Search results for: pseudoplastic fluid flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5792

Search results for: pseudoplastic fluid flow

1652 Advanced Analysis on Dissemination of Pollutant Caused by Flaring System Effect Using Computational Fluid Dynamics (CFD) Fluent Model with WRF Model Input in Transition Season

Authors: Benedictus Asriparusa

Abstract:

In the area of the oil industry, there is accompanied by associated natural gas. The thing shows that a large amount of energy is being wasted mostly in the developing countries by contributing to the global warming process. This research represents an overview of methods in Minas area employed by these researchers in PT. Chevron Pacific Indonesia to determine ways of measuring and reducing gas flaring and its emission drastically. It provides an approximation includes analytical studies, numerical studies, modeling, computer simulations, etc. Flaring system is the controlled burning of natural gas in the course of routine oil and gas production operations. This burning occurs at the end of a flare stack or boom. The combustion process will release emissions of greenhouse gases such as NO2, CO2, SO2, etc. This condition will affect the air and environment around the industrial area. Therefore, we need a simulation to create the pattern of the dissemination of pollutant. This research paper has being made to see trends in gas flaring model and current developments to predict dominant variable which gives impact to dissemination of pollutant. Fluent models used to simulate the distribution of pollutant gas coming out of the stack. While WRF model output is used to overcome the limitations of the analysis of meteorological data and atmospheric conditions in the study area. This study condition focused on transition season in 2012 at Minas area. The goal of the simulation is looking for the exact time which is most influence towards dissemination of pollutants. The most influence factor divided into two main subjects. It is the quickest wind and the slowest wind. According to the simulation results, it can be seen that quickest wind moves to horizontal way and slowest wind moves to vertical way.

Keywords: flaring system, fluent model, dissemination of pollutant, transition season

Procedia PDF Downloads 369
1651 Near Shore Wave Manipulation for Electricity Generation

Authors: K. D. R. Jagath-Kumara, D. D. Dias

Abstract:

The sea waves carry thousands of GWs of power globally. Although there are a number of different approaches to harness offshore energy, they are likely to be expensive, practically challenging and vulnerable to storms. Therefore, this paper considers using the near shore waves for generating mechanical and electrical power. It introduces two new approaches, the wave manipulation and using a variable duct turbine, for intercepting very wide wave fronts and coping with the fluctuations of the wave height and the sea level, respectively. The first approach effectively allows capturing much more energy yet with a much narrower turbine rotor. The second approach allows using a rotor with a smaller radius but captures energy of higher wave fronts at higher sea levels yet preventing it from totally submerging. To illustrate the effectiveness of the approach, the paper contains a description and the simulation results of a scale model of a wave manipulator. Then, it includes the results of testing a physical model of the manipulator and a single duct, axial flow turbine, in a wave flume in the laboratory. The paper also includes comparisons of theoretical predictions, simulation results and wave flume tests with respect to the incident energy, loss in wave manipulation, minimal loss, brake torque and the angular velocity.

Keywords: near-shore sea waves, renewable energy, wave energy conversion, wave manipulation

Procedia PDF Downloads 471
1650 Thermodynamics Analysis of Transcritical HTHP Cycles Using Eco-Friendly Refrigerant and low-Grade Waste Heat Recovery: A Theoretical Evaluation

Authors: Adam Y. Sulaiman, Donal F. Cotter, Ming J. Huang, Neil J. Hewitt

Abstract:

Decarbonization of the industrial sector in developed countries has become indispensable for addressing climate change. Industrial processes including drying, distillation, and injection molding require a process heat exceeding 180°C, rendering the subcriticalHigh-Temperature heat pump(HTHP) technique unsuitable. A transcritical HTHP utilizing ecologically friendly working fluids is a highly recommended system that incorporates the features of high-energy efficiency, extended operational range, and decarbonizing the industrial sector. This paper delves into the possibility and feasibility of leveraging the HTTP system to provide up to 200°C of heat using R1233zd(E) as a working fluid. Using a steady-state model, various transcritical HTHP cycle configurations aretheoretically compared,analyzed, and evaluatedin this study. The heat transfer characteristics for the evaporator and gas cooler are investigated, as well as the cycle's energy, exergetic, and environmental performance. Using the LMTD method, the gas cooler's heat transfer coefficient, overall length, and heat transfer area were calculated. The findings indicate that the heat sink pressure level, as well as the waste heat temperature provided to the evaporator, have a significant impact on overall cycle performance. The investigation revealed the potential challenges and barriers, including the length of the gas cooler and the lubrication of the compression process. The basic transcritical HTTP cycle with additional IHX was demonstrated to be the most efficient cycle across a variety of heat source temperatures ranging from 70 to 90 °C based on theoretical energetic and exergetic performance.

Keywords: high-temperature heat pump, transcritical cycle, refrigerants, gas cooler, energy, exergy

Procedia PDF Downloads 154
1649 Control of a Wind Energy Conversion System Works in Tow Operating Modes (Hyper Synchronous and Hypo Synchronous)

Authors: A. Moualdia, D. J. Boudana, O. Bouchhida, A. Medjber

Abstract:

Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, the cost of this energy is still too high to compete with traditional fossil fuels, especially on sites less windy. The performance of a wind turbine depends on three parameters: the power of wind, the power curve of the turbine and the generator's ability to respond to wind fluctuations. This paper presents a control chain conversion based on a double-fed asynchronous machine and flow-oriented. The supply system comprises of two identical converters, one connected to the rotor and the other one connected to the network via a filter. The architecture of the device is up by three commands are necessary for the operation of the turbine control extraction of maximum power of the wind to control itself (MPPT) control of the rotor side converter controlling the electromagnetic torque and stator reactive power and control of the grid side converter by controlling the DC bus voltage and active power and reactive power exchanged with the network. The proposed control has been validated in both modes of operation of the three-bladed wind 7.5 kW, using Matlab/Simulink. The results of simulation control technology study provide good dynamic performance and static.

