Search results for: differential learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8509

Search results for: differential learning

4489 Mechanical Structural and Optical Properties of Lu₂SiO₅ Scintillator-Polymer Composite Films

Authors: M. S. E. Hamroun, K. Bachari, A. Berrayah, L. Mechernene, L. Guerbous

Abstract:

Composite films containing homogeneously dispersed scintillation nano-particles of Lu₂SiO₅:Ce³⁺, in optically transparent polymer matrix, have been prepared and characterized through X-ray diffraction, differential scanning calorimetric (DSC), thermogravimetric analysis (ATG), dynamic mechanical analysis (DMA), electron scanning microscopy morphology (SEM) and photoluminescence (PL). Lu₂SiO₅:Ce³⁺ scintillator powder was successfully synthesized via Sol-Gel method. This study is realized with different mass ratios of nano-particles embedded in polystyrene and polylactic acid polymer matrix (5, 10, 15, 20%) to see the influence of nano-particles on the mechanical, structural and optical properties of films. The composites have been prepared with 400 µm thickness. It has found that the structural proprieties change with mass ratio on each sample. PL photoluminescence shows the characteristic Lu₂SiO₅:Ce³⁺ emission in the blue region and intensity varied for each film.

Keywords: nano-particles, sol gel, photoluminescence, Ce³⁺, scintillator, polystyrene

Procedia PDF Downloads 107
4488 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier

Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho

Abstract:

Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.

Keywords: classifier algorithm, diabetes, diagnostic model, machine learning

Procedia PDF Downloads 324
4487 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction

Authors: Omer Cahana, Ofer Levi, Maya Herman

Abstract:

Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.

Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning

Procedia PDF Downloads 79
4486 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media

Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled

Abstract:

This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.

Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility

Procedia PDF Downloads 199
4485 Offshore Power Transition Project

Authors: Kashmir Johal

Abstract:

Within a wider context of improving whole-life effectiveness of gas and oil fields, we have been researching how to generate power local to the wellhead. (Provision of external power to a subsea wellhead can be prohibitively expensive and results in uneconomic fields. This has been an oil/gas industry challenge for many years.) We have been developing a possible approach to “local” power generation and have been conducting technical, environmental, (and economic) research to develop a viable approach. We sought to create a workable design for a new type of power generation system that makes use of differential pressure that can exist between the sea surface and a gas (or oil reservoir). The challenge has not just been to design a system capable of generating power from potential energy but also to design it in such a way that it anticipates and deals with the wide range of technological, environmental, and chemical constraints faced in such environments. We believe this project shows the enormous opportunity in deriving clean, economic, and zero emissions renewable energy from offshore sources. Since this technology is not currently available, a patent has been filed to protect the advancement of this technology.

Keywords: renewable, energy, power, offshore

Procedia PDF Downloads 59
4484 Trauma and Its High Influence on Special Education

Authors: Athena Johnson

Abstract:

Special education is an important field but often under-researched, particularly for the cause of learning deficiencies. Often times special education looks at the symptoms rather than the cause, and this can lead to many misdiagnoses. Student trauma, as measured by the Adverse Childhood Experiences (ACE) test, is extremely common, often resulting in Post Traumatic Stress Disorder (PTSD). PTSD affects the brain's ability to learn properly, making students have a much more difficult time with auditory learning and memory due to always being in flight or fight mode, and due to this, students with PTSD are often misdiagnosed with Attention Deficit and Hyperactivity Disorder (ADHD). This can lead to them getting the wrong support, with PTSD students needing more counseling than anything else. Through these research papers' methodologies, a literature review on article research from the perspectives of students who were misdiagnosed, and imperial research, the major findings of this study were the importance of trauma-informed care in schools. Trauma-informed care in the school system is crucial for helping the many students who experience traumatic life events and struggle in school due to it. It is important to support students with PTSD so that they are able to integrate and learn better in society and school with trauma-informed school care.

Keywords: ACE test, ADHD, misdiagnoses, special education, trauma, trauma-informed care, PTSD

Procedia PDF Downloads 98
4483 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model

Authors: Gholba Niranjan Dilip, Anil Kumar

Abstract:

Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.

Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector

Procedia PDF Downloads 153
4482 Early Adolescents Motivation and Engagement Levels in Learning in Low Socio-Economic Districts in Sri Lanka (Based on T-Tests Results)

Authors: Ruwandika Perera

Abstract:

Even though the Sri Lankan government provides a reasonable level of support for students at all levels of the school system, for example, free education, textbooks, school uniforms, subsidized public transportation, and school meals, low participation in learning among secondary students is an issue warranting investigation, particularly in low socio-economic districts. This study attempted to determine the levels of motivation and engagement amongst students in a number of schools in two low socio-economic districts of Sri Lanka. This study employed quantitative research design in an attempt to determine levels of motivation and engagement amongst Sri Lankan secondary school students. Motivation and Engagement Scale-Junior School (MES-JS) was administered among 100 Sinhala-medium and 100 Tamil-medium eighth-grade students (50 students from each gender). The mean age of the students was 12.8 years. Schools were represented by type 2 government schools located in Monaragala and Nuwara Eliya districts in Sri Lanka. Confirmatory factor analysis (CFA) was conducted to measure the construct validity of the scale. Since this did not provide a robust solution, exploratory factor analysis (EFA) was conducted. Four factors were identified; Failure Avoidance and Anxiety (FAA), Positive Motivation (PM), Uncertain Control (UC), and Positive Engagement (PE). An independent-samples t-test was conducted to compare PM, PE, FAA, and UC in gender and ethnic groups. There was no significant difference identified for PE, FAA, and UC scales based upon gender. These results indicate that for the participants in this study, there were no significant differences based on gender in the levels of failure avoidance and anxiety, uncertain control, and positive engagement in the school experience. But, the result for the PM scale was close to significant, indicating there may be differences based on gender for positive motivation. A significant difference exists for all scales based on ethnicity, with the mean result for the Tamil students being significantly higher than that for the Sinhala students. These results indicate those Sinhala-medium students’ levels of positive motivation and positive engagement in learning was lower than Tamil-medium students. Also, these results indicate those Tamil-medium students’ levels of failure avoidance, anxiety, and uncertain control was higher than Sinhala-medium students. It could be concluded that male students levels of PM were significantly lower than female students. Also, Sinhala-medium students’ levels of PM and PE was lower than Tamil-medium students, and Tamil-medium students levels of FAA and UC was significantly higher than Sinhala-medium students. Thus, there might be particular school-related conditions affecting this situation, which are related to early adolescents’ motivation and engagement in learning.

Keywords: early adolescents, engagement, low socio-economic districts, motivation

Procedia PDF Downloads 144
4481 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties

Authors: M. Kheirandish, S. Borhani

Abstract:

In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.

Keywords: electrospininng, nanoparticle, polystyrene, ZnO

Procedia PDF Downloads 226
4480 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory

Authors: Yin Yuanling

Abstract:

A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.

Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks

Procedia PDF Downloads 122
4479 Application of the Pattern Method to Form the Stable Neural Structures in the Learning Process as a Way of Solving Modern Problems in Education

Authors: Liudmyla Vesper

Abstract:

