted to identify the top 15 practices that respondents believe will be crucial for improving SLO over the next 10-15 years. Additionally, focus group discussions (FGDs) and interviews were conducted to elucidate the challenges hindering the implementation of these practices within schools. The recommendations derived from the identified top 15 practices will be instrumental in devising scalable models for LEAD and advocating for their adoption at the state level. Practices with higher standard deviations and average scores hold particular significance for future development. Furthermore, demographic factors such as age, gender, and years of service influence individuals' perceptions of these practices and thus warrant consideration in our analysis.Keywords: exploring top sustainable practices, practice implementation, school leadership, student learning outcomes
Procedia PDF Downloads 6017107 Day-To-Day Variations in Health Behaviors and Daily Functioning: Two Intensive Longitudinal Studies
Authors: Lavinia Flueckiger, Roselind Lieb, Andrea H. Meyer, Cornelia Witthauer, Jutta Mata
Abstract:
Objective: Health behaviors tend to show a high variability over time within the same person. However, most existing research can only assess a snapshot of a person’s behavior and not capture this natural daily variability. Two intensive longitudinal studies examine the variability in health behavior over one academic year and their implications for other aspects of daily life such as affect and academic performance. Can already a single day of increased physical activity, snacking, or improved sleep have beneficial effects? Methods: In two intensive longitudinal studies with up to 65 assessment days over an entire academic year, university students (Study 1: N = 292; Study 2: N = 304) reported sleep quality, physical activity, snacking, positive and negative affect, and learning goal achievement. Results: Multilevel structural equation models showed that on days on which participants reported better sleep quality or more physical activity than usual, they also reported increased positive affect, decreased negative affect, and better learning goal achievement. Higher day-to-day snacking was only associated with increased positive affect. Both, increased day-to-day sleep quality and physical activity were indirectly associated with better learning goal achievement through changes in positive and negative affect; results for snacking were mixed. Importantly, day-to-day sleep quality was a stronger predictor for affect and learning goal achievement than physical activity or snacking. Conclusion: One day of better sleep or more physical activity than usual is associated with improved affect and academic performance. These findings have important implications for low-threshold interventions targeting the improvement of daily functioning.Keywords: sleep quality, physical activity, snacking, affect, academic performance, multilevel structural equation model
Procedia PDF Downloads 58117106 Optimization of Friction Stir Spot Welding Process Parameters for Joining 6061 Aluminum Alloy Using Taguchi Method
Authors: Mohammed A. Tashkandi, Jawdat A. Al-Jarrah, Masoud Ibrahim
Abstract:
This paper investigates the shear strength of the joints produced by friction stir spot welding process (FSSW). FSSW parameters such as tool rotational speed, plunge depth, shoulder diameter of the welding tool and dwell time play the major role in determining the shear strength of the joints. The effect of these four parameters on FSSW process as well as the shear strength of the welded joints was studied via five levels of each parameter. Taguchi method was used to minimize the number of experiments required to determine the fracture load of the friction stir spot-welded joints by incorporating independently controllable FSSW parameters. Taguchi analysis was applied to optimize the FSSW parameters to attain the maximum shear strength of the spot weld for this type of aluminum alloy.Keywords: Friction Stir Spot Welding, Al6061 alloy, Shear Strength, FSSW process parameters
Procedia PDF Downloads 43717105 Evaluating the Impact of English Immersion in Kolkata’s High-Cost Private Schools
Authors: Ashmita Bhattacharya
Abstract:
This study aims to investigate whether the English immersion experience offered by Kolkata’s high-cost private English-medium schools lead to additive or subtractive language learning outcomes for students. In India, English has increasingly become associated with power, social status, and socio-economic mobility. As a result, a proliferation of English-medium schools has emerged across Kolkata and the wider Indian context. While in some contexts, English language learning can be an additive experience, in others, it can be subtractive where proficiency in English is developed at the expense of students’ native language proficiency development. Subtractive educational experiences can potentially have severe implications, including heritage language loss, detachment from cultural roots, and a diminished sense of national identity. Thus, with the use of semi-structured interviews, the language practices and lived experiences of 12 former students who attended high-cost private English-medium schools in Kolkata were thoroughly explored. The data collected was thematically coded and analysis was conducted using the Thematic Analysis approach. The