Keywords: D.F.I.G, variable wind speed, hypersynchrone, energy quality, hyposynchrone

Procedia PDF Downloads 361
1648 Treatment of Cyanide Effluents with Platinum Impregned on Mg-Al Layered Hydroxides

Authors: María R. Contreras, Diana Endara

Abstract:

Cyanide leaching is the most used technology for gold mining industry, which produces large amounts of effluents requiring treatment. In Ecuador the development of gold mining industry has increased, causing significant environmental impacts due to the highly use of cyanide, it is estimated that 10 gr of extracted gold generates 7000 liters of water contaminated with 300mg/L of free cyanide. The most common methods used nowadays are the treatment with peroxodisulfuric acid, ozonation, H₂O₂ and other reactants which are expensive and present disadvantages. Several methods have been developed to treat this contaminant such as heterogeneous catalysts. Layered double hydroxides (LDHs) have received much attention due to their wide applications like a catalysis support. Therefore, in this study, Mg-Al/ LDH was synthetized by coprecipitation method and then platinum was impregned on it, in order to enhance its catalytic activity. Two methods of impregnation were used, the first one, called incipient wet impregnation and the second one was developed by continuous agitation of LDH in contact with chloroplatinic acid solution for 24 h. The support impregnated was analyzed by X-ray diffraction, FTIR and SEM. Finally, the oxidation of cyanide ion was performed by preparing synthetic solutions of sodium cyanide (NaCN) with an initial concentration of 500 mg/L at pH 10,5 and air flow of 180 NL/h. After 8 hours of treatment, an 80% of oxidation of ion cyanide was achieved.

Keywords: catalysis, cyanide, LDHs, mining

Procedia PDF Downloads 137
1647 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.

Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium

Procedia PDF Downloads 413
1646 Comparative Study of Ozone Based AOP's for Mineralization of Reactive Black 5

Authors: Sandip Sharma, Jayesh Ruparelia

Abstract:

The present work focuses on the comparative study of ozone based advanced oxidation processes (AOPs): O3, O3/UV and O3/UV/Persulfate for mineralization of synthetic wastewater containing Reactive Black5 (RB5) dye. The effect of various parameters: pH, ozone flow rate, initial concentration of dye and intensity of UV light was analyzed to access performance efficiency of AOPs. The performance of all the three AOPs was evaluated on the basis of decolorization, % TOC removal and ozone consumption. The highest mineralization rate of 86.83% was achieved for O3/UV/Persulfate followed by 71.53% and 66.82 % for O3/UV and O3 respectively. This is attributed to the fact that Persulfate ions (S2O82-) upon activation produce sulfate radical (SO4-●) which is very strong oxidant capable of degrading a wide variety of recalcitrant organic compounds, moreover to enhance the performance of Persulfate it is activated using UV irradiation. On increasing the intensity of UV irradiation from 11W to 66W, TOC removal efficiency is increased by 59.04%. Ozone based AOPs gives better mineralization on basic conditions, at pH 12 it gives 68.81%, 60.01% and 40.32% TOC removal for O3/UV/Persulfate, O3/UV and O3 process respectively. The result also reveals that decolorization of 98.95%, 95.17% and 94.71% was achieved by O3/UV/Persulfate, O3/UV and O3 process respectively. In addition to above, ozone consumption was also considerably decreased by 17% in case of O3/UV/Persulfate, as efficiency of process is enhanced by means of activation of persulfate through UV irradiation. Thus study reveals that mineralization follows: O3/UV/Persulfate> O3/UV> O3.

Keywords: AOP, mineralization, TOC, recalcitrant organic compounds

Procedia PDF Downloads 222
1645 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation

Authors: Lo Kar Yin, Law Ka Mei

Abstract:

Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its discipline. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC Engineering and Construction Contract (ECC) Options A and C.

Keywords: building information modeling, cost estimation, quantity take-off, modeling techniques

Procedia PDF Downloads 168
1644 Analysis of Heat Transfer in a Closed Cavity Ventilated Inside

Authors: Benseghir Omar, Bahmed Mohamed

Abstract:

In this work, we presented a numerical study of the phenomenon of heat transfer through the laminar, incompressible and steady mixed convection in a closed square cavity with the left vertical wall of the cavity is subjected to a warm temperature, while the right wall is considered to be cold. The horizontal walls are assumed adiabatic. The governing equations were discretized by finite volume method on a staggered mesh and the SIMPLER algorithm was used for the treatment of velocity-pressure coupling. The numerical simulations were performed for a wide range of Reynolds numbers 1, 10, 100, and 1000 numbers are equal to 0.01,0.1 Richardson, 0.5,1 and 10.The analysis of the results shows a flow bicellular (two cells), one is created by the speed of the fan placed in the inner cavity, one on the left is due to the difference between the temperatures right wall and the left wall. Knowledge of the intensity of each of these cells allowed us to get an original result. And the values obtained from each of Nuselt convection which allow to know the rate of heat transfer in the cavity.Finally we find that there is a significant influence on the position of the fan on the heat transfer (Nusselt evolution) for values of Reynolds studied and for low values of Richardson handed this influence is negligible for high values of the latter.

