Search results for: software process engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20581

Search results for: software process engineering

16591 Process Development of pVAX1/lacZ Plasmid DNA Purification Using Design of Experiment

Authors: Asavasereerat K., Teacharsripaitoon T., Tungyingyong P., Charupongrat S., Noppiboon S. Hochareon L., Kitsuban P.

Abstract:

Third generation of vaccines is based on gene therapy where DNA is introduced into patients. The antigenic or therapeutic proteins encoded from transgenes DNA triggers an immune-response to counteract various diseases. Moreover, DNA vaccine offers the customization of its ability on protection and treatment with high stability. The production of DNA vaccines become of interest. According to USFDA guidance for industry, the recommended limits for impurities from host cell are lower than 1%, and the active conformation homogeneity supercoiled DNA, is more than 80%. Thus, the purification strategy using two-steps chromatography has been established and verified for its robustness. Herein, pVax1/lacZ, a pre-approved USFDA DNA vaccine backbone, was used and transformed into E. coli strain DH5α. Three purification process parameters including sample-loading flow rate, the salt concentration in washing and eluting buffer, were studied and the experiment was designed using response surface method with central composite face-centered (CCF) as a model. The designed range of selected parameters was 10% variation from the optimized set point as a safety factor. The purity in the percentage of supercoiled conformation obtained from each chromatography step, AIEX and HIC, were analyzed by HPLC. The response data were used to establish regression model and statistically analyzed followed by Monte Carlo simulation using SAS JMP. The results on the purity of the product obtained from AIEX and HIC are between 89.4 to 92.5% and 88.3 to 100.0%, respectively. Monte Carlo simulation showed that the pVAX1/lacZ purification process is robust with confidence intervals of 0.90 in range of 90.18-91.00% and 95.88-100.00%, for AIEX and HIC respectively.

Keywords: AIEX, DNA vaccine, HIC, puification, response surface method, robustness

Procedia PDF Downloads 194
16590 Optimal Capacitors Placement and Sizing Improvement Based on Voltage Reduction for Energy Efficiency

Authors: Zilaila Zakaria, Muhd Azri Abdul Razak, Muhammad Murtadha Othman, Mohd Ainor Yahya, Ismail Musirin, Mat Nasir Kari, Mohd Fazli Osman, Mohd Zaini Hassan, Baihaki Azraee

Abstract:

Energy efficiency can be realized by minimizing the power loss with a sufficient amount of energy used in an electrical distribution system. In this report, a detailed analysis of the energy efficiency of an electric distribution system was carried out with an implementation of the optimal capacitor placement and sizing (OCPS). The particle swarm optimization (PSO) will be used to determine optimal location and sizing for the capacitors whereas energy consumption and power losses minimization will improve the energy efficiency. In addition, a certain number of busbars or locations are identified in advance before the PSO is performed to solve OCPS. In this case study, three techniques are performed for the pre-selection of busbar or locations which are the power-loss-index (PLI). The particle swarm optimization (PSO) is designed to provide a new population with improved sizing and location of capacitors. The total cost of power losses, energy consumption and capacitor installation are the components considered in the objective and fitness functions of the proposed optimization technique. Voltage magnitude limit, total harmonic distortion (THD) limit, power factor limit and capacitor size limit are the parameters considered as the constraints for the proposed of optimization technique. In this research, the proposed methodologies implemented in the MATLAB® software will transfer the information, execute the three-phase unbalanced load flow solution and retrieve then collect the results or data from the three-phase unbalanced electrical distribution systems modeled in the SIMULINK® software. Effectiveness of the proposed methods used to improve the energy efficiency has been verified through several case studies and the results are obtained from the test systems of IEEE 13-bus unbalanced electrical distribution system and also the practical electrical distribution system model of Sultan Salahuddin Abdul Aziz Shah (SSAAS) government building in Shah Alam, Selangor.