findings indicate that the English immersion experience at Kolkata’s high-cost private English-medium schools provide a subtractive language learning experience to students. Additionally, this study suggests that robust home-based support for native languages might be crucial for mitigating the effects of subtractive English education. Furthermore, the study underscores the importance of integrating opportunities within schools that promote Indian languages and cultures as it can create a more positive, inclusive, and culturally responsive environment. Finally, although subject to further evaluation, the study recommends the implementation of bilingual and multilingual educational systems and provides suggestions for future research in this area.Keywords: bilingual education, English immersion, language loss, multilingual education, subtractive language learning
Procedia PDF Downloads 3517104 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores
Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi
Abstract:
In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.Keywords: drug synergy, clustering, prediction, machine learning., deep learning
Procedia PDF Downloads 8917103 Modelling the Choice of Global Systems of Mobile Networks in Nigeria Using the Analytical Hierarchy Process
Authors: Awal Liman Sale
Abstract:
The world is fast becoming a global village; and a necessary tool for this process is communication, of which telecommunication is a key player. The quantum development is very rapid as one innovation replaces another in a matter of weeks. Interconnected phone calls across the different Nigerian Telecom service providers are mostly difficult to connect and often diverted, incurring unnecessary charges on the customers. This compels the consumers to register and use multiple subscriber information modules (SIM) so that they can switch to another if one fails. This study aims to identify and prioritize the key factors in selecting telecom service providers by subscribers in Nigeria using the Analytical Hierarchy Process (AHP) in order to match the factors with the GSM network providers and create a hierarchical structure. Opinions of 400 random subscribers of different service providers will be sought using the questionnaire. In general, four components and ten sub-components will be examined in this study. After determining the weight of these components, the importance of each in choosing the service will be prioritized in Nigeria.Keywords: analytical hierarchy process, global village, Nigerian telecommunication, subscriber information modules
Procedia PDF Downloads 25117102 Social Workers’ Reactions and Coping Strategies: An Exploratory Study about the Social Worker-Client Contacting Experiences in Hong Kong
Authors: Sze Ming Yau
Abstract:
Social worker-client interacting experience is scarcely studied in Hong Kong. Through this qualitative study, the experiences of Hong Kong social work practitioners in relating with clients provide new insights on social worker training and development. Thematic analysis is applied to examine the data collected by in-depth interviews with six local social work practitioners. The results show all practitioners have experienced both positive and challenging situations during the relating process. Their reactions either facilitate or hinder the process. Most of the practitioners’ strong reactions can be accounted for by using the concept of countertransference reactions during the interview session with clients. Moreover, they also have rarely reviewed the implications of those reactions after the session. In addition to countertransference, the self-expectation of practitioners also influences the relating process. Their self-expectations of being capable to help lead to anxiety. Though countertransference and anxiety of practitioners significantly influence the relating process, the practitioners do not adequately address personal issues and anxiety. Enhancing case conceptualization ability is their major coping strategy. The study has implications, including enhancement of social work training, workplace support, practitioner’s self-reflection, and integration of theory and practice.Keywords: coping, countertransference, reactions, relating process, social workers
Procedia PDF Downloads 26817101 SENSE-SEAT: Improving Creativity and Productivity through the Redesign of a Multisensory Technological Office Chair
Authors: Fernando Miguel Campos, Carlos Ferreira, João Pestana, Pedro Campos, Nils Ehrenberg, Wojciech Hydzik
Abstract:
The current trend of organizations offering their workers open-office spaces and co-working offices has been primed for stimulating teamwork and collaboration. However, this is not always valid as these kinds of spaces bring other types of challenges that compromise workers productivity and creativity. We present an approach for improving creativity and productivity at the workspace by redesigning an office chair that incorporates subtle technological elements that help users focus, relax and being more productive and creative. This sheds light on how we can better design interactive furniture for such popular contexts, as we develop this new chair through a multidisciplinary approach using ergonomics, interior design, interaction design, hardware and software engineering and psychology.Keywords: creativity, co-working, ergonomics, human-computer interaction, interaction, interactive furniture, productivity