Keywords: thermal transfer, mixed convection, square cavity, finite volume method

Procedia PDF Downloads 423
1643 Experimental Analysis for the Inlet of the Brazilian Aerospace Vehicle 14-X B

Authors: João F. A. Martos, Felipe J. Costa, Sergio N. P. Laiton, Bruno C. Lima, Israel S. Rêgo, Paulo P. G. Toro

Abstract:

Nowadays, the scramjet is a topic that has attracted the attention of several scientific communities (USA, Australia, Germany, France, Japan, India, China, Russia), that are investing in this in this type of propulsion system due its interest to facilitate access to space and reach hypersonic speed, who have invested in this type of propulsion due to the interest in facilitating access to space. The Brazilian hypersonic scramjet aerospace vehicle 14-X B is a technological demonstrator of a hypersonic airbreathing propulsion system based on the supersonic combustion (scramjet) intended to be tested in flight into the Earth's atmosphere at 30 km altitude and Mach number 7. The 14-X B has been designed at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics of the Institute for Advanced Studies (IEAv) in Brazil. The IEAv Hypersonic Shock Tunnel, named T3, is a ground-test facility able to reproduce the flight conditions as the Mach number as well as pressure and temperature in the test section close to those encountered during the test flight of the vehicle 14-X B into design conditions. A 1-m long stainless steel 14-X B model was experimentally investigated at T3 Hypersonic Shock Tunnel, for freestream Mach number 7. Static pressure measurements along the lower surface of the 14-X B model, along with high-speed schlieren photographs taken from the 5.5° leading edge and the 14.5° deflection compression ramp, provided experimental data that were compared to the analytical-theoretical solutions and the computational fluid dynamics (CFD) simulations. The results show a good qualitative agreement, and in consequence demonstrating the importance of these methods in the project of the 14-X B hypersonic aerospace vehicle.

Keywords: 14-X, CFD, hypersonic, hypersonic shock tunnel, scramjet

Procedia PDF Downloads 348
1642 Zonal and Sequential Extraction Design for Large Flat Space to Achieve Perpetual Tenability

Authors: Mingjun Xu, Man Pun Wan

Abstract:

This study proposed an effective smoke control strategy for the large flat space with a low ceiling to achieve the requirement of perpetual tenability. For the large flat space with a low ceiling, the depth of the smoke reservoir is very shallow, and it is difficult to perpetually constrain the smoke within a limited space. A series of numerical tests were conducted to determine the smoke strategy. A zonal design i.e., the fire zone and two adjacent zones was proposed and validated to be effective in controlling smoke. Once a fire happens in a compartment space, the Engineered Smoke Control (ESC) system will be activated in three zones i.e., the fire zone, in which the fire happened, and two adjacent zones. The smoke can be perpetually constrained within the three smoke zones. To further improve the extraction efficiency, sequential activation of the ESC system within the 3 zones turned out to be more efficient than simultaneous activation. Additionally, the proposed zonal and sequential extraction design can reduce the mechanical extraction flow rate by up to 40.7 % as compared to the conventional method, which is much more economical than that of the conventional method.

Keywords: performance-based design, perpetual tenability, smoke control, fire plume

Procedia PDF Downloads 62
1641 An Integrated Approach for Optimizing Drillable Parameters to Increase Drilling Performance: A Real Field Case Study

Authors: Hamidoddin Yousife

Abstract:

Drilling optimization requires a prediction of drilling rate of penetration (ROP) since it provides a significant reduction in drilling costs. There are several factors that can have an impact on the ROP, both controllable and uncontrollable. Numerous drilling penetration rate models have been considered based on drilling parameters. This papers considered the effect of proper drilling parameter selection such as bit, Mud Type, applied weight on bit (WOB), Revolution per minutes (RPM), and flow rate on drilling optimization and drilling cost reduction. A predicted analysis is used in real-time drilling performance to determine the optimal drilling operation. As a result of these modeling studies, the real data collected from three directional wells at Azadegan oil fields, Iran, was verified and adjusted to determine the drillability of a specific formation. Simulation results and actual drilling results show significant improvements in inaccuracy. Once simulations had been validated, optimum drilling parameters and equipment specifications were determined by varying weight on bit (WOB), rotary speed (RPM), hydraulics (hydraulic pressure), and bit specification for each well until the highest drilling rate was achieved. To evaluate the potential operational and economic benefits of optimizing results, a qualitative and quantitative analysis of the data was performed.

Keywords: drlling, cost, optimization, parameters

Procedia PDF Downloads 160
1640 Comparative Analysis of Internal Combustion Engine Cooling Fins Using Ansys Software

Authors: Aakash Kumar R. G., Anees K. Ahamed, Raj M. Mohan

Abstract:

Effective engine cooling can improve the engine’s life and efficacy. The design of the fin of the cylinder head and block determines the cooling mechanism of air cooled engine. The heat conduction takes place through the engine parts and convection of heat from the surface of the fins takes place with air as the heat transferring medium. The air surrounding the cooling fins helps in removal of heat built up by the air cooled engine. If the heat removal rate is inadequate, it will result in lower engine efficiency and high thermal stresses in the engine. The main drawback of the air cooled engine is the low heat transfer rate of the cooling fins .This work is based on scrutiny of previous researches that involves enhancing of heat transfer rate of cooling fins. The current research is about augmentation of heat transfer rate of longitudinal rectangular fin profiles by varying the length of the fin and diameter of holes on the fins. Thermal and flow analysis is done for two different models of fins. One is simple fin without holes and the other is perforated (consist of holes). It can be inferred from the research that the fins with holes have a higher fin efficiency than the fins without holes. The geometry of the fin is done in CREO. The heat transfer analysis is done using ANSYS software.

