Search results for: Normalized Burn Ratio (NBR)
1054 Efficacy of Light-Emitting Diode-Mediated Photobiomodulation in Tendon Healing in a Murine Model
Authors: Sukwoong Kang
Abstract:
Background: The application of light-emitting diode (LED)-dependent photobiomodulation (PBM) in promoting post-tendon injury healing has been recently reported. Despite the establishment of a theoretical basis for ligament restoration through PBM, the lack of any empirical evidence deems this therapeutic strategy contentious. Therefore, the aim of this study was to investigate the potency of LED-based PBM in facilitating tendon healing in a murine model. Methods: Migration kinetics were analyzed at two specific wavelengths: 630 and 880 nm. The Achilles tendon in the hind limbs of Balb/c mice was severed via Achilles tendon transection. Subsequently, the mice were randomized into LED non-irradiation and LED irradiation groups. Mice with intact tendons were employed as healthy controls. The wounds were LED-irradiated for 20 min daily for two days. Histological properties, tendon healing mediators, and inflammatory mediators were screened on day 14. Results: The roundness of the nuclei and fiber structure, indicating the degree of infiltrated inflammatory cells and severity of fiber fragmentation, respectively, were considerably lower in the LED irradiation group than in the LED non-irradiation group. Immunohistochemical analysis depicted an increase in tenocytes (SCX+ cells) and a recovery of wounds with reduced fibrosis (lower collagen 3 and TGF-β1) in the LED irradiation group during healing; conversely, the LED non-irradiation group exhibited tissue fibrosis. The ratio of M2 macrophages to total macrophages was higher in the LED irradiation group than in the injured group. Conclusion: LED-based PBM in the Achilles tendon rupture murine model effectuated a rapid restoration of histological and immunochemical outcomes. The aforementioned findings suggest that LED-based PBM presents remarkable potential as an adjunct therapeutic for tendon healing and warrants further research to standardize various parameters to advance and establish it as a reliable treatment regime.Keywords: photobiomodulation, light-emitting diode, tendon, regeneration
Procedia PDF Downloads 471053 Performances of Ashwagandha (Withania somnifera Duanal) as Affected by Method of Planting and Source of Nutrients
Authors: Ewon Kaliyadasa, U. L. B. Jayasinghe, S. E. Peiris
Abstract:
Ashwagandha (Withania sominifera Duanal) is an important medicinal herb belongs to family Solanaceae. This plant has raised its popularity after discovering anti stress and sex stimulating properties that mainly due to the presence of biologically active alkaloid compounds. Therefore it is vital to adapt to a proper agro technological package that ensure optimum growth of ashwagandha to obtain the finest quality without degrading pharmacologically active constituents. Organic and inorganic fertilizer mixtures were combined with direct seeding and transplanting as four different treatments in this study. Tuber fresh and dry weights were recorded up to twelve months starting from two months after sowing (MAS) while shoot height, root length, number of leaves, shoot fresh and dry weights and root: shoot ratio up to 6MAS. Results revealed that growth of ashwagandha was not affected significantly by method of planting or type of fertilizer or its combinations during most of the harvests. However, tubers harvested at 6MAS recorded the highest dry tuber weight per plant in all four treatments compared to early harvests where two direct seeded treatments are the best. Chemical comparison of these two treatments, direct seeding coupled with organic and inorganic fertilizer shown that direct seeding with organic treatment recorded the highest values for alkaloid and withaferine A content with lower percentage of fiber. Further these values are in concurring with the values of commercially available tuber samples. Having considered all facts, 6MAS can be recommended as the best harvesting stage to obtain high quality tubers of ashwagandha under local conditions.Keywords: alkaloids, direct seeding, dry tuber weight, inorganic fertilizer, organic fertilizer, transplanting, withaferine a
Procedia PDF Downloads 3451052 Effect of Co-Infection With Intestinal Parasites on COVID-19 Severity: A Prospective Observational Cohort Study
Authors: Teklay Gebrecherkos, Dawit Wolday, Muhamud Abdulkader
Abstract:
Background: COVID-19 symptomatology in Africa appears significantly less serious than in the industrialized world. Our hypothesis for this phenomenon, being a different, more activated immune system due to parasite infections contributes to reduced COVID-19 outcome. We investigated this hypothesis in an endemic area in sub sub-saharan Africa. Methods: Ethiopian COVID-19 patients were enrolled and screened for intestinal parasites, between July 2020 and March 2021. The primary outcome was the proportion of patients with severe COVID-19. SARS-CoV-2 infection was confirmed by RT-PCR on samples obtained from nasopharyngeal swabs, while direct microscopic examination, modified Ritchie concentration, and Kato-Katz methods were used to identify parasites and ova from a fresh stool sample. Ordinal logistic regression models were used to estimate the association between parasite infection and COVID-19 severity. Models were adjusted for sex, age, residence, education level, occupation, body mass index, and comorbidities. Data were analyzed using STATA version 14. P-value <0.05 was considered statistically significant. Results: A total of 751 SARS-CoV-2 infected patients were enrolled, of whom 284 (37•8%) had an intestinal parasitic infection. Only 27/255 (10•6%) severe COVID-19 patients were co-infected with intestinal parasites, while 257/496 (51•8%) non-severe COVID-19 patients appeared parasite positive (p<0.0001). Patients co-infected with parasites had lower odds of developing severe COVID-19, with an adjusted odds ratio (AOR) of 0•14 (95% CI 0•09–0•24; p<0•0001) for all parasites, AOR 0•20 ([95% CI 0•11–0•38]; p<0•0001) for protozoa, and AOR 0•13 ([95% CI 0•07–0•26]; p<0•0001) for helminths. When stratified by species, co-infection with Entamoeba spp., Hymenolopis nana, and Schistosoma mansoni implied a lower probability of developing severe COVID-19. There were 11 deaths (1•5%), and all were among patients without parasites (p=0•009). Conclusions: Parasite co-infection is associated with a reduced risk of severe COVID-19 in African patients. Parasite-driven immunomodulatory responses may mute hyper-inflammation associated with severe COVID-19.Keywords: COVID-19, SARS-COV-2, intestinal parasite, RT-PCR, co-infection
Procedia PDF Downloads 651051 Response of Broiler Chickens Fed Pelleted or Non-Pelleted Diets, Containing Graded Levels of Raw Full-Fat Soybean
Authors: G. Berhane, F. Kebede
Abstract:
A feeding trial was conducted to enhance the utilization of locally produced full-fat soybean by the broiler industry. The study had three phases such as starter (1-14d), grower (15–28d), and finisher (29–49d) phases. A completely randomized design (CRD) was used in the starter phase with three treatments (commercial soybean meal (SBM) was replaced by raw full-fat soybean (RFSB) at 0, 10, or 20%), and each was replicated eight times. A total of 408 unsexed one-day-old Cobb-500 broiler chicks were randomly allocated to replicates. A 2 x 3 factorial arrangement was used in both second (grower) and third (finisher) phase trials, which had six experimental diets. These six treatments were formed by dividing the original three diets (containing 0, 10, or 20% of RFSB into two and then by pelleting anyone from each respective group and leaving the other as mash. Every treatment had four replications and 17 birds in each. Chemical compositions of feed ingredients were analyzed, and data on the initial body weight of chicks, feed offered, feed leftover, body weight (BW) of chickens, and mortality were collected. At the end of the experiment, two birds (one male and one female) per replicate were randomly selected and humanly slaughtered. Weights of dressed, eviscerated, cut parts of the carcass and visceral organs were weighed and recorded. Results indicated that feed intake (FI), body weight gain (BWG), BW, and feed conversion ratio (FCR) of broilers were not significantly affected (P=0.05) by supplementation of a leveled RFSB on diets at starter, grower, and finisher phases. The FI at the finisher stage was also significantly (P=0.05) influenced by the feed forms. However, weights of dressed, eviscerated, cut parts of the carcass and visceral organs were not significantly (P=0.05) affected by both RFSB supplementation, up to 20%, and feed forms. It is concluded that commercial SBM can be replaced by locally produced RFSB up to 20% without pelleting the diets.Keywords: broilers, carcass characteristics, raw full-fat soybean, weight gain
Procedia PDF Downloads 1511050 Plant Water Relations and Forage Quality in Leucaena leucocephala (Lam.) de Wit and Acacia saligna (Labill.) as Affected by Salinity Stress
Authors: Maher J. Tadros
Abstract:
This research was conducted to study the effect of different salinity concentrations on the plant water relation and forage quality on two multipurpose forest trees species seedlings Leucaena leucocephala (Lam.) de wit and Acacia saligna (Labill.). Five different salinity concentrations mixture between sodium chloride and calcium chloride (v/v, 1:1) were applied. The control (Distilled Water), 2000, 4000, 6000, and 8000 ppm were used to water the seedlings for 3 months. The research results presented showed a marked variation among the two species in response to salinity. The Leucaena was able to withstand the highest level of salinity compared to Acacia all over the studied parameters except in the relative water content. Although all the morphological characteristics studied for the two species showed a marked decrease under the different salinity concentrations, except the shoot/root ratio that showed a trend of increase. The water stress measure the leaf water potential was more negative with as the relative water content increase under that saline conditions compared to the control. The forage quality represented by the crude protein and nitrogen content were low at 6000 ppm compared to the 8000 ppm in L. Leucocephala that increased compared that level in A. saligna. Also the results showed that growing both Leucaena and Acacia provide a good source of forage when that grow under saline condition which will be of great benefits to the agricultural sector especially in the arid and semiarid areas were these species can provide forage with high quality forage all year around when grown under irrigation with saline. This research recommended such species to be utilized and grown for forages under saline conditions.Keywords: plant water relations, growth performance, salinity stress, protein content, forage quality, multipurpose trees
Procedia PDF Downloads 3961049 Screening of Factors Affecting the Enzymatic Hydrolysis of Empty Fruit Bunches in Aqueous Ionic Liquid and Locally Produced Cellulase System
Authors: Md. Z. Alam, Amal A. Elgharbawy, Muhammad Moniruzzaman, Nassereldeen A. Kabbashi, Parveen Jamal
Abstract:
The enzymatic hydrolysis of lignocellulosic biomass is one of the obstacles in the process of sugar production, due to the presence of lignin that protects the cellulose molecules against cellulases. Although the pretreatment of lignocellulose in ionic liquid (IL) system has been receiving a lot of interest; however, it requires IL removal with an anti-solvent in order to proceed with the enzymatic hydrolysis. At this point, introducing a compatible cellulase enzyme seems more efficient in this process. A cellulase enzyme that was produced by Trichoderma reesei on palm kernel cake (PKC) exhibited a promising stability in several ILs. The enzyme called PKC-Cel was tested for its optimum pH and temperature as well as its molecular weight. One among evaluated ILs, 1,3-diethylimidazolium dimethyl phosphate [DEMIM] DMP was applied in this study. Evaluation of six factors was executed in Stat-Ease Design Expert V.9, definitive screening design, which are IL/ buffer ratio, temperature, hydrolysis retention time, biomass loading, cellulase loading and empty fruit bunches (EFB) particle size. According to the obtained data, IL-enzyme system shows the highest sugar concentration at 70 °C, 27 hours, 10% IL-buffer, 35% biomass loading, 60 Units/g cellulase and 200 μm particle size. As concluded from the obtained data, not only the PKC-Cel was stable in the presence of the IL, also it was actually stable at a higher temperature than its optimum one. The reducing sugar obtained was 53.468±4.58 g/L which was equivalent to 0.3055 g reducing sugar/g EFB. This approach opens an insight for more studies in order to understand the actual effect of ILs on cellulases and their interactions in the aqueous system. It could also benefit in an efficient production of bioethanol from lignocellulosic biomass.Keywords: cellulase, hydrolysis, lignocellulose, pretreatment
Procedia PDF Downloads 3681048 Fabrication of Coatable Polarizer by Guest-Host System for Flexible Display Applications
Authors: Rui He, Seung-Eun Baik, Min-Jae Lee, Myong-Hoon Lee
Abstract:
The polarizer is one of the most essential optical elements in LCDs. Currently, the most widely used polarizers for LCD is the derivatives of the H-sheet polarizer. There is a need for coatable polarizers which are much thinner and more stable than H-sheet polarizers. One possible approach to obtain thin, stable, and coatable polarizers is based on the use of highly ordered guest-host system. In our research, we aimed to fabricate coatable polarizer based on highly ordered liquid crystalline monomer and dichroic dye ‘guest-host’ system, in which the anisotropic absorption of light could be achieved by aligning a dichroic dye (guest) in the cooperative motion of the ordered liquid crystal (host) molecules. Firstly, we designed and synthesized a new reactive liquid crystalline monomer containing polymerizable acrylate groups as the ‘host’ material. The structure was confirmed by 1H-NMR and IR spectroscopy. The liquid crystalline behavior was studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was confirmed that the monomers possess highly ordered smectic phase at relatively low temperature. Then, the photocurable ‘guest-host’ system was prepared by mixing the liquid crystalline monomer, dichroic dye and photoinitiator. Coatable polarizers were fabricated by spin-coating above mixture on a substrate with alignment layer. The in-situ photopolymerization was carried out at room temperature by irradiating UV light, resulting in the formation of crosslinked structure that stabilized the aligned dichroic dye molecules. Finally, the dichroic ratio (DR), order parameter (S) and polarization efficiency (PE) were determined by polarized UV/Vis spectroscopy. We prepared the coatable polarizers by using different type of dichroic dyes to meet the requirement of display application. The results reveal that the coatable polarizers at a thickness of 8μm exhibited DR=12~17 and relatively high PE (>96%) with the highest PE=99.3%, which possess potential for the LCD or flexible display applications.Keywords: coatable polarizer, display, guest-host, liquid crystal