Keywords: particle swarm optimization, pre-determine of capacitor locations, optimal capacitors placement and sizing, unbalanced electrical distribution system

Procedia PDF Downloads 420
16589 New Hybrid Process for Converting Small Structural Parts from Metal to CFRP

Authors: Yannick Willemin

Abstract:

Carbon fibre-reinforced plastic (CFRP) offers outstanding value. However, like all materials, CFRP also has its challenges. Many forming processes are largely manual and hard to automate, making it challenging to control repeatability and reproducibility (R&R); they generate significant scrap and are too slow for high-series production; fibre costs are relatively high and subject to supply and cost fluctuations; the supply chain is fragmented; many forms of CFRP are not recyclable, and many materials have yet to be fully characterized for accurate simulation; shelf life and outlife limitations add cost; continuous-fibre forms have design limitations; many materials are brittle; and small and/or thick parts are costly to produce and difficult to automate. A majority of small structural parts are metal due to high CFRP fabrication costs for the small-size class. The fact that CFRP manufacturing processes that produce the highest performance parts also tend to be the slowest and least automated is another reason CFRP parts are generally higher in cost than comparably performing metal parts, which are easier to produce. Fortunately, business is in the midst of a major manufacturing evolution—Industry 4.0— one technology seeing rapid growth is additive manufacturing/3D printing, thanks to new processes and materials, plus an ability to harness Industry 4.0 tools. No longer limited to just prototype parts, metal-additive technologies are used to produce tooling and mold components for high-volume manufacturing, and polymer-additive technologies can incorporate fibres to produce true composites and be used to produce end-use parts with high aesthetics, unmatched complexity, mass customization opportunities, and high mechanical performance. A new hybrid manufacturing process combines the best capabilities of additive—high complexity, low energy usage and waste, 100% traceability, faster to market—and post-consolidation—tight tolerances, high R&R, established materials, and supply chains—technologies. The platform was developed by Zürich-based 9T Labs AG and is called Additive Fusion Technology (AFT). It consists of a design software offering the possibility to determine optimal fibre layup, then exports files back to check predicted performance—plus two pieces of equipment: a 3d-printer—which lays up (near)-net-shape preforms using neat thermoplastic filaments and slit, roll-formed unidirectional carbon fibre-reinforced thermoplastic tapes—and a post-consolidation module—which consolidates then shapes preforms into final parts using a compact compression press fitted with a heating unit and matched metal molds. Matrices—currently including PEKK, PEEK, PA12, and PPS, although nearly any high-quality commercial thermoplastic tapes and filaments can be used—are matched between filaments and tapes to assure excellent bonding. Since thermoplastics are used exclusively, larger assemblies can be produced by bonding or welding together smaller components, and end-of-life parts can be recycled. By combining compression molding with 3D printing, higher part quality with very-low voids and excellent surface finish on A and B sides can be produced. Tight tolerances (min. section thickness=1.5mm, min. section height=0.6mm, min. fibre radius=1.5mm) with high R&R can be cost-competitively held in production volumes of 100 to 10,000 parts/year on a single set of machines.

Keywords: additive manufacturing, composites, thermoplastic, hybrid manufacturing

Procedia PDF Downloads 84
16588 Thermal Effect in Power Electrical for HEMTs Devices with InAlN/GaN

Authors: Zakarya Kourdi, Mohammed Khaouani, Benyounes Bouazza, Ahlam Guen-Bouazza, Amine Boursali

Abstract:

In this paper, we have evaluated the thermal effect for high electron mobility transistors (HEMTs) heterostructure InAlN/GaN with a gate length 30nm high-performance. It also shows the analysis and simulated these devices, and how can be used in different application. The simulator Tcad-Silvaco software has used for predictive results good for the DC, AC and RF characteristic, Devices offered max drain current 0.67A; transconductance is 720 mS/mm the unilateral power gain of 180 dB. A cutoff frequency of 385 GHz, and max frequency 810 GHz These results confirm the feasibility of using HEMTs with InAlN/GaN in high power amplifiers, as well as thermal places.

Keywords: HEMT, Thermal Effect, Silvaco, InAlN/GaN

Procedia PDF Downloads 454
16587 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach

Authors: M. Taheri Tehrani, H. Ajorloo

Abstract:

In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.

Keywords: principal component analysis, reinforcement learning, buffer allocation, multi- agent systems

Procedia PDF Downloads 498
16586 Dissolution of Zeolite as a Sorbent in Flue Gas Desulphurization Process Using a pH Stat Apparatus

Authors: Hilary Rutto, John Kabuba

Abstract:

Sulphur dioxide is a harmful gaseous product that needs to be minimized in the atmosphere. This research work investigates the use of zeolite as a possible additive that can improve the sulphur dioxide capture in wet flue gas desulphurisation dissolution process. This work determines the effect of temperature, solid to liquid ratio, acid concentration and stirring speed on the leaching of zeolite using a pH stat apparatus. The atomic absorption spectrometer was used to measure the calcium ions from the solution. It was found that the dissolution rate of zeolite decreased with increase in solid to liquid ratio and increases with increase in temperature, stirring speed and acid concentration. The activation energy for the dissolution rate of zeolite in hydrochloric acid was found to be 9.29kJ/mol. and therefore the product layer diffusion was the rate limiting step.