Keywords: fins, heat transfer, perforated fins, thermal analysis, thermal flux

Procedia PDF Downloads 362
1639 Stability Indicating Method Development and Validation for Estimation of Antiasthmatic Drug in Combined Dosages Formed by RP-HPLC

Authors: Laxman H. Surwase, Lalit V. Sonawane, Bhagwat N. Poul

Abstract:

A simple stability indicating high performance liquid chromatographic method has been developed for the simultaneous determination of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical dosage form using reverse phase Zorbax Eclipse Plus C8 column (250mm×4.6mm), with mobile phase phosphate buffer (0.05M KH2PO4): acetonitrile (55:45v/v) pH 3.5 adjusted with ortho-phosphoric acid, the flow rate was 1.0 mL/min and the detection was carried at 212 nm. The retention times of Levosalbutamol Sulphate and Ipratropium Bromide were 2.2007 and 2.6611 min respectively. The correlation coefficient of Levosalbutamol Sulphate and Ipratropium Bromide was found to be 0.997 and 0.998.Calibration plots were linear over the concentration ranges 10-100µg/mL for both Levosalbutamol Sulphate and Ipratropium Bromide. The LOD and LOQ of Levosalbutamol Sulphate were 2.520µg/mL and 7.638µg/mL while for Ipratropium Bromide was 1.201µg/mL and 3.640 µg/mL. The accuracy of the proposed method was determined by recovery studies and found to be 100.15% for Levosalbutamol Sulphate and 100.19% for Ipratropium Bromide respectively. The method was validated for accuracy, linearity, sensitivity, precision, robustness, system suitability. The proposed method could be utilized for routine analysis of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical capsule dosage form.

Keywords: levosalbutamol sulphate, ipratropium bromide, RP-HPLC, phosphate buffer, acetonitrile

Procedia PDF Downloads 337
1638 Evaluation of the Relation between Serum and Saliva Levels of Sodium and Glucose in Healthy Referred Patients to Tabriz Faculty of Dentistry

Authors: Samaneh Nazemi, Ayla Bahramian, Marzieh Aghazadeh

Abstract:

Saliva is a clear liquid composed of water, electrolytes, glucose, amylase, glycoproteins, and antimicrobial enzymes. The presence of a wide range of molecules and proteins in saliva has made this fluid valuable in screening for some diseases as well as epidemiological studies. Saliva is easier than serum to collect in large populations. Due to the importance of sodium and glucose levels in many biological processes, this study investigates the relationship between sodium and glucose levels in salivary and serum samples of healthy individuals referring to Tabriz Dental School. This descriptive-analytical study was performed on 40 healthy individuals referred to the Oral Diseases Department of Tabriz Dental School. Serum and saliva samples were taken from these patients according to standard protocols. Data were presented as mean (standard deviation) and frequency (percentage) for quantitative and qualitative variables. Pearson test, paired-samples T-test and SPSS 24 software were used to determine the correlation between serum and salivary levels of these biomarkers. In this study, P less than 0.05% is considered significant. Out of 40 participants in this study, 14 (35%) were male, and 26 (65%) were female. According to the results of this study, the mean salivary sodium (127.53 ml/dl) was lower than the mean serum sodium (141.2725 ml/dl). In contrast, the mean salivary glucose (4.55 ml/dl) was lower than the mean serum glucose (89.7575 ml/dl). The result of paired samples T-test (p-value<0.05) showed that there is a statistically significant difference between the mean of serum sodium and salivary sodium, as well as between the serum glucose and salivary glucose. Pearson correlation test results showed that there is no significant correlation between serum sodium and salivary sodium (p-value >0.05), but here is a positive correlation between serum glucose and salivary glucose (p-value<0.001). Both serum sodium and glucose were higher than salivary sodium and glucose.In conclusion, this study found that there was not a statistical relationship between salivary glucose and serum glucose and also salivary sodium and serum sodium of healthy individuals. Perhaps salivary samples can’t be used to measure glucose and sodium in these individuals.

Keywords: glucose, saliva, serum, sodium

Procedia PDF Downloads 242
1637 The Influence of Language on Music Consumption in Japan: An Experimental Study

Authors: Timur Zhukov, Yuko Yamashita

Abstract:

Music as a product of hedonic consumption has been researched at least since the early 20th century, but little light has been shed on how language affects its consumption process. At the intersection of music consumption, language impact, and consumer behavior, this research explores the influence of language on music consumption in Japan. Its aim is to clarify how listening to music in different languages affects the listener’s purchase intention and sharing intention by conducting a survey where respondents listen to three versions of the same song in different languages in random order. It uses an existing framework that views the flow of music consumption as a combination of responses (emotional response, sensory response, imaginal response, analytical responses) affecting the experiential response, which then affects the overall affective response, followed by the need to reexperience and lastly the purchase intention. In this research, the sharing intention has been added to the model to better fit the modern consumption model (e.g., AISAS). This research shows how positive and negative emotions and imaginal and analytical responses change depending on the language and what impact it has on consumer behavior. It concludes by proposing how modern music businesses can learn from the language differences and cater to the needs of the audiences who speak different languages.