Procedia PDF Downloads 2541047 Radiofrequency Ablation: A Technique in the Management of Low Anal Fistula
Authors: R. Suresh, C. B. Singh, A. K. Sarda
Abstract:
Background: Over the decades, several surgical techniques have been developed to treat anal fistulas with variable success rates and complications. Large amount of work has been done in radiofrequency excision of the fistula for several years but no work has been done for ablating the tract. Therefore one can consider for obliteration ofanal fistula by Radiofrequency ablation (RFA). Material and Methods: A randomized controlled clinical trial was conducted at Lok Nayak Hospital, where a total of 40 patients were enrolled in the study and they were randomly assigned to Group I (fistulectomy)(n=20) and Group II (RFA) (n=20). Aim of the study was to compare the efficacy of RFA of fistula versus fistulectomy in the treatment of a low anal fistula and to evaluate RFA as an effective alternative to fistulectomy with respect to time taken for wound healing as primary outcome and post-operative pain, time taken to return to work as secondary outcomes. Patients with simple low anal fistulas, single internal and external opening, not more than two secondary tracts were included. Patients with high complex fistula, fistulas communicating with cavity, fistula due to condition like tuberculosis, Crohn's, malignancy were excluded from the study. Results: Both groups were comparable with respect to age, sex ratio, type of fistula. Themean healing time was significantly shorter in group II (41.02 days) than in group I(62.68 days).The mean operative time was significantly shorter in groupII (21.40 min) than in group I(28.50 min). The mean time taken to return to work was significantly shorter in group II(8.30 days)than in group I(12.01 days).There was no significant difference in the post operative hospital stay, mean postoperative pain score, wound infection and recurrence between the two groups. Conclusion: The patients who underwent RFA of fistula had shorter wound healing time, operative time and time taken to return to work when compared to those who underwent fistulectomy and therefore RFA shows outcome comparable to fistulectomy in the treatment of low anal fistula.Keywords: fistulectomy, low anal fistula, radio frequency ablation, wound healing
Procedia PDF Downloads 3471046 Hyponatremia in Community-Acquired Pneumonia
Authors: Emna Ketata, Wafa Farhat
Abstract:
Introduction: Hyponatremia is defined by a blood sodium level of ≤ 136 mmol/L; it is associated with a high risk of morbidity and mortality in the emergency room. This was explained by transit disorders, including diarrhea and inappropriate antidiuretic hormone secretion (Syndrome of inappropriate antidiuretic hormone secretion). Pneumonia can cause dyspnea, stress-causing SIADH and digestive symptoms (diarrhea and vomiting). Aim: The purpose of this study was to determine the link between pneumonia and hyponatremia as a predictor of patient’s prognosis and intra-hospital mortality. Methodology: This is a prospective observational study over a period of 3 years in the emergency department. Inclusion :patients (age > 14 years), with clinical signs in favor of pneumonia. Natremia was measured. Natremia was classified as mild to moderate with a blood sodium level between 121 and 135 mmol/L and as severe with a blood sodium level ≤ 120 mmol/L. Results: This study showed an average serum sodium value of 135 mmol/L (range 114–159 mmol/L) in these patients. Hyponatremia was observed in 123 patients (43.6%), 115 patients (97,8%) had mild to moderate hyponatremia and 2,8% had severe hyponatremia. The mean age was 65±17 years with a sex ratio of 1.05. The main reason for consultation in patients with hyponatremia was cough in 58 patients (47.2%), and digestive symptoms were present in 25 patients (20.3. An altered state of consciousness was observed in 11 patients (3%). Patients with hyponatremia had greater heart rate (p=0.02),white blood cell count (p=0.009) , plasmatic lactate (p=0.002) and higher rate of pneumonia recurrence (p=0.001) .In addition, 80% of them have a positive CURB65 score (>=2). hyponatremia had higher rates of use of oxygen therapy compared to patients with normo-natremia (54% vs. 45%). The analytical study showed that hyponatremia is significantly associated with intra-hospital mortality with( p=0.01), severe hyponatremia p=0.04. Conclusion: Hyponatremia is a predictor of mortality and worse prognosis. Recognition of the pathophysiological mechanisms of hyponatremia in pneumonia will probably allow better management of it.Keywords: oxygenotherapy, mortality, recurrence, positif curb65
Procedia PDF Downloads 941045 Development and Modeling of the Process of Narrow-seam Laser Welding of Ni-Superalloy in a Hard-to-Reach Place
Authors: Vladimir Isakov, Evgeniy Rykov, Lubov Magerramova, Nikolay Emmaussky
Abstract:
For the manufacture of critical hollow products, a laser narrow-seam welding scheme based on the supply of a laser beam into the inner cavity has been developed. The report presents the results of comprehensive studies aimed at creating a sealed weld that repeats the geometric shape of the inner cavity using a rotary mirror. Laser welding of hard-to-reach places requires preliminary modeling of the process to identify defect-free modes performed at the highest possible welding speed. Optimization of the technological modes of the welded joint with a ratio of the seam width to its depth equal to 1/5 of the thickness of the Ni superalloy 6.0 mm was performed using the Verhulst limited growth model in a discrete representation. This mathematical model in the form of a recurrence relation made it possible to numerically investigate the entire variety of laser melting modes: chaotic; self-oscillating; stationary and attenuated. The control parameters and the parameter of the order to which other variables of the technological system of laser welding are subordinated are established. In it, the coefficient of relative heat capacity of the melt bath was used as a control parameter, characterizing the competition between the heat input by the laser and the heat sink into the surrounding metal. The parameter of the order of the narrow–seam laser welding process, in this interpretation, is a dimensionless value of the penetration depth, which is an argument of the function of the desired logistic equation. Experimental studies of narrow-seam welding were performed using a copper, water-cooled mirror by radiation from a powerful fiber laser. The obtained results were used to validate the evolutionary mathematical model of the laser welding process.Keywords: laser welding, internal cavity, limited growth model, ni-superalloy
Procedia PDF Downloads 151044 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection
Authors: Hamidullah Binol, Abdullah Bal
Abstract:
Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.Keywords: food (ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods
Procedia PDF Downloads 4331043 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia
Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.