Procedia PDF Downloads 33517100 The Impact of Web Based Education on Cancer Patients’ Clinical Outcomes
Authors: F. Arıkan, Z. Karakus
Abstract:
Cancer is a widespread disease in the world and is the third reason of deaths among the chronic diseases. Educating patients and caregivers has a vital role for empowering them in managing disease and treatment's symptoms. Informing of the patients about their disease and treatment process decreases patient's distress and decisional conflicts, improves wellbeing of them, increase success of the treatment and survival. In this era, technological education methods are used for patients that have different chronic disease. Many studies indicated that especially web based patient education such as chronic obstructive lung disease; heart failure is more effective than printed materials. Web based education provide easiness to patients while they are reaching health services. It also has more advantages because of it decreases health cost and requirement of staff. It is thought that web based education may be beneficial method for cancer patient's empowerment in coping with the disease's symptoms. The aim of the study is evaluate the effectiveness of web based education for cancer patients' clinical outcomes.Keywords: cancer patients, e-learning, nursing, web based education
Procedia PDF Downloads 43517099 Faculty Use of Geospatial Tools for Deep Learning in Science and Engineering Courses
Authors: Laura Rodriguez Amaya
Abstract:
Advances in science, technology, engineering, and mathematics (STEM) are viewed as important to countries’ national economies and their capacities to be competitive in the global economy. However, many countries experience low numbers of students entering these disciplines. To strengthen the professional STEM pipelines, it is important that students are retained in these disciplines at universities. Scholars agree that to retain students in universities’ STEM degrees, it is necessary that STEM course content shows the relevance of these academic fields to their daily lives. By increasing students’ understanding on the importance of these degrees and careers, students’ motivation to remain in these academic programs can also increase. An effective way to make STEM content relevant to students’ lives is the use of geospatial technologies and geovisualization in the classroom. The Geospatial Revolution, and the science and technology associated with it, has provided scientists and engineers with an incredible amount of data about Earth and Earth systems. This data can be used in the classroom to support instruction and make content relevant to all students. The purpose of this study was to find out the prevalence use of geospatial technologies and geovisualization as teaching practices in a USA university. The Teaching Practices Inventory survey, which is a modified version of the Carl Wieman Science Education Initiative Teaching Practices Inventory, was selected for the study. Faculty in the STEM disciplines that participated in a summer learning institute at a 4-year university in the USA constituted the population selected for the study. One of the summer learning institute’s main purpose was to have an impact on the teaching of STEM courses, particularly the teaching of gateway courses taken by many STEM majors. The sample population for the study is 97.5 of the total number of summer learning institute participants. Basic descriptive statistics through the Statistical Package for the Social Sciences (SPSS) were performed to find out: 1) The percentage of faculty using geospatial technologies and geovisualization; 2) Did the faculty associated department impact their use of geospatial tools?; and 3) Did the number of years in a teaching capacity impact their use of geospatial tools? Findings indicate that only 10 percent of respondents had used geospatial technologies, and 18 percent had used geospatial visualization. In addition, the use of geovisualization among faculty of different disciplines was broader than the use of geospatial technologies. The use of geospatial technologies concentrated in the engineering departments. Data seems to indicate the lack of incorporation of geospatial tools in STEM education. The use of geospatial tools is an effective way to engage students in deep STEM learning. Future research should look at the effect on student learning and retention in science and engineering programs when geospatial tools are used.Keywords: engineering education, geospatial technology, geovisualization, STEM
Procedia PDF Downloads 25617098 A Supervised Face Parts Labeling Framework
Authors: Khalil Khan, Ikram Syed, Muhammad Ehsan Mazhar, Iran Uddin, Nasir Ahmad
Abstract:
Face parts labeling is the process of assigning class labels to each face part. A face parts labeling method (FPL) which divides a given image into its constitutes parts is proposed in this paper. A database FaceD consisting of 564 images is labeled with hand and make publically available. A supervised learning model is built through extraction of features from the training data. The testing phase is performed with two semantic segmentation methods, i.e., pixel and super-pixel based segmentation. In pixel-based segmentation class label is provided to each pixel individually. In super-pixel based method class label is assigned to super-pixel only – as a result, the same class label is given to all pixels inside a super-pixel. Pixel labeling accuracy reported with pixel and super-pixel based methods is 97.68 % and 93.45% respectively.Keywords: face labeling, semantic segmentation, classification, face segmentation