Keywords: AISAS, consumer behavior, first language, music consumption, second language

Procedia PDF Downloads 128
1636 Numerical Study for Improving Performance of Air Cooled Proton Exchange Membrane Fuel Cell on the Cathode Channel

Authors: Mohamed Hassan Gundu, Jaeseung Lee, Muhammad Faizan Chinannai, Hyunchul Ju

Abstract:

In this study, we present the effects of bipolar plate design to control the temperature of the cell and ensure effective water management under an excessive amount of air flow and low humidification conditions in the proton exchange membrane fuel cell (PEMFC). The PEMFC model developed and applied to consider a three type of bipolar plate that is defined by ratio of inlet channel width to outlet channel width. Simulation results show that the design which has narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width) make the relative humidity and water concentration increase in the channel and the catalyst layer. Therefore, this study clearly demonstrates that the dehydration phenomenon can be decreased by using design of bipolar plate with narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width).

Keywords: PEMFC, air-cooling, relative humidity, water management, water concentration, oxygen concentration

Procedia PDF Downloads 285
1635 Study of Laminar Convective Heat Transfer, Friction Factor, and Pumping Power Advantage of Aluminum Oxide-Water Nanofluid through a Channel

Authors: M. Insiat Islam Rabby, M. Mahbubur Rahman, Eshanul Islam, A. K. M. Sadrul Islam

Abstract:

The numerical and simulative analysis of laminar heat exchange convection of aluminum oxide (Al₂O₃) - water nanofluid for the developed region through two parallel plates is presented in this present work. The second order single phase energy equation, mass and momentum equation are solved by using finite volume method with the ANSYS FLUENT 16 software. The distance between two parallel plates is 4 mm and length is 600 mm. Aluminum oxide (Al₂O₃) is used as nanoparticle and water is used as the base/working fluid for the investigation. At the time of simulation 1% to 5% volume concentrations of the Al₂O₃ nanoparticles are used for mixing with water to produce nanofluid and a wide range of interval of Reynolds number from 500 to 1100 at constant heat flux 500 W/m² at the channel wall has also been introduced. The result reveals that for increasing the Reynolds number the Nusselt number and heat transfer coefficient are increased linearly and friction factor decreased linearly in the developed region for both water and Al₂O₃-H₂O nanofluid. By increasing the volume fraction of Al₂O₃-H₂O nanofluid from 1% to 5% the value of Nusselt number increased rapidly from 0.7 to 7.32%, heat transfer coefficient increased 7.14% to 31.5% and friction factor increased very little from 0.1% to 4% for constant Reynolds number compared to pure water. At constant heat transfer coefficient 700 W/m2-K the pumping power advantages have been achieved 20% for 1% volume concentration and 62% for 3% volume concentration of nanofluid compared to pure water.

Keywords: convective heat transfer, pumping power, constant heat flux, nanofluid, nanoparticles, volume concentration, thermal conductivity

Procedia PDF Downloads 153
1634 Rare Differential Diagnostic Dilemma

Authors: Angelis P. Barlampas

Abstract:

Theoretical background Disorders of fixation and rotation of the large intestine, result in the existence of its parts in ectopic anatomical positions. In case of symptomatology, the clinical picture is complicated by the possible symptomatology of the neighboring anatomical structures and a differential diagnostic problem arises. Target The purpose of this work is to demonstrate the difficulty of revealing the real cause of abdominal pain, in cases of anatomical variants and the decisive contribution of imaging and especially that of computed tomography. Methods A patient came to the emergency room, because of acute pain in the right hypochondrium. Clinical examination revealed tenderness in the gallbladder area and a positive Murphy's sign. An ultrasound exam depicted a normal gallbladder and the patient was referred for a CT scan. Results Flexible, unfixed ascending colon and cecum, located in the anatomical region of the right mesentery. Opacities of the surrounding peritoneal fat and a small linear concentration of fluid can be seen. There was an appendix of normal anteroposterior diameter with the presence of air in its lumen and without clear signs of inflammation. There was an impression of possible inflammatory swelling at the base of the appendix, (DD phenomenon of partial volume; e.t.c.). Linear opacities of the peritoneal fat in the region of the second loop of the duodenum. Multiple diverticula throughout the colon. Differential Diagnosis The differential diagnosis includes the following: Inflammation of the base of the appendix, diverticulitis of the cecum-ascending colon, a rare case of second duodenal loop ulcer, tuberculosis, terminal ileitis, pancreatitis, torsion of unfixed cecum-ascending colon, embolism or thrombosis of a vascular intestinal branch. Final Diagnosis There is an unfixed cecum-ascending colon, which is exhibiting diverticulitis.