Abstract:
Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy
Procedia PDF Downloads 1381042 Recovery of Selenium from Scrubber Sludge in Copper Process
Authors: Lakshmikanth Reddy, Bhavin Desai, Chandrakala Kari, Sanjay Sarkar, Pradeep Binu
Abstract:
The sulphur dioxide gases generated as a by-product of smelting and converting operations of copper concentrate contain selenium apart from zinc, lead, copper, cadmium, bismuth, antimony, and arsenic. The gaseous stream is treated in waste heat boiler, electrostatic precipitator and scrubbers to remove coarse particulate matter in order to produce commercial grade sulfuric acid. The gas cleaning section of the acid plant uses water to scrub the smelting gases. After scrubbing, the sludge settled at the bottom of the scrubber, was analyzed in present investigation. It was found to contain 30 to 40 wt% copper and selenium up to 40 wt% selenium. The sludge collected during blow-down is directly recycled to the smelter for copper recovery. However, the selenium is expected to again vaporize due to high oxidation potential during smelting and converting, causing accumulation of selenium in sludge. In present investigation, a roasting process has been developed to recover the selenium before the copper recovery from the sludge at smelter. Selenium is associated with copper in sludge as copper selenide, as determined by X-ray diffraction and electron microscopy. The thermodynamic and thermos-gravimetry study revealed that the copper selenide phase present in the sludge was amenable to oxidation at 600°C forming oxides of copper and selenium (Cu-Se-O). However, the dissociation of selenium from the copper oxide was made possible by sulfatation using sulfur dioxide between 450 to 600°C, resulting into the formation of CuSO₄ (s) and SeO₂ (g). Lab scale trials were carried out in vertical tubular furnace to determine the optimum roasting conditions with respect to roasting time, temperature and molar ratio of O₂:SO₂. Using these optimum conditions, selenium up to 90 wt% in the form of SeO₂ vapors could be recovered from the sludge in a large-scale commercial roaster. Roasted sludge free from the selenium and containing oxides and sulfates of copper could now be recycled in the smelter for copper recovery.Keywords: copper, selenium, copper selenide, sludge, roasting, SeO₂
Procedia PDF Downloads 2081041 The Effect of Restaurant Residuals on Performance of Japanese Quail
Authors: A. A. Saki, Y. Karimi, H. J. Najafabadi, P. Zamani, Z. Mostafaie
Abstract:
The restaurant residuals reasons such as competition between human and animal consumption of cereals, increasing environmental pollution and the high cost of production of livestock products is important. Therefore, in this restaurant residuals have a high nutritional value (protein and high energy) that it is possible can replace some of the poultry diets are especially Japanese quail. Today, the challenges of processing and consumption of these lesions occurring in modern industry would be confronting. Increasing costs, pressures, and problems associated with waste excretion, the need for re-evaluation and utilization of waste to livestock and poultry feed fortifies. This study aimed to investigate the effects of different levels of restaurant residuals on performance of 300 layer Japanese quails. This experiment included 5 treatments, 4 replicates, and 15 quails in each from 10 to 18 weeks age in a completely randomized design (CRD). The treatments consist of basal diet including corn and soybean meal (without residual restaurants), and treatments 2, 3, 4 and 5, includes a basal diet containing 5, 10, 15 and 20% of restaurant residuals, respectively. There were no significant effect of restaurant residuals levels on body weight (BW), feed conversion ratio (FCR), percentage of egg production (EP), egg mass (EM) between treatments (P > 0/05). However, feed intake (FI) of 5% restaurant residual was significantly higher than 20% treatment (P < 0/05). Egg weight (EW) was also higher by receiving 20% restaurant residuals compared with 10% in this respect (P < 0/05). Yolk weight (YW) of treatments containing 10 and 20% of the residual restaurant were significantly higher than control (P < 0/05). Eggs white weight (EWW) of 20 and 5% restaurants residual treatments were significantly increased compared by 10% (P < 0/05). Furthermore, EW, egg weight to shell surface area and egg surface area in 20% treatment were significantly higher than control and 10% treatment (P < 0/05). The overall results of this study have shown that restaurant residuals for laying quail diets in levels of 10 and 15 percent could be replaced with a part of the quail ration without any adverse effect.Keywords: by-product, laying quail, performance, restaurant residuals
Procedia PDF Downloads 1671040 Performance Analysis of a Planar Membrane Humidifier for PEM Fuel Cell
Authors: Yu-Hsuan Chang, Jian-Hao Su, Chen-Yu Chen, Wei-Mon Yan
Abstract:
In this work, the experimental measurement was applied to examine the membrane type and flow field design on the performance of a planar membrane humidifier. The performance indexes were used to evaluate the planar membrane humidifier. The performance indexes of the membrane humidifier include the dew point approach temperature (DPAT), water recovery ratio (WRR), water flux (J) and pressure loss (P). The experiments contain mainly three parts. In the first part, a single membrane humidifier was tested using different flow field under different dry-inlet temperatures. The measured results show that the dew point approach temperature decreases with increasing the depth of flow channel at the same width of flow channel. However, the WRR and J reduce with an increase in the dry air-inlet temperature. The pressure loss tests indicate that pressure loss decreases with increasing the hydraulic diameter of flow channel, resulting from an increase in Darcy friction. Owing to the comparison of humidifier performances and pressure losses, the flow channel of width W=1 and height H=1.5 was selected as the channel design of the multi-membrane humidifier in the second part of experiment. In the second part, the multi-membrane humidifier was used to evaluate the humidification performance under different relative humidity and flow rates. The measurement results indicate that the humidifier at both lower temperature and relative humidity of inlet dry air have higher DPAT but lower J and WRR. In addition, the counter flow approach has better mass and heat transfer performance than the parallel flow approach. Moreover, the effects of dry air temperature, relative humidity and humidification approach are not significant to the pressure loss in the planar membrane humidifier. For the third part, different membranes were tested in this work in order to find out which kind membrane is appropriate for humidifier.Keywords: water management, planar membrane humidifier, heat and mass transfer, pressure loss, PEM fuel cell
Procedia PDF Downloads 2091039 Time to Cure from Obstetric Fistula and Its Associated Factors among Women Admitted to Addis Ababa Hamlin Fistula Hospital, Addis Ababa Ethiopia: A Survival Analysis
Authors: Chernet Mulugeta, Girma Seyoum, Yeshineh Demrew, Kehabtimer Shiferaw
Abstract:
Background: Obstetric fistula (OF) is a serious medical condition that includes an abnormal opening between the vagina and bladder (vesico-vaginal fistula) or the vagina and rectum (recto-vaginal fistula). It is usually caused by prolonged obstructed labour. Despite its serious health and psychosocial consequences, there is a paucity of evidence regarding the time it takes to heal from OF. Objective: The aim of this study was to assess the time to cure from obstetric fistula and its predictors among women admitted to Addis Ababa Hamlin Fistula Hospital, Addis Ababa, Ethiopia. Methodology: An institution-based retrospective cohort study was conducted from January 2015 to December 2020 among a randomly selected 434 women with OF in Addis Ababa Hamlin Fistula Hospital. Data was collected using a structured checklist adapted from a similar study. The open data kit (ODK) collected data was exported and analyzed by using STATA (14.2). Kaplan Meir was used to compare the recovery time from OF. To identify the predictors of OF, a Cox regression model was fitted, and an adjusted hazard ratio with a 95% confidence interval was used to estimate the strength of the associations. Results: The average time to recover from obstetric fistula was 3.95 (95% CI: 3.0-4.6) weeks. About ¾ of the women [72.8% (95% CI - 0.65-1.2)] were physically cured of obstetric fistula. Having secondary education and above [AHR=3.52; 95% CI (1.98, 6.25)] compared to no formal education, having a live birth [AHR=1.64; 95% CI (1.22, 2.21)], having an intact bladder [AHR=2.47; 95% CI (1.1, 5.54)] compared to totally destructed, and having a grade 1 fistula [AHR=1.98; 95% CI (1.19, 3.31)] compared to grade 3 were the significant predictors of shorter time to cure from an obstetric fistula. Conclusion and recommendation: Overall, the proportion of women with OF who were not being cured was unacceptably high. The time it takes for them to recover from the fistula was also extended. It connotes us to work on the identified predictors to improve the time to recovery from OF.Keywords: time to recovery, obstetric fistula, predictors, Ethiopia
Procedia PDF Downloads 951038 Relative Importance of Contact Constructs to Acute Respiratory Illness in General Population in Hong Kong
Authors: Kin On Kwok, Vivian Wei, Benjamin Cowling, Steven Riley, Jonathan Read
Abstract:
Background: The role of social contact behavior measured in different contact constructs in the transmission of respiratory pathogens with acute respiratory illness (ARI) remains unclear. We, therefore, aim to depict the individual pattern of ARI in the community and investigate the association between different contact dimensions and ARI in Hong Kong. Methods: Between June 2013 and September 2013, 620 subjects participated in the last two waves of recruitment of the population based longitudinal phone social contact survey. Some of the subjects in this study are from the same household. They are also provided with the symptom diaries to self-report any acute respiratory illness related symptoms between the two days of phone recruitment. Data from 491 individuals who were not infected on the day of phone recruitment and returned the symptom diaries after the last phone recruitment were used for analysis. Results: After adjusting different follow-up periods among individuals, the overall incidence rate of ARI was 1.77 per 100 person-weeks. Over 75% ARI episodes involve running nose, cough, sore throat, which are followed by headache (55%), malagia (35%) and fever (18%). Using a generalized estimating equation framework accounting for the cluster effect of subjects living in the same household, we showed that both daily number of locations visited with contacts and the number of contacts, explained the ARI incidence rate better than only one single contact construct. Conclusion: Our result suggests that it is the intertwining property of contact quantity (number of contacts) and contact intensity (ratio of subject-to-contact) that governs the infection risk by a collective set of respiratory pathogens. Our results provide empirical evidence that multiple contact constructs should be incorporated in the mathematical transmission models to feature a more realistic dynamics of respiratory disease.Keywords: acute respiratory illness, longitudinal study, social contact, symptom diaries
Procedia PDF Downloads 2621037 Cold Formed Steel Sections: Analysis, Design and Applications
Authors: A. Saha Chaudhuri, D. Sarkar
Abstract:
In steel construction, there are two families of structural members. One is hot rolled steel and another is cold formed steel. Cold formed steel section includes steel sheet, strip, plate or flat bar. Cold formed steel section is manufactured in roll forming machine by press brake or bending operation. Cold formed steel (CFS), also known as Light Gauge Steel (LGS). As cold formed steel is a sustainable material, it is widely used in green building. Cold formed steel can be recycled and reused with no degradation in structural properties. Cold formed steel structures can earn credits for green building ratings such as LEED and similar programs. Cold formed steel construction satisfies international demand for better, more efficient and affordable buildings. Cold formed steel sections are used in building, car body, railway coach, various types of equipment, storage rack, grain bin, highway product, transmission tower, transmission pole, drainage facility, bridge construction etc. Various shapes of cold formed steel sections are available, such as C section, Z section, I section, T section, angle section, hat section, box section, square hollow section (SHS), rectangular hollow section (RHS), circular hollow section (CHS) etc. In building construction cold formed steel is used as eave strut, purlin, girt, stud, header, floor joist, brace, diaphragm and covering for roof, wall and floor. Cold formed steel has high strength to weight ratio and high stiffness. Cold formed steel is non shrinking and non creeping at ambient temperature, it is termite proof and rot proof. CFS is durable, dimensionally stable and non combustible material. CFS is economical in transportation and handling. At present days cold formed steel becomes a competitive building material. In this paper all these applications related present research work are described and how the CFS can be used as blast resistant structural system that is examined.Keywords: cold form steel sections, applications, present research review, blast resistant design
Procedia PDF Downloads 1521036 A Pilot Study of Influences of Scan Speed on Image Quality for Digital Tomosynthesis
Authors: Li-Ting Huang, Yu-Hsiang Shen, Cing-Ciao Ke, Sheng-Pin Tseng, Fan-Pin Tseng, Yu-Ching Ni, Chia-Yu Lin
Abstract:
Chest radiography is the most common technique for the diagnosis and follow-up of pulmonary diseases. However, the lesions superimposed with normal structures are difficult to be detected in chest radiography. Chest tomosynthesis is a relatively new technique to obtain 3D section images from a set of low-dose projections acquired over a limited angular range. However, there are some limitations with chest tomosynthesis. Patients undergoing tomosynthesis have to be able to hold their breath firmly for 10 seconds. A digital tomosynthesis system with advanced reconstruction algorithm and high-stability motion mechanism was developed by our research group. The potential for the system to perform a bidirectional chest scan within 10 seconds is expected. The purpose of this study is to realize the influences of the scan speed on the image quality for our digital tomosynthesis system. The major factors that lead image blurring are the motion of the X-ray source and the patient. For the fore one, an experiment of imaging a chest phantom with three different scan speeds, which are 6 cm/s, 8 cm/s, and 15 cm/s, was proceeded to understand the scan speed influences on the image quality. For the rear factor, a normal SD (Sprague-Dawley) rat was imaged with it alive and sacrificed to assess the impact on the image quality due to breath motion. In both experiments, the profile of the ROIs (region of interest) and the CNRs (contrast-to-noise ratio) of the ROIs to the normal tissue of the reconstructed images was examined to realize the degradations of the qualities of the images. The preliminary results show that no obvious degradation of the image quality was observed with increasing scan speed, possibly due to the advanced designs for the hardware and software of the system. It implies that higher speed (15 cm/s) than that of the commercialized tomosynthesis system (12 cm/s) for the proposed system is achieved, and therefore a complete chest scan within 10 seconds is expected.Keywords: chest radiography, digital tomosynthesis, image quality, scan speed