Keywords: calcium ion, pH stat apparatus, wet flue gas desulphurization, zeolite

Procedia PDF Downloads 271
16585 Folding of β-Structures via the Polarized Structure-Specific Backbone Charge (PSBC) Model

Authors: Yew Mun Yip, Dawei Zhang

Abstract:

Proteins are the biological machinery that executes specific vital functions in every cell of the human body by folding into their 3D structures. When a protein misfolds from its native structure, the machinery will malfunction and lead to misfolding diseases. Although in vitro experiments are able to conclude that the mutations of the amino acid sequence lead to incorrectly folded protein structures, these experiments are unable to decipher the folding process. Therefore, molecular dynamic (MD) simulations are employed to simulate the folding process so that our improved understanding of the folding process will enable us to contemplate better treatments for misfolding diseases. MD simulations make use of force fields to simulate the folding process of peptides. Secondary structures are formed via the hydrogen bonds formed between the backbone atoms (C, O, N, H). It is important that the hydrogen bond energy computed during the MD simulation is accurate in order to direct the folding process to the native structure. Since the atoms involved in a hydrogen bond possess very dissimilar electronegativities, the more electronegative atom will attract greater electron density from the less electronegative atom towards itself. This is known as the polarization effect. Since the polarization effect changes the electron density of the two atoms in close proximity, the atomic charges of the two atoms should also vary based on the strength of the polarization effect. However, the fixed atomic charge scheme in force fields does not account for the polarization effect. In this study, we introduce the polarized structure-specific backbone charge (PSBC) model. The PSBC model accounts for the polarization effect in MD simulation by updating the atomic charges of the backbone hydrogen bond atoms according to equations derived between the amount of charge transferred to the atom and the length of the hydrogen bond, which are calculated from quantum-mechanical calculations. Compared to other polarizable models, the PSBC model does not require quantum-mechanical calculations of the peptide simulated at every time-step of the simulation and maintains the dynamic update of atomic charges, thereby reducing the computational cost and time while accounting for the polarization effect dynamically at the same time. The PSBC model is applied to two different β-peptides, namely the Beta3s/GS peptide, a de novo designed three-stranded β-sheet whose structure is folded in vitro and studied by NMR, and the trpzip peptides, a double-stranded β-sheet where a correlation is found between the type of amino acids that constitute the β-turn and the β-propensity.

Keywords: hydrogen bond, polarization effect, protein folding, PSBC

Procedia PDF Downloads 252
16584 Review of the Model-Based Supply Chain Management Research in the Construction Industry

Authors: Aspasia Koutsokosta, Stefanos Katsavounis

Abstract:

This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of CSC modeling accommodates conceptual or process models which discuss general management frameworks and do not relate to acknowledged soft OR methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, mathematical formulation, structure, objectives, solution approach, software used and decision level. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop robust mathematical optimization models for the CSC. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without the consequential reform of generic concepts to match the unique characteristics of the construction industry.

Keywords: construction supply chain management, modeling, operations research, optimization, simulation

Procedia PDF Downloads 498
16583 Environmental Performance of Different Lab Scale Chromium Removal Processes

Authors: Chiao-Cheng Huang, Pei-Te Chiueh, Ya-Hsuan Liou

Abstract:

Chromium-contaminated wastewater from electroplating industrial activity has been a long-standing environmental issue, as it can degrade surface water quality and is harmful to soil ecosystems. The traditional method of treating chromium-contaminated wastewater has been to use chemical coagulation processes. However, this method consumes large amounts of chemicals such as sulfuric acid, sodium hydroxide, and sodium bicarbonate in order to remove chromium. However, a series of new methods for treating chromium-containing wastewater have been developed. This study aimed to compare the environmental impact of four different lab scale chromium removal processes: 1.) chemical coagulation process (the most common and traditional method), in which sodium metabisulfite was used as reductant, 2.) electrochemical process using two steel sheets as electrodes, 3.) reduction by iron-copper bimetallic powder, and 4.) photocatalysis process by TiO2. Each process was run in the lab, and was able to achieve 100% removal of chromium in solution. Then a Life Cycle Assessment (LCA) study was conducted based on the experimental data obtained from four different case studies to identify the environmentally preferable alternative to treat chromium wastewater. The model used for calculating the environmental impact was TRACi, and the system scope includes the production phase and use phase of chemicals and electricity consumed by the chromium removal processes, as well as the final disposal of chromium containing sludge. The functional unit chosen in this study was the removal of 1 mg of chromium. Solution volume of each case study was adjusted to 1 L in advance and the chemicals and energy consumed were proportionally adjusted. The emissions and resources consumed were identified and characterized into 15 categories of midpoint impacts. The impact assessment results show that the human ecotoxicity category accounts for 55 % of environmental impact in Case 1, which can be attributed to the sulfuric acid used for pH adjustment. In Case 2, production of steel sheet electrodes is an energy-intensive process, thus contributed to 20 % of environmental impact. In Case 3, sodium bicarbonate is used as an anti-corrosion additive, which results mainly in 1.02E-05 Comparative Toxicity Unit (CTU) in the human toxicity category and 0.54E-05 (CTU) in acidification of air. In Case 4, electricity consumption for power supply of UV lamp gives 5.25E-05 (CTU) in human toxicity category, 1.15E-05 (kg Neq) in eutrophication. In conclusion, Case 3 and Case 4 have higher environmental impacts than Case 1 and Case 2, which can be attributed mostly to higher energy and chemical consumption, leading to high impacts in the global warming and ecotoxicity categories.

Keywords: chromium, lab scale, life cycle assessment, wastewater

Procedia PDF Downloads 252
16582 Sustainability Assessment Tool for the Selection of Optimal Site Remediation Technologies for Contaminated Gasoline Sites

Authors: Connor Dunlop, Bassim Abbassi, Richard G. Zytner

Abstract:

Life cycle assessment (LCA) is a powerful tool established by the International Organization for Standardization (ISO) that can be used to assess the environmental impacts of a product or process from cradle to grave. Many studies utilize the LCA methodology within the site remediation field to compare various decontamination methods, including bioremediation, soil vapor extraction or excavation, and off-site disposal. However, with the authors' best knowledge, limited information is available in the literature on a sustainability tool that could be used to help with the selection of the optimal remediation technology. This tool, based on the LCA methodology, would consider site conditions like environmental, economic, and social impacts. Accordingly, this project was undertaken to develop a tool to assist with the selection of optimal sustainable technology. Developing a proper tool requires a large amount of data. As such, data was collected from previous LCA studies looking at site remediation technologies. This step identified knowledge gaps or limitations within project data. Next, utilizing the data obtained from the literature review and other organizations, an extensive LCA study is being completed following the ISO 14040 requirements. Initial technologies being compared include bioremediation, excavation with off-site disposal, and a no-remediation option for a generic gasoline-contaminated site. To complete the LCA study, the modelling software SimaPro is being utilized. A sensitivity analysis of the LCA results will also be incorporated to evaluate the impact on the overall results. Finally, the economic and social impacts associated with each option will then be reviewed to understand how they fluctuate at different sites. All the results will then be summarized, and an interactive tool using Excel will be developed to help select the best sustainable site remediation technology. Preliminary LCA results show improved sustainability for the decontamination of a gasoline-contaminated site for each technology compared to the no-remediation option. Sensitivity analyses are now being completed on on-site parameters to determine how the environmental impacts fluctuate at other contaminated gasoline locations as the parameters vary, including soil type and transportation distances. Additionally, the social improvements and overall economic costs associated with each technology are being reviewed. Utilizing these results, the sustainability tool created to assist in the selection of the overall best option will be refined.