Keywords: unfixed cecum-ascending colon, abdominal pain, malrotation, abdominal CT, congenital anomalies

Procedia PDF Downloads 46
1633 Heat Transfer Analysis of Helical Grooved Passages near the Leading Edge Region in Gas Turbine Blade

Authors: Harishkumar Kamath, Chandrakant R. Kini, N. Yagnesh Sharma

Abstract:

Gas turbines are highly effective engineered prime movers for converting energy from thermal form (combustion stage) to mechanical form – are widely used for propulsion and power generation systems. One method of increasing both the power output and thermal efficiency is to increase the temperature of the gas entering the turbine. In the advanced gas turbines of today, the turbine inlet temperature can be as high as 1500°C; however, this temperature exceeds the melting temperature of the metal blade. With modern gas turbines operating at extremely high temperatures, it is necessary to implement various cooling methods, so the turbine blades and vanes endure in the path of the hot gases. Merely passing coolant air through the blade does not provide adequate cooling; therefore, it is necessary to implement techniques that will further enhance the heat transfer from the blade walls. It is seen that by incorporating helical grooved passages into the leading edge built on turbulence and higher flow rates through the passages, the blade can be cooled effectively. It seen from the analysis helical grooved passages with diameter 5 mm, helical pitch of 50 mm and 8 starts results in better cooling of turbine blade and gives the best thermal performance.

Keywords: blade cooling, helical grooves, leading edge, numerical analysis

Procedia PDF Downloads 258
1632 Molecular Evidence for Three Species of Giraffa

Authors: Alice Petzold, Alexandre Hassanin

Abstract:

The number of giraffe species has been in focus of interest since the exploration of sub-Saharan Africa by European naturalists during the 18th and 19th centuries, as previous taxonomists, like Geoffroy Saint-Hilaire, Richard Owen or William Edward de Winton, recognized two or three species of Giraffa. For the last decades, giraffes were commonly considered as a single species subdivided into nine subspecies. In this study, we have re-examined available nuclear and mitochondrial data. Our genetic admixture analyses of seven introns support three species: G. camelopardalis (i.e., northern giraffes including reticulated giraffes), G. giraffa (southern giraffe) and G. tippelskirchi (Masai giraffe). However, the nuclear alignments show small variation and our phylogenetic analyses provide high support only for the monophyly of G. camelopardalis. Comparisons with the mitochondrial tree revealed a robust conflict for the position and monophyly of G. giraffa and G. tippelskirchi, which is explained firstly by a mitochondrial introgression from Masai giraffe to southeastern giraffe, and secondly, by gene flow mediated by male dispersal between southern populations (subspecies angolensis and giraffa). We conclude that current data gives only moderate support for three giraffe species and point out that additional nuclear data need to be studied to revise giraffe taxonomy.

Keywords: autosomal markers, Giraffidae, mitochondrial introgression, taxonomy

Procedia PDF Downloads 187
1631 Improve Safety Performance of Un-Signalized Intersections in Oman

Authors: Siham G. Farag

Abstract:

The main objective of this paper is to provide a new methodology for road safety assessment in Oman through the development of suitable accident prediction models. GLM technique with Poisson or NBR using SAS package was carried out to develop these models. The paper utilized the accidents data of 31 un-signalized T-intersections during three years. Five goodness-of-fit measures were used to assess the overall quality of the developed models. Two types of models were developed separately; the flow-based models including only traffic exposure functions, and the full models containing both exposure functions and other significant geometry and traffic variables. The results show that, traffic exposure functions produced much better fit to the accident data. The most effective geometric variables were major-road mean speed, minor-road 85th percentile speed, major-road lane width, distance to the nearest junction, and right-turn curb radius. The developed models can be used for intersection treatment or upgrading and specify the appropriate design parameters of T- intersections. Finally, the models presented in this thesis reflect the intersection conditions in Oman and could represent the typical conditions in several countries in the middle east area, especially gulf countries.

Keywords: accidents prediction models (APMs), generalized linear model (GLM), T-intersections, Oman

Procedia PDF Downloads 261
1630 A 3d Intestine-On-Chip Model Allows Colonization with Commensal Bacteria to Study Host-Microbiota Interaction

Authors: Michelle Maurer, Antonia Last, Mark S. Gresnigt, Bernhard Hube, Alexander S. Mosig

Abstract:

The intestinal epithelium forms an essential barrier to prevent translocation of microorganisms, toxins or other potentially harmful molecules into the bloodstream. In particular, dendritic cells of the intestinal epithelium orchestrate an adapted response of immune tolerance to commensals and immune defense against invading pathogens. Systemic inflammation is typically associated with a dysregulation of this adapted immune response and is accompanied by a disruption of the epithelial and endothelial gut barrier which enables dissemination of pathogens within the human body. To understand the pathophysiological mechanisms underlying the inflammation-associated gut barrier breakdown, it is crucial to elucidate the complex interplay of the host and the intestinal microbiome. A microfluidically perfused three-dimensional intestine-on-chip model was established to emulate these processes in the presence of immune cells, commensal bacteria, and facultative pathogens. Multi-organ tissue flow (MOTiF) biochips made from polystyrene were used for microfluidic perfusion of the intestinal tissue model. The biochips are composed of two chambers separated by a microporous membrane. Each chamber is connected to inlet and outlet channels allowing independent perfusion of the individual channels and application of microfluidic shear stress. Human umbilical vein endothelial cells (HUVECs), monocyte-derived macrophages and intestinal epithelial cells (Caco-2) were assembled on the biochip membrane. Following 7 – 14 days of growth in the presence of physiological flow conditions, the epithelium was colonized with the commensal bacterium Lactobacillus rhamnosus, while the endothelium was perfused with peripheral blood mononuclear cells (PBMCs). Additionally, L. rhamnosus was co-cultivated with the opportunistic fungal pathogen Candida albicans. Within one week of perfusion, the epithelial cells formed self-organized and well-polarized villus- and crypt-like structures that resemble essential morphological characteristics of the human intestine. Dendritic cells were differentiated in the epithelial tissue that specifically responds to bacterial lipopolysaccharide (LPS) challenge. LPS is well-tolerated at the luminal epithelial side of the intestinal model without signs of tissue damage or induction of an inflammatory response, even in the presence of circulating PBMC at the endothelial lining. In contrast, LPS stimulation at the endothelial side of the intestinal model triggered the release of pro-inflammatory cytokines such as TNF, IL-1β, IL-6, and IL-8 via activation of macrophages residing in the endothelium. Perfusion of the endothelium with PBMCs led to an enhanced cytokine release. L. rhamnosus colonization of the model was tolerated in the immune competent tissue model and was demonstrated to reduce damage induced by C. albicans infection. A microfluidic intestine-on-chip model was developed to mimic a systemic infection with a dysregulated immune response under physiological conditions. The model facilitates the colonization of commensal bacteria and co-cultivation with facultative pathogenic microorganisms. Both, commensal bacteria alone and facultative pathogens controlled by commensals, are tolerated by the host and contribute to cell signaling. The human intestine-on-chip model represents a promising tool to mimic microphysiological conditions of the human intestine and paves the way for more detailed in vitro studies of host-microbiota interactions under physiologically relevant conditions.