Procedia PDF Downloads 3341035 Microwave Assisted Rapid Synthesis of Nano-Binder from Renewable Resource and Their Application in Textile Printing
Authors: K. Haggag, N. S. Elshemy
Abstract:
Due to limited fossil resource and an increased need for environmentally friendly, sustainable technologies, the importance of using renewable feed stocks in textile industry area will increase in the decades to come. This research highlights some of the perspectives in this area. Alkyd resins for high characterization and reactive properties, completely based on commercially available renewable resources (sunflower and/or soybean oil) were prepared and characterized. In this work, we present results on the synthesis of various alkyd resins according to the alcoholysis – polyesterification process under different preparation conditions using a microwave synthesis as energy source to determine suitable reaction conditions. Effects of polymerization parameters, such as catalyst ratio, reaction temperature and microwave power level have been studied. The prepared binder was characterized via FT-IR, scanning electron microscope (SEM) and transmission electron microscope (TEM), in addition to acid value (AV), iodine value (IV), water absorbance, weight loss, and glass transition temperature. The prepared binder showed high performance physico-mechanical properties. TEM analysis showed that the polymer latex nanoparticle within range of 20–200 nm. The study involved the application of the prepared alkyd resins as binder for pigment printing process onto cotton fabric by using a flat screen technique and the prints were dried and thermal cured. The optimum curing conditions were determined, color strength and fastness properties of pigment printed areas to light, washing, perspiration and crocking were evaluated. The rheological properties and apparent viscosity of prepared binders were measured in addition roughness of the prints was also determined.Keywords: nano-binder, microwave heating, renewable resource, alkyd resins, sunflower oil, soybean oil
Procedia PDF Downloads 3761034 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading
Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera
Abstract:
For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.Keywords: blast phenomenon, experimental methods, material models, numerical methods
Procedia PDF Downloads 1581033 Consumer Health Risk Assessment from Some Heavy Metal Bioaccumulation in Common Carp (Cyprinus Carpio) from Lake Koka, Ethiopia
Authors: Mathewos Temesgen, Lemi Geleta
Abstract:
Lake Koka is one of the Ethiopian Central Rift Valleys lakes, where the absorbance of domestic, agricultural, and industrial waste from the nearby industrial and agro-industrial activities is very common. The aim of this research was to assess the heavy metal bioaccumulation in edible parts of common carp (Cyprinus carpio) in Lake Koka and the health risks associated with the dietary intake of the fish. Three sampling sites were selected randomly for primary data collection. Physicochemical parameters (pH, Total Dissolved Solids, Dissolved Oxygen and Electrical Conductivity) were measured in-situ. Four heavy metals (Cd, Cr, Pb, and Zn) in water and bio-accumulation in the edible parts of the fish were analyzed with flame atomic absorption spectrometry. The mean values of TDS, EC, DO and pH of the lake water were 458.1 mg/L, 905.7 µ s/cm, 7.36 mg/L, and 7.9, respectively. The mean concentrations of Zn, Cr, and Cd in the edible part of fish were also 0.18 mg/kg, ND-0.24 mg/kg, and ND-0.03 mg/kg, respectively. Pb was, however, not identified. The amount of Cr in the examined fish muscle was above the level set by FAO, and the accumulation of the metals showed marked differences between sampling sites (p<0.05). The concentrations of Cd, Pb and were below the maximum permissible limit. The results also indicated that Cr has a high transfer factor value and Zn has the lowest. The carcinogenic hazard ratio values were below the threshold value (<1) for the edible parts of fish. The estimated weekly intake of heavy metals from fish muscles ranked as Cr>Zn>Cd, but the values were lower than the Reference Dose limit for metals. The carcinogenic risk values indicated a low health risk due to the intake of individual metals from fish. Furthermore, the hazard index of the edible part of fish was less than unity. Generally, the water quality is not a risk for the survival and reproduction of fish, and the heavy metal contents in the edible parts of fish exhibited low carcinogenic risk through the food chain.Keywords: bio-accumulation, cyprinus carpio, hazard index, heavy metals, Lake Koka
Procedia PDF Downloads 1151032 Potentialities of Onopordum Tauricum (Willd.) as Milk Clotting Agent
Authors: Massimo Mozzon, Nadia Raffaelli
Abstract:
Proteases from herbs, woody plants, and trees are exploited for cheesemaking in several countries, especially in South Europe and West Africa. Particularly, “thistles” belonging to several genera within the Asteraceae family (Cynara, Silybum, Centaurea, Carlina, Cirsium, Onopordum) are traditionally used in Mediterranean countries for clotting raw ewe’s and goat’s milk. For the first time, the clotting performance of an aqueous extract from flowers of Onopordum tauricum Willd. (Taurian thistle, bull cottonthistle) were tested in milk of different origin (cow, goat, ewe). The vegetable material was collected in the Central Apennines range, between the Marche and Umbria regions. A response surface methodology (RSM) approach was used to study the effect of the curdling variables (temperature, pH, amount of enzymatic extract) on the technological performance of the thistle extract. A three-step procedure for the purification of the enzyme (ammonium sulphate precipitation, gel filtration and ion-exchange chromatography) was also carried out. The milk clotting activity (MCA) of O. tauricum crude extracts was strongly affected by temperature, pH and by the interaction between these two variables, according to a second-order response surface model, while the milk/coagulant ratio did not affect in a significant way the clotting properties. Experimental data showed that the addition of 10 mM CaCl2 reduced the clotting time of ewe’s, goat’s, and cow’s milk by about 3-fold, 8-fold, and 14-fold, respectively, at 35°C and pH 6.7-6.8. After purification, an enzymatic preparation very close to homogeneity was obtained, which showed a major band at about 30 kDa when analyzed by SDS-PAGE. The identity of the enzyme as an aspartic protease was confirmed by inhibition studies. Cheese-making trials were carried out to check the scale-up (1 to 5 L of milk; 37 °C; 10 mM CaCl2 fortification) and set the recipe: 35-45% of curd yields were recorded, according to curd cutting and pressing.Keywords: milk clotting activity, Onopordum tauricum, plant proteases, vegetable rennet
Procedia PDF Downloads 1621031 Prospective Cohort Study on Sequential Use of Catheter with Misoprostol vs Misoprostol Alone for Second Trimester Medical Abortion
Authors: Hanna Teklu Gebregziabher
Abstract:
Background: A variety of techniques for medical termination of second-trimester pregnancy can be used, but there is no consensus about which is the best. Even though most evidence suggests the combined use of intracervical Foley catheter and vaginal misoprostol is safe, effective, and acceptable method for termination of second-trimester pregnancy, which is comparable to mifepristone-misoprostol combination regimen with lower cost and no additional maternal risks. The use of mifepristone and misoprostol alone with no other procedure is still the most common procedure in different institutions for 2nd-trimester pregnancy. Methods: A cross-sectional comparative prospective study design is employed on women who were admitted for 2nd-trimester medical abortion and medical abortion failed or if there was no change in cervical status after 24 hours of 1st dose of misoprostol. The study was conducted at St. Paulose Hospital Millennium Medical College. A sample of 44 participants in each arm was necessary to give a two-tailed test, a type 1 error of 5%, 80% statistical power, and a 1:1 ratio among groups. Thus, a total of 94 cases, 47 from each arm, were recruited. Data was entered and cleaned by using Epi-info and analyzed using SPSS version 29.0 statistical software and was presented in descriptive and tabular forms. Different variables were cross-tabulated and compared for significant differences and statistical analysis using the chi-square test and independent t-test, to conclude. Result: There was a significant difference between the two groups on induction to expulsion time and number of doses used. The mean ± SD of induction to expulsion time for those used misoprostol alone was 48.09 ± 11.86 and those who used trans-cervical catheter sequentially with misoprostol were 36.7 ±6.772. Conclusion: The use of a trans-cervical Foley catheter in conjunction with misoprostol in a sequential manner is a more effective, safe, and easily accessible procedure. In addition, the cost of utilizing the catheter is less compared to the cost of misoprostol and is readily available. As a good substitute, we advised using Trans-cervical Catether even for medical abortions performed in the second trimester.Keywords: second trimester, medical abortion, catheter, misoprostol
Procedia PDF Downloads 521030 Calculating Asphaltenes Precipitation Onset Pressure by Using Cardanol as Precipitation Inhibitor: A Strategy to Increment the Oil Well Production
Authors: Camilo A. Guerrero-Martin, Erik Montes Paez, Marcia C. K. Oliveira, Jonathan Campos, Elizabete F. Lucas
Abstract:
Asphaltenes precipitation is considered as a formation damage problem, which can reduce the oil recovery factor. It fouls piping and surface installations, as well as cause serious flow assurance complications and decline oil well production. Therefore, researchers have shown an interest in chemical treatments to control this phenomenon. The aim of this paper is to assess the asphaltenes precipitation onset of crude oils in the presence of cardanol, by titrating the crude with n-heptane. Moreover, based on this results obtained at atmosphere pressure, the asphaltenes precipitation onset pressure were calculated to predict asphaltenes precipitation in the reservoir, by using differential liberation and refractive index data of the oils. The influence of cardanol concentrations in the asphaltenes stabilization of three Brazilian crude oils samples (with similar API densities) was studied. Therefore, four formulations of cardanol in toluene were prepared: 0, 3, 5, 10 and 15 m/m%. The formulations were added to the crude at 2:98 ratio. The petroleum samples were characterized by API density, elemental analysis and differential liberation test. The asphaltenes precipitation onset (APO) was determined by titrating with n-heptane and monitoring with near-infrared (NIR). UV-Vis spectroscopy experiments were also done to assess the precipitate asphaltenes content. The asphaltenes precipitation envelopes (APE) were also determined by numerical simulation (Multiflash). In addition, the adequate artificial lift systems (ALS) for the oils were selected. It was based on the downhole well profile and a screening methodology. Finally, the oil flowrates were modelling by NODAL analysis production system in the PIPESIM software. The results of this study show that the asphaltenes precipitation onset of the crude oils were 2.2, 2.3 and 6.0 mL of n-heptane/g of oil. The cardanol was an effective inhibitor of asphaltenes precipitation for the crude oils used in this study, since it displaces the precipitation pressure of the oil to lower values. This indicates that cardanol can increase the oil wells productivity.Keywords: asphaltenes, NODAL analysis production system, precipitation pressure onset, inhibitory molecule
Procedia PDF Downloads 1781029 Comparison between the Performances of Different Boring Bars in the Internal Turning of Long Overhangs
Authors: Wallyson Thomas, Zsombor Fulop, Attila Szilagyi
Abstract:
Impact dampers are mainly used in the metal-mechanical industry in operations that generate too much vibration in the machining system. Internal turning processes become unstable during the machining of deep holes, in which the tool holder is used with long overhangs (high length-to-diameter ratios). The devices coupled with active dampers, are expensive and require the use of advanced electronics. On the other hand, passive impact dampers (PID – Particle Impact Dampers) are cheaper alternatives that are easier to adapt to the machine’s fixation system, once that, in this last case, a cavity filled with particles is simply added to the structure of the tool holder. The cavity dimensions and the diameter of the spheres are pre-determined. Thus, when passive dampers are employed during the machining process, the vibration is transferred from the tip of the tool to the structure of the boring bar, where it is absorbed by the fixation system. This work proposes to compare the behaviors of a conventional solid boring bar and a boring bar with a passive impact damper in turning while using the highest possible L/D (length-to-diameter ratio) of the tool and an Easy Fix fixation system (also called: Split Bushing Holding System). It is also intended to optimize the impact absorption parameters, as the filling percentage of the cavity and the diameter of the spheres. The test specimens were made of hardened material and machined in a Computer Numerical Control (CNC) lathe. The laboratory tests showed that when the cavity of the boring bar is totally filled with minimally spaced spheres of the largest diameter, the gain in absorption allowed of obtaining, with an L/D equal to 6, the same surface roughness obtained when using the solid boring bar with an L/D equal to 3.4. The use of the passive particle impact damper resulted in, therefore, increased static stiffness and reduced deflexion of the tool.Keywords: active damper, fixation system, hardened material, passive damper
Procedia PDF Downloads 2251028 Understanding the Impact of Li- bis(trifluoromethanesulfonyl)imide Doping on Spiro-OMeTAD Properties and Perovskite Solar Cell Performance
Authors: Martin C. Eze, Gao Min
Abstract:
Lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) dopant is beneficial in improving the properties of 2,2′,7,7′-Tetrakis (N, N-di-p-methoxyphenylamino)-9,9′-spiro-bifluorene (Spiro-OMETAD) transport layer used in perovskite solar cells (PSCs). Properties such as electrical conductivity, band energy mismatch, and refractive index of Spiro-OMETAD layers are believed to play key roles in PSCs performance but only the dependence of electrical conductivity on Li-TFSI doping has been extensively studied. In this work, the effect of Li-TFSI doping level on highest occupied molecular orbital (HOMO) energy, electrical conductivity, and refractive index of Spiro-OMETAD film and PSC performance was demonstrated. The Spiro-OMETAD films were spin-coated at 4000 rpm for 30 seconds from solutions containing 73.4 mM of Spiro-OMeTAD, 23.6 mM of 4-tert-butylpyridine, 7.6 mM of tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine) cobalt(III) tri[bis(trifluoromethane) sulfonimide] (FK209) dopant and Li-TFSI dopant varying from 37 to 62 mM in 1 ml of chlorobenzene. From ultraviolet photoelectron spectroscopy (UPS), ellipsometry, and 4-probe studies, the results show that films deposition from Spiro-OMETAD solution doped with 40 mM of Li-TFSI shows the highest electrical conductivity of 6.35×10-6 S/cm, the refractive index of 1.87 at 632.32 nm, HOMO energy of -5.22 eV and the lowest HOMO energy mismatch of 0.21 eV compared to HOMO energy of perovskite layer. The PSCs fabricated show the best power conversion efficiency, open-circuit voltage, and fill factor of 17.10 %, 1.1 V, and 70.12%, respectively, for devices based on Spiro-OMETAD solution doped with 40 mM of Li-TFSI. This study demonstrates that the optimum Spiro-OMETAD/ Li-TFSI doping ratio of 1.84 is the optimum doping level for Spiro-OMETAD layer preparation.Keywords: electrical conductivity, homo energy mismatch, lithium bis(trifluoromethanesulfonyl)imide, power conversion efficiency, refractive index