Keywords: life cycle assessment, site remediation, sustainability tool, contaminated sites

Procedia PDF Downloads 46
16581 Influence of Mandrel’s Surface on the Properties of Joints Produced by Magnetic Pulse Welding

Authors: Ines Oliveira, Ana Reis

Abstract:

Magnetic Pulse Welding (MPW) is a cold solid-state welding process, accomplished by the electromagnetically driven, high-speed and low-angle impact between two metallic surfaces. It has the same working principle of Explosive Welding (EXW), i.e. is based on the collision of two parts at high impact speed, in this case, propelled by electromagnetic force. Under proper conditions, i.e., flyer velocity and collision point angle, a permanent metallurgical bond can be achieved between widely dissimilar metals. MPW has been considered a promising alternative to the conventional welding processes and advantageous when compared to other impact processes. Nevertheless, MPW current applications are mostly academic. Despite the existing knowledge, the lack of consensus regarding several aspects of the process calls for further investigation. As a result, the mechanical resistance, morphology and structure of the weld interface in MPW of Al/Cu dissimilar pair were investigated. The effect of process parameters, namely gap, standoff distance and energy, were studied. It was shown that welding only takes place if the process parameters are within an optimal range. Additionally, the formation of intermetallic phases cannot be completely avoided in the weld of Al/Cu dissimilar pair by MPW. Depending on the process parameters, the intermetallic compounds can appear as continuous layer or small pockets. The thickness and the composition of the intermetallic layer depend on the processing parameters. Different intermetallic phases can be identified, meaning that different temperature-time regimes can occur during the process. It is also found that lower pulse energies are preferred. The relationship between energy increase and melting is possibly related to multiple sources of heating. Higher values of pulse energy are associated with higher induced currents in the part, meaning that more Joule heating will be generated. In addition, more energy means higher flyer velocity, the air existing in the gap between the parts to be welded is expelled, and this aerodynamic drag (fluid friction) is proportional to the square of the velocity, further contributing to the generation of heat. As the kinetic energy also increases with the square of velocity, the dissipation of this energy through plastic work and jet generation will also contribute to an increase in temperature. To reduce intermetallic phases, porosity, and melt pockets, pulse energy should be minimized. The bond formation is affected not only by the gap, standoff distance, and energy but also by the mandrel’s surface conditions. No correlation was clearly identified between surface roughness/scratch orientation and joint strength. Nevertheless, the aspect of the interface (thickness of the intermetallic layer, porosity, presence of macro/microcracks) is clearly affected by the surface topology. Welding was not established on oil contaminated surfaces, meaning that the jet action is not enough to completely clean the surface.

Keywords: bonding mechanisms, impact welding, intermetallic compounds, magnetic pulse welding, wave formation

Procedia PDF Downloads 200
16580 Influence of Crystal Orientation on Electromechanical Behaviors of Relaxor Ferroelectric P(VDF-TRFE-CTFE) Terpolymer

Authors: Qing Liu, Jean-fabien Capsal, Claude Richard

Abstract:

In this current contribution, authors are dedicated to investigate influence of the crystal lamellae orientation on electromechanical behaviors of relaxor ferroelectric Poly (vinylidene fluoride –trifluoroethylene -chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)) films by control of polymer microstructure, aiming to picture the full map of structure-property relationship. In order to define their crystal orientation films, terpolymer films were fabricated by solution-casting, stretching and hot-pressing process. Differential scanning calorimetry, impedance analyzer, and tensile strength techniques were employed to characterize crystallographic parameters, dielectric permittivity, and elastic Young’s modulus respectively. In addition, large electrical induced out-of-plane electrostrictive strain was obtained by cantilever beam mode. Consequently, as-casted pristine films exhibited surprisingly high electrostrictive strain 0.1774% due to considerably small value of elastic Young’s modulus although relatively low dielectric permittivity. Such reasons contributed to large mechanical elastic energy density. Instead, due to 2 folds increase of elastic Young’s modulus and less than 50% augmentation of dielectric constant, fully-crystallized film showed weak electrostrictive behavior and mechanical energy density as well. And subjected to mechanical stretching process, Film C exhibited stronger dielectric constant and out-performed electrostrictive strain over Film B because edge-on crystal lamellae orientation induced by uniaxially mechanical stretch. Hot-press films were compared in term of cooling rate. Rather large electrostrictive strain of 0.2788% for hot-pressed Film D in quenching process was observed although its dielectric permittivity equivalent to that of pristine as-casted Film A, showing highest mechanical elastic energy density value of 359.5 J/m^3. In hot-press cooling process, dielectric permittivity of Film E saw values at 48.8 concomitant with ca.100% increase of Young’s modulus. Films with intermediate mechanical energy density were obtained.