Keywords: host-microbiota interaction, immune tolerance, microfluidics, organ-on-chip

Procedia PDF Downloads 121
1629 Gasification of Groundnut Shell in an Air Bubbling Fluidized Bed Gasifier

Authors: Dharminer Singh, Sanjeev Yadav, Pravakar Mohanty

Abstract:

In this work, gasification of groundnut shell was carried out in an air bubbling fluidized bed gasifier. Atmospheric air used as gasification agent in the gasifier. The groundnut shell used for gasification was in powder form and the locally available river sand was used as bed material. Conventional charcoal was used for heating sand bed. Two cyclones were used for proper segregation of char particles and for proper cleaning and cooling the product gas. Experiments were performed on different equivalence ratio (ER) 0.3 - 0.33 by varying feeding rate 36 - 32.8 kg/h of biomass and by keeping the air flow rate constant at bed temperature between 700 °C – 800 °C. Performance of gasifier was evaluated on the basis of different parameters such as cold gas efficiency, carbon conversion efficiency (CCE), Tar and Suspended particles matter (SPM) generation, gas yield, and Higher heating value (HHV) of gas. The optimal ER value for gasification of groundnut shell (GNS) powder in an air bubbling fluidized bed gasifier was found to be 0.31. Cold gas efficiency and CCE value at optimal ER was found to be 63.7 %, and 91 %, respectively. Concentration of Tar and SPM, HHV of gas, and gas yield at optimal ER was found to be 11.88 g/Nm3, 2.38 MJ/Nm3, and 2.01m3/kg, respectively. In the product gas, concentrations of CO, CO2, CH4 and H2 were found to be 12.94%, 13.5%, 5.74% and 13.77%, respectively. At ER 0.31, it was observed that bed temperature of gasifier was in steady state for long time at 714 °C with 5 – 10 °C fluctuation.

Keywords: air bubbling fluidized bed gasifier, groundnut shell powder, equivalence ratio (ER), cold gas efficiency, carbon conversion efficiency (CCE), high heating value (HHV)

Procedia PDF Downloads 266
1628 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously

Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen

Abstract:

Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.

Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO₂ cycle, transcritical CO₂ cycle

Procedia PDF Downloads 249
1627 Inflammatory Cytokine (Interleukin-8): A Diagnostic Marker in Leukemia

Authors: Sandeep Pandey, Nimra Habib, Ranjana Singh, Abbas Ali Mahdi

Abstract:

Leukemia is a malignancy of blood that mainly affects children and young adults; while advancement in the early diagnosis will have the potential to improve the outcome of diseases. A wide range of disease including leukemia shows inflammatory signals in their pathogenesis. In a pilot study conducted in our laboratory, 52 people were screened, of which 26 had leukemia and 26 were free from any kind of malignancy. We performed the estimation of the inflammatory cytokine Interleukin-8 and it was found significantly raised in all the leukemia patients concerning healthy volunteers who participated in the study. Flow cytometry had been performed for the confirmation of leukemia and further genomic, and proteomic, analyses of the sample revealed that IL-8 levels showed a positive correlation in patients with leukemia. The results had shown constitutive secretion of interleukin-8 by leukemia cells. So, our finding demonstrated that IL-8 is considered to have a role in the pathogenesis of leukemia, and quantification of IL-8 levels in leukemia conditions might be more useful and feasible in the clinical setting for the prediction of drug responses where it may represent a putative target for innovative diagnostic toward effective therapeutic approaches. However, further research explorations in this area are needed that include a greater number of patients with all different forms of leukemia, and estimating their IL-8 levels may hold the key for the additional predictive values on the recurrence of leukemia and its prognosis.