The problems of modern education are large-scale and diverse. The aspirations of parents, teachers, and experts converge - everyone interested in growing up a generation of whole, well-educated persons. Both the family and society are expected in the future generation to be self-sufficient, desirable in the labor market, and capable of lifelong learning. Today's children have a powerful potential that is difficult to realize in the conditions of traditional school approaches. Focusing on STEM education in practice often ends with the simple use of computers and gadgets during class. "Science", "technology", "engineering" and "mathematics" are difficult to combine within school and university curricula, which have not changed much during the last 10 years. Solving the problems of modern education largely depends on teachers - innovators, teachers - practitioners who develop and implement effective educational methods and programs. Teachers who propose innovative pedagogical practices that allow students to master large-scale knowledge and apply it to the practical plane. Effective education considers the creation of stable neural structures during the learning process, which allow to preserve and increase knowledge throughout life. The author proposed a method of integrated lessons – cases based on the maths patterns for forming a holistic perception of the world. This method and program are scientifically substantiated and have more than 15 years of practical application experience in school and student classrooms. The first results of the practical application of the author's methodology and curriculum were announced at the International Conference "Teaching and Learning Strategies to Promote Elementary School Success", 2006, April 22-23, Yerevan, Armenia, IREX-administered 2004-2006 Multiple Component Education Project. This program is based on the concept of interdisciplinary connections and its implementation in the process of continuous learning. This allows students to save and increase knowledge throughout life according to a single pattern. The pattern principle stores information on different subjects according to one scheme (pattern), using long-term memory. This is how neural structures are created. The author also admits that a similar method can be successfully applied to the training of artificial intelligence neural networks. However, this assumption requires further research and verification. The educational method and program proposed by the author meet the modern requirements for education, which involves mastering various areas of knowledge, starting from an early age. This approach makes it possible to involve the child's cognitive potential as much as possible and direct it to the preservation and development of individual talents. According to the methodology, at the early stages of learning students understand the connection between school subjects (so-called "sciences" and "humanities") and in real life, apply the knowledge gained in practice. This approach allows students to realize their natural creative abilities and talents, which makes it easier to navigate professional choices and find their place in life.

Keywords: science education, maths education, AI, neuroplasticity, innovative education problem, creativity development, modern education problem

Procedia PDF Downloads 45
4478 The Use of Educational Language Games

Authors: April Love Palad, Charita B. Lasala

Abstract:

Mastery on English language is one of the important goals of all English language teachers. This goal can be seen based from the students’ actual performance using the target language which is English. Learning the English language includes hard work where efforts need to be exerted and this can be attained gradually over a long period of time. It is extremely important for all English language teachers to know the effects of incorporating games in teaching. Whether this strategy can have positive or negative effects in students learning, teachers should always consider what is best for their learners. Games may help and provide confidents language learners. These games help teachers to create context in which the language is suitable and significant. Focusing in accuracy and fluency is the heart of this study and this will be obtain in either teaching English using the traditional method or teaching English using language games. It is very important for all English teachers to know which strategy is effective in teaching English to be able to cope with students’ underachievement in this subject. This study made use of the comparative-experimental method. It made use of the pre-post test design with the aim to explore the effectiveness of the language games as strategy used in language teaching for high school students. There were two groups of students being observed, the controlled and the experimental, employing the two strategies in teaching English –traditional and with the use of language games. The scores obtained by two samples were compared to know the effectiveness of the two strategies in teaching English. In this study, it found out that language games help improve students’ fluency and accuracy in the use of target language and this is very evident in the results obtained in the pre-test and post –test result as well the mean gain scores by the two groups of students. In addition, this study also gives us a clear view on the positive effects on the use of language games in teaching which also supported by the related studies based from this research. The findings of the study served as the bases for the creation of the proposed learning plan that integrated language games that teachers may use in their own teaching. This study further concluded that language games are effective in developing students’ fluency in using the English language. This justifies that games help encourage students to learn and be entertained at the same time. Aside from that, games also promote developing language competency. This study will be very useful to teachers who are in doubt in the use of this strategy in their teaching.

Keywords: language games, experimental, comparative, strategy, language teaching, methodology

Procedia PDF Downloads 404
4477 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method

Authors: Dangut Maren David, Skaf Zakwan

Abstract:

Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.

Keywords: prognostics, data-driven, imbalance classification, deep learning

Procedia PDF Downloads 159
4476 Resilience-Vulnerability Interaction in the Context of Disasters and Complexity: Study Case in the Coastal Plain of Gulf of Mexico

Authors: Cesar Vazquez-Gonzalez, Sophie Avila-Foucat, Leonardo Ortiz-Lozano, Patricia Moreno-Casasola, Alejandro Granados-Barba

Abstract:

In the last twenty years, academic and scientific literature has been focused on understanding the processes and factors of coastal social-ecological systems vulnerability and resilience. Some scholars argue that resilience and vulnerability are isolated concepts due to their epistemological origin, while others note the existence of a strong resilience-vulnerability relationship. Here we present an ordinal logistic regression model based on the analytical framework about dynamic resilience-vulnerability interaction along adaptive cycle of complex systems and disasters process phases (during, recovery and learning). In this way, we demonstrate that 1) during the disturbance, absorptive capacity (resilience as a core of attributes) and external response capacity explain the probability of households capitals to diminish the damage, and exposure sets the thresholds about the amount of disturbance that households can absorb, 2) at recovery, absorptive capacity and external response capacity explain the probability of households capitals to recovery faster (resilience as an outcome) from damage, and 3) at learning, adaptive capacity (resilience as a core of attributes) explains the probability of households adaptation measures based on the enhancement of physical capital. As a result, during the disturbance phase, exposure has the greatest weight in the probability of capital’s damage, and households with absorptive and external response capacity elements absorbed the impact of floods in comparison with households without these elements. At the recovery phase, households with absorptive and external response capacity showed a faster recovery on their capital; however, the damage sets the thresholds of recovery time. More importantly, diversity in financial capital increases the probability of recovering other capital, but it becomes a liability so that the probability of recovering the household finances in a longer time increases. At learning-reorganizing phase, adaptation (modifications to the house) increases the probability of having less damage on physical capital; however, it is not very relevant. As conclusion, resilience is an outcome but also core of attributes that interacts with vulnerability along the adaptive cycle and disaster process phases. Absorptive capacity can diminish the damage experienced by floods; however, when exposure overcomes thresholds, both absorptive and external response capacity are not enough. In the same way, absorptive and external response capacity diminish the recovery time of capital, but the damage sets the thresholds in where households are not capable of recovering their capital.

Keywords: absorptive capacity, adaptive capacity, capital, floods, recovery-learning, social-ecological systems

Procedia PDF Downloads 125
4475 Teaching Audiovisual Translation (AVT):Linguistic and Technical Aspects of Different Modes of AVT

Authors: Juan-Pedro Rica-Peromingo

Abstract:

Teachers constantly need to innovate and redefine materials for their lectures, especially in areas such as Language for Specific Purposes (LSP) and Translation Studies (TS). It is therefore essential for the lecturers to be technically skilled to handle the never-ending evolution in software and technology, which are necessary elements especially in certain courses at university level. This need becomes even more evident in Audiovisual Translation (AVT) Modules and Courses. AVT has undergone considerable growth in the area of teaching and learning of languages for academic purposes. We have witnessed the development of a considerable number of masters and postgraduate courses where AVT becomes a tool for L2 learning. The teaching and learning of different AVT modes are components of undergraduate and postgraduate courses. Universities, in which AVT is offered as part of their teaching programme or training, make use of professional or free software programs. This paper presents an approach in AVT withina specific university context, in which technology is used by means of professional and nonprofessional software. Students take an AVT subject as part of their English Linguistics Master’s Degree at the Complutense University (UCM) in which they are using professional (Spot) and nonprofessional (Subtitle Workshop, Aegisub, Windows Movie Maker) software packages. The students are encouraged to develop their tasks and projects simulating authentic professional experiences and contexts in the different AVT modes: subtitling for hearing and deaf and hard of hearing population, audio description and dubbing. Selected scenes from TV series such as X-Files, Gossip girl, IT Crowd; extracts from movies: Finding Nemo, Good Will Hunting, School of Rock, Harry Potter, Up; and short movies (Vincent) were used. Hence, the complexity of the audiovisual materials used in class as well as the activities for their projects were graded. The assessment of the diverse tasks carried out by all the students are expected to provide some insights into the best way to improve their linguistic accuracy and oral and written productions with the use of different AVT modes in a very specific ESP university context.

Keywords: ESP, audiovisual translation, technology, university teaching, teaching

Procedia PDF Downloads 506
4474 Finite Element Modeling of Heat and Moisture Transfer in Porous Material

Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume

Abstract:

This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.