Procedia PDF Downloads 26017097 The Differential Role of Written Corrective Feedback in L2 Students’ Noticing and Its Impact on Writing Scores
Authors: Khaled ElEbyary, Ramy Shabara
Abstract:
L2 research has generally acknowledged the role of noticing in language learning. The role of teacher feedback is to trigger learners’ noticing of errors and direct the writing process. Recently L2 learners are seemingly using computerized applications which provide corrective feedback (CF) at different stages of writing (i.e., during and after writing). This study aimed principally to answer the question, “Is noticing likely to be maximized when feedback on erroneous output is electronically provided either during or after the composing stage, or does teacher annotated feedback have a stronger effect?”. Seventy-five participants were randomly distributed into four groups representing four conditions. These include receiving automated feedback at the composing stage, automated feedback after writing, teacher feedback, and no feedback. Findings demonstrate the impact of CF on writing and the intensity of noticing certain language areas at different writing stages and from different feedback sources.Keywords: written corrective feedback, error correction, noticing, automated written corrective feedback, L2 acquisition
Procedia PDF Downloads 10917096 Visualizing the Future of New York’s Southern Tier: Engaging Students to Help Create Sustainable Communities
Authors: William C. Dean
Abstract:
In the pedagogical sequence of the four- and five-year architectural programs at Alfred State, the fourth-year Urban Design Studio constitutes the first course where students directly explore design issues in the urban context. It is the first large-scale, community-based service learning project for most of the participating students. The students learn key lessons that include the benefits of working both individually and in groups of different sizes toward a common goal, accepting - and responding creatively too - criticism from stakeholders at different points in the project, and recognizing the role that local politics and activism can play in planning for community development. Above all, students are exposed to the importance of good planning in relation to preservation and community revitalization. The purpose of this paper is to discuss the use of community-based service-learning projects in undergraduate architectural education to promote student civic engagement as a means of helping communities visualize potential solutions for revitalizing their neighborhoods and business districts. A series of case studies will be presented in terms of challenges that were encountered, opportunities for student engagement and leadership, and the feasibility of sustainable community development resulting from those projects. The reader will be encouraged to consider how they can recognize needs within their own communities that could benefit from the assistance of architecture students and faculty.Keywords: urban design, service-learning, civic engagement, community revitalization
Procedia PDF Downloads 9917095 Modeling Generalization in the Acquired Equivalence Paradigm with the Successor Representation
Authors: Troy M. Houser
Abstract:
The successor representation balances flexible and efficient reinforcement learning by learning to predict the future, given the present. As such, the successor representation models stimuli as what future states they lead to. Therefore, two stimuli that are perceptually dissimilar but lead to the same future state will come to be represented more similarly. This is very similar to an older behavioral paradigm -the acquired equivalence paradigm, which measures the generalization of learned associations. Here, we test via computational modeling the plausibility that the successor representation is the mechanism by which people generalize knowledge learned in the acquired equivalence paradigm. Computational evidence suggests that this is a plausible mechanism for acquired equivalence and thus can guide future empirical work on individual differences in associative-based generalization.Keywords: acquired equivalence, successor representation, generalization, decision-making
Procedia PDF Downloads 3317094 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 42517093 Process Safety Evaluation of a Nuclear Power Plant through Virtual Process Hazard Analysis (PHA) using the What-If Technique
Authors: Lormaine Anne Branzuela, Elysa Largo, Julie Marisol Pagalilauan, Neil Concibido, Monet Concepcion Detras
Abstract:
Energy is a necessity both for the people and the country. The demand for energy is continually increasing, but the supply is not doing the same. The reopening of the Bataan Nuclear Power Plant (BNPP) in the Philippines has been circulating in the media for the current time. The general public has been hesitant in accepting the inclusion of nuclear energy in the Philippine energy mix due to perceived unsafe conditions of the plant. This study evaluated the possible operations of a nuclear power plant, which is of the same type as the BNPP, considering the safety of the workers, the public, and the environment using a Process Hazard Analysis (PHA) method. What-If Technique was utilized to identify the hazards and consequences on the operations of the plant, together with the level of risk it entails. Through the brainstorming sessions of the PHA team, it was found that the most critical system on the plant is the primary system. Possible leakages on pipes and equipment due to weakened seals and welds and blockages on coolant path due to fouling were the most common scenarios identified, which further caused the most critical scenario – radioactive leak through sump contamination, nuclear meltdown, and equipment damage and explosion which could result to multiple injuries and fatalities, and environmental impacts.Keywords: process safety management, process hazard analysis, what-If technique, nuclear power plant
Procedia PDF Downloads 23117092 Applying Cognitive Psychology to Education: Translational Educational Science
Authors: Hammache Nadir
Abstract:
The scientific study of human learning and memory is now more than 125 years old. Psychologists have conducted thousands of experiments, correlational analyses, and field studies during this time, in addition to other research conducted by those from neighboring fields. A huge knowledge base has been carefully built up over the decades. Given this backdrop, we may ask ourselves: What great changes in education have resulted from this huge research base? How has the scientific study of learning and memory changed practices in education from those of, say, a century ago? Have we succeeded in building a translational educational science to rival medical science (in which biological knowledge is translated into medical practice) or types of engineering (in which, e.g., basic knowledge in chemistry is translated into products through chemical engineering)? The answer, I am afraid, is rather mixed. Psychologists and psychological research have influenced educational practice, but in fits and starts. After all, some of the great founders of American psychology—William James, Edward L. Thorndike, John Dewey, and others—are also revered as important figures in the history of education. And some psychological research and ideas have made their way into education—for instance, computer-based cognitive tutors for some specific topics have been developed in recent years—and in years past, such practices as teaching machines, programmed learning, and, in higher education, the Keller Plan were all important. These older practices have not been sustained. Was that because they failed or because of a lack of systematic research showing they were effective? At any rate, in 2012, we cannot point to a well-developed translational educational science in which research about learning and memory, thinking and reasoning, and related topics is moved from the lab into controlled field trials (like clinical trials in medicine) and the tested techniques, if they succeed, are introduced into broad educational practice. We are just not there yet, and one question that arises is how we could achieve a translational educational science.Keywords: affective, education, cognition, pshychology
Procedia PDF Downloads 34717091 Enhancing Audience Engagement: Informal Music Learning During Classical Concerts
Authors: Linda Dusman, Linda Baker
Abstract:
The Bearman Study of Audience Engagement examined the potential for real-time music education during online symphony orchestra concerts. It follows on the promising results of a preliminary study of STEAM (Science, Technology, Engineering, Arts, and Mathematics) education during live concerts, funded by the National Science Foundation with the Baltimore Symphony Orchestra. For the Bearman Study, audience groups were recruited to attend two previously recorded concerts of the National Orchestral Institute (NOI) in 2020 or the Utah Symphony in 2021. They used a smartphone app called EnCue to present real-time program notes about the music being performed. Short notes along with visual information (photos and score fragments) were designed to provide historical, cultural, biographical, and theoretical information at specific moments in the music where that information would be most pertinent, generally spaced 2-3 minutes apart to avoid distraction. The music performed included Dvorak Symphony No. 8 and Mahler Symphony No. 5 at NOI, and Mendelssohn Scottish Symphony and Richard Strauss Metamorphosen with the Utah Symphony, all standard repertoire for symphony orchestras. During each phase of the study (2020 and 2021), participants were randomly assigned to use the app to view program notes during the first concert or to use the app during the second concert. A total of 139 participants (67 in 2020 and 72 in 2021) completed three online questionnaires, one before attending the first concert, one immediately after the concert, and the third immediately after the second concert. Questionnaires assessed demographic background, expertise in music, engagement during the concert, learning of content about the composers and the symphonies, and interest in the future use of the app. In both phases of the study, participants demonstrated that they learned content presented on the app, evidenced by the fact that their multiple-choice test scores were significantly higher when they used the app than when they did not. In addition, most participants indicated that using the app enriched their experience of the concert. Overall, they were very positive about their experience using the app for real-time learning and they expressed interest in using it in the future at both live and streaming concerts. Results confirmed that informal real-time learning during concerts is possible and can generate enhanced engagement and interest in classical music.Keywords: audience engagement, informal education, music technology, real-time learning