Keywords: T-ALL, IL-8, leukemia pathogenesis, cancer therapeutics

Procedia PDF Downloads 63
1626 Process Safety Evaluation of a Nuclear Power Plant through Virtual Process Hazard Analysis Using Hazard and Operability Technique

Authors: Elysa V. Largo, Lormaine Anne A. Branzuela, Julie Marisol D. Pagalilauan, Neil C. Concibido, Monet Concepcion M. Detras

Abstract:

The energy demand in the country is increasing; thus, nuclear energy is recently mandated to add to the energy mix. The Philippines has the Bataan Nuclear Power Plant (BNPP), which can be a source of nuclear energy; however, it has not been operated since the completion of its construction. Thus, evaluating the safety of BNPP is vital. This study explored the possible deviations that may occur in the operation of a nuclear power plant with a pressurized water reactor, which is similar to BNPP, through a virtual process hazard analysis (PHA) using the hazard and operability (HAZOP) technique. Temperature, pressure, and flow were used as parameters. A total of 86 causes of various deviations were identified, wherein the primary system and line from reactor coolant pump to reactor vessel are the most critical system and node, respectively. A total of 348 scenarios were determined. The critical events are radioactive leaks due to nuclear meltdown and sump overflow that could lead to multiple worker fatalities, one or more public fatalities, and environmental remediation. There were existing safeguards identified; however, further recommendations were provided to have additional and supplemental barriers to reduce the risk.

Keywords: PSM, PHA, HAZOP, nuclear power plant

Procedia PDF Downloads 136
1625 Protective Effect of hsa-miR-124 against to Bacillus anthracis Toxins on Human Macrophage Cells

Authors: Ali Oztuna, Meral Sarper, Deniz Torun, Fatma Bayrakdar, Selcuk Kilic, Mehmet Baysallar

Abstract:

Bacillus anthracis is one of the biological agents most likely to be used in case of bioterrorist attack as well as being the cause of anthrax. The bacterium's major virulence factors are the anthrax toxins and an antiphagocytic polyglutamic capsule. TEM8 (ANTXR1) and CMG2 (ANTXR2) are ubiquitously expressed type I transmembrane proteins, and ANTXR2 is the major receptor for anthrax toxins. MicroRNAs are 21-24 bp small noncoding RNAs that regulate gene expression by base pairing with the 3' UTR (untranslated regions) of their target mRNAs resulting in mRNA degradation and/or translational repression. MicroRNAs contribute to regulation of most biological processes and influence numerous pathological states like infectious disease. In this study, post-exposure (toxins) protective effect of the hsa-miR-124-3p against Bacillus anthracis was examined. In this context, i) THP-1 and U937 cells were differentiated to MΦ macrophage, ii) miRNA transfection efficiencies were evaluated by flow cytometry and qPCR, iii) protection against Bacillus anthracis toxins were investigated by XTT, cAMP ELISA and MEK2 cleavage assays. Acknowledgements: This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant SBAG-218S467.

Keywords: ANTXR2, hsa-miR-124-3p, MΦ macrophage, THP-1, U937

Procedia PDF Downloads 146
1624 Optimization of Operational Parameters and Design of an Electrochlorination System to Produce Naclo

Authors: Pablo Ignacio Hernández Arango, Niels Lindemeyer

Abstract:

Chlorine, as Sodium Hypochlorite (NaClO) solution in water, is an effective, worldwide spread, and economical substance to eliminate germs in the water. The disinfection potential of chlorine lies in its ability to degrade the outer surfaces of bacterial cells and viruses. This contribution reports the main parameters of the brine electrolysis for the production of NaClO, which is afterward used for the disinfection of water either for drinking or recreative uses. Herein, the system design was simulated, optimized, build, and tested based on titanium electrodes. The process optimization considers the whole process, from the salt (NaCl) dilution tank in order to maximize its operation time util the electrolysis itself in order to maximize the chlorine production reducing the energy and raw material (salt and water) consumption. One novel idea behind this optimization process is the modification of the flow pattern inside the electrochemical reactors. The increasing turbulence and residence time impact positively the operations figures. The operational parameters, which are defined in this study were compared and benchmarked with the parameters of actual commercial systems in order to validate the pertinency of those results.

Keywords: electrolysis, water disinfection, sodium hypochlorite, process optimization

Procedia PDF Downloads 116
1623 A Prenylflavanoid, HME5 with Antiproliferative Activity in Human Ovarian Cancer Cells

Authors: Mashitoh Abd Rahman, Najihah Mohd Hashim, Faiqah Ramli, Syam Mohan, Noraziah Nordin, Hamed Karimian, Hapipah Mohd Ali

Abstract:

Ovarian cancer is the most lethal gynecological malignancies. HME5, a prenylflavanoid has been isolated from local medicinal plant. This compound has been reported to possess a broad spectrum of biological activities including anticancer property. However, the potential of HME5 as an antiproliferative and cytotoxic agent on an ovarian cancer cells has not yet been investigated. In this present study, we examined the antiproliferative and cytotoxic effect of HME5 on Caov-3 (Human Ovarian Adenocarcinoma) cell line by using 3-[4,5-dimethylthizol-2-y]-2,5-diphenyltetrazolium bromide (MTT) assay, Acridine orange and propidium Iodide (AOPi) and cell cycle analysis study. HME5 has shown to inhibit Caov-3 in a time-dependent manner with the IC50 values of 5µg/ml, 2µg/ml and 1µg/ml after 24h, 48h and 72h treatment, respectively. Morphological study from AOPi analysis showed that HME5 induced apoptosis after 24 and 48h post-treatment. Nevertheless, HME5 exhibited cell cycle arrest at G1 phase as indicated in flow cytometry cell cycle profiling. In conclusion, HME5 inhibited proliferation of Caov-3 through induction of apoptosis and cell cycle arrest at G1 phase.

Keywords: apoptosis, prenylflavanoid, ovarian cancer, HME5

Procedia PDF Downloads 448