Keywords: finite element method, heat transfer, moisture transfer, porous materials, wood

Procedia PDF Downloads 389
4473 Thermal and Flammability Properties of Paraffin/Nanoclay Composite Phase Change Materials Incorporated in Building Materials for Thermal Energy Storage

Authors: Awni H. Alkhazaleh, Baljinder K. Kandola

Abstract:

In this study, a form-stable composite Paraffin/Nanoclay (PA-NC) has been prepared by absorbing PA into porous particles of NC to be used for low-temperature latent heat thermal energy storage. The leakage test shows that the maximum mass fraction of PA that can be incorporated in NC without leakage is 60 wt.%. Differential scanning calorimetry (DSC) has been used to measure the thermal properties of the PA and PA-NC both before and after incorporation in plasterboard (PL). The mechanical performance of the samples has been evaluated in flexural mode. The thermal energy storage performance has been studied using a small test chamber (100 mm × 100 mm × 100 mm) made from 10 mm thick PL and measuring the temperatures using thermocouples. The flammability of the PL+PL-NC has been discussed using a cone calorimeter. The results indicate that the form composite PA has good potential for use as thermal energy storage materials in building applications.

Keywords: building materials, flammability, phase change materials, thermal energy storage

Procedia PDF Downloads 320
4472 F-VarNet: Fast Variational Network for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.

Keywords: MRI, deep learning, variational network, computer vision, compress sensing

Procedia PDF Downloads 142
4471 Exact Solutions for Steady Response of Nonlinear Systems under Non-White Excitation

Authors: Yaping Zhao

Abstract:

In the present study, the exact solutions for the steady response of quasi-linear systems under non-white wide-band random excitation are considered by means of the stochastic averaging method. The non linearity of the systems contains the power-law damping and the cross-product term of the power-law damping and displacement. The drift and diffusion coefficients of the Fokker-Planck-Kolmogorov (FPK) equation after averaging are obtained by a succinct approach. After solving the averaged FPK equation, the joint probability density function and the marginal probability density function in steady state are attained. In the process of resolving, the eigenvalue problem of ordinary differential equation is handled by integral equation method. Some new results are acquired and the novel method to deal with the problems in nonlinear random vibration is proposed.

Keywords: random vibration, stochastic averaging method, FPK equation, transition probability density

Procedia PDF Downloads 494
4470 Stimulated Raman Scattering of Ultra Intense Hollow Gaussian Beam

Authors: Prerana Sharma

Abstract:

Effect of relativistic nonlinearity on stimulated Raman scattering of the propagating laser beam carrying null intensity in center (hollow Gaussian beam) by excited plasma wave are studied in a collisionless plasma. The construction of the equations is done employing the fluid theory which is developed with partial differential equation and Maxwell’s equations. The analysis is done using eikonal method. The phenonmenon of Stimulated Raman scattering is shown along with the excitation of seed plasma wave. The power of plasma wave and back reflectivity is observed for higher order of hollow Gaussian beam. Back reflectivity is studied numerically for various orders of HGLB with different value of plasma density, laser power and beam radius. Numerical analysis shows that these parameters play vital role on reflectivity characteristics.

Keywords: Hollow Gaussian beam, relativistic nonlinearity, plasma physics, Raman scattering

Procedia PDF Downloads 624
4469 Conventional Synthesis and Characterization of Zirconium Molybdate, Nd2Zr3(MoO4)9

Authors: G. Çelik Gül, F. Kurtuluş

Abstract:

Rare earths containing complex metal oxides have drawn much attention due to physical, chemical and optical properties which make them feasible in so many areas such as non-linear optical materials and ion exchanger. We have researched a systematic study to obtain rare earth containing zirconium molybdate compound, characterization, investigation of crystal system and calculation of unit cell parameters.  After a successful synthesis of Nd2Zr3(MoO4)9 which is a member of rare earth metal containing complex oxides family, X-ray diffraction (XRD), High Score Plus/Rietveld refinement analysis, and Fourier Transform Infrared Spectroscopy (FTIR) were completed to determine the crystal structure. Morphological properties and elemental composition were determined by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. Thermal properties were observed via Thermogravimetric-differential thermal analysis (TG/DTA).