Procedia PDF Downloads 1281027 A Crystallization Kinetic Model for Long Fiber-Based Composite with Thermoplastic Semicrystalline Polymer Matrix
Authors: Nicolas Bigot, M'hamed Boutaous, Nahiene Hamila, Shihe Xin
Abstract:
Composite materials with polymer matrices are widely used in most industrial areas, particularly in aeronautical and automotive ones. Thanks to the development of a high-performance thermoplastic semicrystalline polymer matrix, those materials exhibit more and more efficient properties. The polymer matrix in composite materials can manifest a specific crystalline structure characteristic of crystallization in a fibrous medium. In order to guarantee a good mechanical behavior of structures and to optimize their performances, it is necessary to define realistic mechanical constitutive laws of such materials considering their physical structure. The interaction between fibers and matrix is a key factor in the mechanical behavior of composite materials. Transcrystallization phenomena which develops in the matrix around the fibers constitute the interphase which greatly affects and governs the nature of the fiber-matrix interaction. Hence, it becomes fundamental to quantify its impact on the thermo-mechanical behavior of composites material in relationship with processing conditions. In this work, we propose a numerical model coupling the thermal and crystallization kinetics in long fiber-based composite materials, considering both the spherulitic and transcrystalline types of the induced structures. After validation of the model with comparison to results from the literature and noticing a good correlation, a parametric study has been led on the effects of the thermal kinetics, the fibers volume fractions, the deformation, and the pressure on the crystallization rate in the material, under processing conditions. The ratio of the transcrystallinity is highlighted and analyzed with regard to the thermal kinetics and gradients in the material. Experimental results on the process are foreseen and pave the way to establish a mechanical constitutive law describing, with the introduction of the role on the crystallization rates and types on the thermo-mechanical behavior of composites materials.Keywords: composite materials, crystallization, heat transfer, modeling, transcrystallization
Procedia PDF Downloads 1981026 Delivery of Ginseng Extract Containing Phytosome Loaded Microsphere System: A Preclinical Approach for Treatment of Neuropathic Pain in Rodent Model
Authors: Nitin Kumar
Abstract:
Purpose: The current research work focuses mainly on evolving a delivery system for ginseng extract (GE), which in turn will ameliorate the neuroprotective potential by means of enhancing the ginsenoside (Rb1) bio-availability (BA). For more noteworthy enhancement in oral bioavailability (OBA) along with pharmacological properties, the drug carriers’ performance can be strengthened by utilizing phytosomes-loaded microspheres (PM) delivery system. Methods: For preparing the disparate phytosome complexes (F1, F2, and F3), an aqueous extract of ginseng roots (GR) along with phospholipids were reacted in disparate ratio. Considering the outcomes, F3 formulation (spray-dried) was chosen for preparing the phytosomes powder (PP), PM, and extract microspheres (EM). PM was made by means of loading of F3 into Gum Arabic (GA) in addition to maltodextrin polymer mixture, whereas EM was prepared by means of the addition of extract directly into the same polymer mixture. For investigating the neuroprotective effect (NPE) in addition to their pharmacokinetic (PK) properties, PP, PM, and EM formulations were assessed. Results: F3 formulation gave enhanced entrapment efficiency (EE) (i.e., 50.61%) along with good homogeneity of spherical shaped particle size (PS) (42.58 ± 1.4 nm) with least polydispersity index (PDI) (i.e., 0.193 ± 0.01). The sustained release (up to 24 h) of ginsenoside Rb1 (GRb1) is revealed by the dissolution study of PM. A significantly (p < 0.05) greater anti-oxidant (AO) potential of PM can well be perceived as of the diminution in the lipid peroxidase level in addition to the rise in the glutathione superoxide dismutase (SOD) in addition to catalase levels. It also showed a greater neuroprotective potential exhibiting significant (p < 0.05) augmentation in the nociceptive threshold together with the diminution in damage to nerves. A noteworthy enhancement in the relative BA (157.94%) of GRb1 through the PM formulation can well be seen in the PK studies. Conclusion: It is exhibited that the PM system is an optimistic and feasible strategy to enhance the delivery of GE for the effectual treatment of neuropathic pain.Keywords: ginseng, neuropathic, phytosome, pain
Procedia PDF Downloads 1901025 Engineered Bio-Coal from Pressed Seed Cake for Removal of 2, 4, 6-Trichlorophenol with Parametric Optimization Using Box–Behnken Method
Authors: Harsha Nagar, Vineet Aniya, Alka Kumari, Satyavathi B.
Abstract:
In the present study, engineered bio-coal was produced from pressed seed cake, which otherwise is non-edible in origin. The production process involves a slow pyrolysis wherein, based on the optimization of process parameters; a substantial reduction in H/C and O/C of 77% was achieved with respect to the original ratio of 1.67 and 0.8, respectively. The bio-coal, so the product was found to have a higher heating value of 29899 kJ/kg with surface area 17 m²/g and pore volume of 0.002 cc/g. The functional characterization of bio-coal and its subsequent modification was carried out to enhance its active sites, which were further used as an adsorbent material for removal of 2,4,6-Trichlorophenol (2,4,6-TCP) herbicide from the aqueous stream. The point of zero charge for the bio-coal was found to be pH < 3 where its surface is positively charged and attracts anions resulting in the maximum 2, 4, 6-TCP adsorption at pH 2.0. The parametric optimization of the adsorption process was studied based on the Box-Behken design with the desirability approach. The results showed optimum values of adsorption efficiency of 74.04% and uptake capacity of 118.336 mg/g for an initial metal concentration of 250 mg/l and particle size of 0.12 mm at pH 2.0 and 1 g/L of bio-coal loading. Negative Gibbs free energy change values indicated the feasibility of 2,4,6-TCP adsorption on biochar. Decreasing the ΔG values with the rise in temperature indicated high favourability at low temperatures. The equilibrium modeling results showed that both isotherms (Langmuir and Freundlich) accurately predicted the equilibrium data, which may be attributed to the different affinity of the functional groups of bio-coal for 2,4,6-TCP removal. The possible mechanism for 2,4,6-TCP adsorption is found to be physisorption (pore diffusion, p*_p electron donor-acceptor interaction, H-bonding, and van der Waals dispersion forces) and chemisorption (phenolic and amine groups chemical bonding) based on the kinetics data modeling.Keywords: engineered biocoal, 2, 4, 6-trichlorophenol, box behnken design, biosorption
Procedia PDF Downloads 120