Procedia PDF Downloads 20517090 Seat Assignment Model for Student Admissions Process at Saudi Higher Education Institutions
Authors: Mohammed Salem Alzahrani
Abstract:
In this paper, student admission process is studied to optimize the assignment of vacant seats with three main objectives. Utilizing all vacant seats, satisfying all program of study admission requirements and maintaining fairness among all candidates are the three main objectives of the optimization model. Seat Assignment Method (SAM) is used to build the model and solve the optimization problem with help of Northwest Coroner Method and Least Cost Method. A closed formula is derived for applying the priority of assigning seat to candidate based on SAM.Keywords: admission process model, assignment problem, Hungarian Method, Least Cost Method, Northwest Corner Method, SAM
Procedia PDF Downloads 50317089 Applying Dictogloss Technique to Improve Auditory Learners’ Writing Skills in Second Language Learning
Authors: Aji Budi Rinekso
Abstract:
There are some common problems that are often faced by students in writing. The problems are related to macro and micro skills of writing, such as incorrect spellings, inappropriate diction, grammatical errors, random ideas, and irrelevant supporting sentences. Therefore, it is needed a teaching technique that can solve those problems. Dictogloss technique is a teaching technique that involves listening practices. So, it is a suitable teaching technique for students with auditory learning style. Dictogloss technique comprises of four basic steps; (1) warm up, (2) dictation, (3) reconstruction and (4) analysis and correction. Warm up is when students find out about topics and do some preparatory vocabulary works. Then, dictation is when the students listen to texts read at normal speed by a teacher. The text is read by the teacher twice where at the first reading the students only listen to the teacher and at the second reading the students listen to the teacher again and take notes. Next, reconstruction is when the students discuss the information from the text read by the teacher and start to write a text. Lastly, analysis and correction are when the students check their writings and revise them. Dictogloss offers some advantages in relation to the efforts of improving writing skills. Through the use of dictogloss technique, students can solve their problems both on macro skills and micro skills. Easier to generate ideas and better writing mechanics are the benefits of dictogloss.Keywords: auditory learners, writing skills, dictogloss technique, second language learning
Procedia PDF Downloads 14917088 Introduction of a Model of Students' Practice in Social Work Education: Case of Republic of Srpska
Authors: Vesna Šućur-Janjetović, Andrea Rakanović Radonjić
Abstract:
Department of Social Work of the Faculty of Political Sciences, University of Banja Luka is the only School of Social Work in the Republic of Srpska (entity of Bosnia and Herzegovina). This Department has been implementing students’ practice as mandatory module since it was established in year 2000. As of 2006, the University of Banja Luka initiated the transformation of the education system in accordance with the Bologna Agreement. The Department of Social Work adopted a new Curriculum that anticipated 120 hours of Students’ practice. After ten years, a new process of changing and improving the Curriculum has been initiated, and research was conducted, in order to meet both the needs of practice and academic standards in the field of social work education. From 2006-2016 students were evaluating their practice experience under the mentor’s supervision. These evaluations were subject to the evaluation process of current Curriculum, including students practice module. Additional research was designed in order to assess the opinions of certified mentors on specific aspects of students’ practice, the needs of practice and possibilities for improving the education for social workers. Special research instruments were designed for the purpose of this research. All mentors were graduated social works working in all fields where social work services are provided (social welfare sector, health, education, non-government sector etc.). The third dimension of the research was a qualitative analysis of curriculums of Schools of Social Work in the region of Southeast Europe. This paper represents the results of the research, conclusions and consequences that led towards the improvement of Students’ practice and Curriculum of the Department of Social Work. The new Model anticipates 300 hours of Students’ practice, divided in three years of study, with different and specific learning outcomes.Keywords: curriculum, Republic of Srpska, social work education, students’ practice
Procedia PDF Downloads 280