Keywords: Nd₂Zr₃(MoO₄)₉, powder x-ray diffraction, solid state synthesis, zirconium molybdates

Procedia PDF Downloads 388
4468 Designing Information Systems in Education as Prerequisite for Successful Management Results

Authors: Vladimir Simovic, Matija Varga, Tonco Marusic

Abstract:

This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.

Keywords: designing, education management, information systems, matrix technology, process affinity

Procedia PDF Downloads 431
4467 Microwave Assisted Synthesis and Metal Complexes of Some Copolymers Based on Itaconic Acid

Authors: Mohamed H. El-Newehy, Sameh M. Osman, Moamen S. Refat, Salem S. Al-Deyab, Ayman El-Faham

Abstract:

The two copolymers itaconic acid-methyl methacrylate and itaconic acid-acrylamide have been prepared in different ratio by radical copolymerization in the presence of azobisisobutyronitrile (AIBN) as initiator and using 2-butanone as reaction medium using microwave irradiation. The microwave technique is safe, fast, and gives high yield of the products with high purity in an optimum time, comparing to the traditional conventional heating. All the prepared copolymers were characterized by FT-IR, thermal analysis and elemental microanalysis. The itaconic acid-based copolymers showed a good sensitivity in alkaline media for scavenging Cu (II) and Pb (II). The chelation behavior of both Cu (II) and Pb (II) complexes were checked using FT-IR, thermogravimetric analysis (TGA), and differential scanning calorimetery (DSC). The infrared data are in a good agreement with the coordination through carboxylate-to-metal, in which the copolymers acting as a bidentate ligand.

Keywords: microwave synthesis, itaconic acid, copolymerization, scavenging, thermal stability

Procedia PDF Downloads 439
4466 A Comparison of the First Language Vocabulary Used by Indonesian Year 4 Students and the Vocabulary Taught to Them in English Language Textbooks

Authors: Fitria Ningsih

Abstract:

This study concerns on the process of making corpus obtained from Indonesian year 4 students’ free writing compared to the vocabulary taught in English language textbooks. 369 students’ sample writings from 19 public elementary schools in Malang, East Java, Indonesia and 5 selected English textbooks were analyzed through corpus in linguistics method using AdTAT -the Adelaide Text Analysis Tool- program. The findings produced wordlists of the top 100 words most frequently used by students and the top 100 words given in English textbooks. There was a 45% match between the two lists. Furthermore, the classifications of the top 100 most frequent words from the two corpora based on part of speech found that both the Indonesian and English languages employed a similar use of nouns, verbs, adjectives, and prepositions. Moreover, to see the contextualizing the vocabulary of learning materials towards the students’ need, a depth-analysis dealing with the content and the cultural views from the vocabulary taught in the textbooks was discussed through the criteria developed from the checklist. Lastly, further suggestions are addressed to language teachers to understand the students’ background such as recognizing the basic words students acquire before teaching them new vocabulary in order to achieve successful learning of the target language.

Keywords: corpus, frequency, English, Indonesian, linguistics, textbooks, vocabulary, wordlists, writing

Procedia PDF Downloads 173
4465 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level

Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar

Abstract:

Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.

Keywords: machine learning, hydro-gravimetry, ground water level, predictive model

Procedia PDF Downloads 113
4464 The Opinions of Nursing Students Regarding Humanized Care through Volunteer Activities at Boromrajonani College of Nursing, Chonburi

Authors: P. Phenpun, S. Wareewan

Abstract:

This qualitative study aimed to describe the opinions in relation to humanized care emerging from the volunteer activities of nursing students at Boromarajonani College of Nursing, Chonburi, Thailand. One hundred and twenty-seven second-year nursing students participated in this study. The volunteer activity model was composed of preparation, implementation, and evaluation through a learning log, in which students were encouraged to write their daily activities after completing practical training at the healthcare center. The preparation content included three main categories: service minded, analytical thinking, and client participation. The preparation process took over three days that accumulates up to 20 hours only. The implementation process was held over 10 days, but with a total of 70 hours only, with participants taking part in volunteer work activities at a healthcare center. A learning log was used for evaluation and data were analyzed using content analysis. The findings were as follows. With service minded, there were two subcategories that emerged from volunteer activities, which were service minded towards patients and within themselves. There were three categories under service minded towards patients, which were rapport, compassion, and empathy service behaviors, and there were four categories under service minded within themselves, which were self-esteem, self-value, management potential, and preparedness in providing good healthcare services. In line with analytical thinking, there were two components of analytical thinking, which were analytical skill for their works and analytical thinking for themselves. There were four subcategories under analytical thinking for their works, which were evidence based thinking, real situational thinking, cause analysis thinking, and systematic thinking, respectively. There were four subcategories under analytical thinking for themselves, which were comparative between themselves, towards their clients that leads to the changing of their service behaviors, open-minded thinking, modernized thinking, and verifying both verbal and non-verbal cues. Lastly, there were three categories under participation, which were mutual rapport relationship; reconsidering client’s needs services and providing useful health care information.

Keywords: humanized care service, volunteer activity, nursing student, learning log

Procedia PDF Downloads 298
4463 Time Organization for Decongesting Urban Mobility: New Methodology Identifying People's Behavior

Authors: Yassamina Berkane, Leila Kloul, Yoann Demoli

Abstract:

Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a new methodology for predicting peoples' intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples' intentions to reschedule their activities (work, study, commerce, etc.).

Keywords: urban mobility, decongestion, machine learning, neural network

Procedia PDF Downloads 179
4462 Motivation and Multiglossia: Exploring the Diversity of Interests, Attitudes, and Engagement of Arabic Learners

Authors: Anna-Maria Ramezanzadeh

Abstract:

Demand for Arabic language is growing worldwide, driven by increased interest in the multifarious purposes the language serves, both for the population of heritage learners and those studying Arabic as a foreign language. The diglossic, or indeed multiglossic nature of the language as used in Arabic speaking communities however, is seldom represented in the content of classroom courses. This disjoint between the nature of provision and students’ expectations can severely impact their engagement with course material, and their motivation to either commence or continue learning the language. The nature of motivation and its relationship to multiglossia is sparsely explored in current literature on Arabic. The theoretical framework here proposed aims to address this gap by presenting a model and instruments for the measurement of Arabic learners’ motivation in relation to the multiple strands of the language. It adopts and develops the Second Language Motivation Self-System model (L2MSS), originally proposed by Zoltan Dörnyei, which measures motivation as the desire to reduce the discrepancy between leaners’ current and future self-concepts in terms of the second language (L2). The tripartite structure incorporates measures of the Current L2 Self, Future L2 Self (consisting of an Ideal L2 Self, and an Ought-To Self), and the L2 Learning Experience. The strength of the self-concepts is measured across three different domains of Arabic: Classical, Modern Standard and Colloquial. The focus on learners’ self-concepts allows for an exploration of the effect of multiple factors on motivation towards Arabic, including religion. The relationship between Islam and Arabic is often given as a prominent reason behind some students’ desire to learn the language. Exactly how and why this factor features in learners’ L2 self-concepts has not yet been explored. Specifically designed surveys and interview protocols are proposed to facilitate the exploration of these constructs. The L2 Learning Experience component of the model is operationalized as learners’ task-based engagement. Engagement is conceptualised as multi-dimensional and malleable. In this model, situation-specific measures of cognitive, behavioural, and affective components of engagement are collected via specially designed repeated post-task self-report surveys on Personal Digital Assistant over multiple Arabic lessons. Tasks are categorised according to language learning skill. Given the domain-specific uses of the different varieties of Arabic, the relationship between learners’ engagement with different types of tasks and their overall motivational profiles will be examined to determine the extent of the interaction between the two constructs. A framework for this data analysis is proposed and hypotheses discussed. The unique combination of situation-specific measures of engagement and a person-oriented approach to measuring motivation allows for a macro- and micro-analysis of the interaction between learners and the Arabic learning process. By combining cross-sectional and longitudinal elements with a mixed-methods design, the model proposed offers the potential for capturing a comprehensive and detailed picture of the motivation and engagement of Arabic learners. The application of this framework offers a number of numerous potential pedagogical and research implications which will also be discussed.

Keywords: Arabic, diglossia, engagement, motivation, multiglossia, sociolinguistics

Procedia PDF Downloads 154
4461 Developing Pan-University Collaborative Initiatives in Support of Diversity and Inclusive Campuses

Authors: David Philpott, Karen Kennedy

Abstract:

In recognition of an increasingly diverse student population, a Teaching and Learning Framework was developed at Memorial University of Newfoundland. This framework emphasizes work that is engaging, supportive, inclusive, responsive, committed to discovery, and is outcomes-oriented for both educators and learners. The goal of the Teaching and Learning framework was to develop a number of initiatives that builds on existing knowledge, proven programs, and existing supports in order to respond to the specific needs of identified groups of diverse learners: 1) academically vulnerable first year students; 2) students with individual learning needs associated with disorders and/or mental health issues; 3) international students and those from non-western cultures. This session provides an overview of this process. The strategies employed to develop these initiatives were drawn primarily from research on student success and retention (literature review), information on pre-existing programs (environmental scan), an analysis of in-house data on students at our institution; consultations with key informants at all of Memorial’s campuses. The first initiative that emerged from this research was a pilot project proposal for a first-year success program in support of the first-year experience of academically vulnerable students. This program offers a university experience that is enhanced by smaller classes, supplemental instruction, learning communities, and advising sessions. The second initiative that arose under the mandate of the Teaching and Learning Framework was a collaborative effort between two institutions (Memorial University and the College of the North Atlantic). Both institutions participated in a shared conversation to examine programs and services that support an accessible and inclusive environment for students with disorders and/or mental health issues. A report was prepared based on these conversations and an extensive review of research and programs across the country. Efforts are now being made to explore possible initiatives that address culturally diverse and non-traditional learners. While an expanding literature has emerged on diversity in higher education, the process of developing institutional initiatives is usually excluded from such discussions, while the focus remains on effective practice. The proposals that were developed constitute a co-ordination and strengthening of existing services and programs; a weaving of supports to engage a diverse body of students in a sense of community. This presentation will act as a guide through the process of developing projects addressing learner diversity and engage attendees in a discussion of institutional practices that have been implemented in support of overcoming challenges, as well as provide feedback on institutional and student outcomes. The focus of this session will be on effective practice, and will be of particular interest to university administrators, educational developers, and educators wishing to implement similar initiatives on their campuses; possible adaptations for practice will be addressed. A presentation of findings from this research will be followed by an open discussion where the sharing of research, initiatives, and best practices for the enhancement of teaching and learning is welcomed. There is much insight and understanding to be gained through the sharing of ideas and collaborative practice as we move forward to further develop the program and prepare other initiatives in support of diversity and inclusion.

Keywords: eco-scale, green analysis, environmentally-friendly, pharmaceuticals analysis

Procedia PDF Downloads 281
4460 Umbilical Epidermal Inclusion Cysts, a Rare Cause of Umbilical Mass: A Case Report and Review of Literature

Authors: Christine Li, Amanda Robertson

Abstract:

Epidermal inclusion cysts occur when epidermal cells are implanted in the dermis following trauma, or surgery. They are a rare cause of an umbilical mass, with very few cases previously reported following abdominal surgery. These lesions can present with a range of symptoms, including palpable mass, pain, redness, or discharge. This paper reports a case of an umbilical epidermal inclusion cyst in a 52-year-old female presenting with a six-week history of a painful, red umbilical lump on a background of two previous diagnostic laparoscopies. Abdominal computed tomography (CT) scans revealed non-specific soft tissue thickening in the umbilical region. This was successfully treated with complete excision of the lesion. Umbilical lumps are a common presentation but can represent a diagnostic challenge. The differential diagnosis should include an epidermal inclusion cyst, particularly in a patient who has had previous abdominal surgery, including laparoscopic surgery.

Keywords: epidermal inclusion cyst, laparoscopy, umbilical mass, umbilicus

Procedia PDF Downloads 68