Keywords: crystal orientation, electrostroctive strain, mechanical energy density, permittivity, relaxor ferroelectric

Procedia PDF Downloads 364
16579 3rd Generation Modular Execution: A Global Breakthrough in Modular Facility Construction System

Authors: Sean Bryner S. Rey, Eric Tanjutco

Abstract:

Modular execution strategies are performed to address the various challenges of any projects and are implemented on each project phase that covers Engineering, Procurement, Fabrication and Construction. It was until the recent years that the intent to surpass mechanical modularization approach were conceptualized to give solution to much greater demands of project components such as site location and adverse weather condition, material sourcing, construction schedule, safety risks and overall plot layout and allocation. The intent of this paper is to introduce the 3rd Generation Modular Execution with an overview of its advantages on project execution and will give emphasis on Engineering, Construction, Operation and Maintenance. Most importantly, the paper will present the key differentiator of 3rd Gen modular execution against other conventional project execution and the merits it bears for the industry.

Keywords: 3rd generation modular, process block, construction, operation & maintenance

Procedia PDF Downloads 456
16578 Current Status of Inclusive Education for Students with Disabilities in Punjab, Pakistan

Authors: Muhammad Shahid Shah, Akram Maqbool, Samina Ashraf

Abstract:

Since start of this century, world has adopted inclusion as a trend in special education. To meet the challenges of inclusion response, the Punjab government has developed a progressive policy to implement inclusive education. The objectives of this research were to analyze the administration and implementation process by consideration on the management, student’s admission process, screening and assessment, adaptations in curriculum and instruction along with an evaluation, government and nonprofit organizations support. The sample consisted of 50 schools both public and private with a total of 3000 students, 9 percent of which (270) were students with disabilities. Among all the students with disabilities, 63 percent (170) were male and 37 percent (100) were female. The concluded remarks regarding management revealed that a large number of inclusive schools was lacking in terms of developing a certain model for inclusion, including the managerial breakup of staff, the involvement of stakeholders, and conducted frequent meetings. Many of schools are not able to restructure their school organizations due to lack of financial resources, consultations, and backup. As for as student’s admission/identification/assessment was concerned, only 12 percent schools applied a selection process regarding student admission, half of which used different procedures for disable candidates. Approximately 5 percent of inclusive schools had modified their curriculum, including a variety of standards. In terms of instruction, 25 percent of inclusive schools reported that they modified their instructional process. Only a few schools, however, provided special equipment for students with visual impairment, physical impairment, speech and hearing problems, students with mild intellectual disabilities, and autism. In a student evaluation, more than 45 percent reported that test items, administration, time allocations, and students’ reports were modified. For the primary board examination conducted by the Education Department of Government of Punjab, this number decreased dramatically. Finally, government and nonprofit organizations support in the forms of funding, coaching, and facilities were mostly provided by provincial governments and by Ghazali Education Trust.

Keywords: inclusion, identification, assessment, funding, facilities, evaluation

Procedia PDF Downloads 123
16577 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents

Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna M. Zain

Abstract:

Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation, and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 1500C. Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.

Keywords: activated carbon, palm shell-PEEK, regeneration, thermal

Procedia PDF Downloads 473
16576 Packaging Processes for the Implantable Medical Microelectronics

Authors: Chung-Yu Wu, Chia-Chi Chang, Wei-Ming Chen, Pu-Wei Wu, Shih-Fan Chen, Po-Chun Chen

Abstract:

Electrostimulation medical devices for neural diseases require electroactive and biocompatible materials to transmit signals from electrodes to targeting tissues. Protection of surrounding tissues has become a great challenge for long-term implants. In this study, we designed back-end processes with compatible, efficient, and reliable advantages over the current state-of-the-art. We explored a hermetic packaging process with high quality of adhesion and uniformity as the biocompatible devices for long-term implantation. This approach is able to provide both excellent biocompatibility and protection to the biomedical electronic devices by performing conformal coating of biocompatible materials. We successfully developed a packaging process that is capable of exposing the stimulating electrode and cover all other faces of chip with high quality of protection to prevent leakage of devices and body fluid.

Keywords: biocompatible package, medical microelectronics, surface coating, long-term implantation

Procedia PDF Downloads 508
16575 Preparation of Magnetic Hydroxyapatite Composite by Wet Chemical Process for Phycobiliproteins Adsorption

Authors: Shu-Jen Chen, Yi-Chien Wan, Ruey-Chi Wang

Abstract:

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) can be applied to the fabrication of bone replacement materials, the composite of dental filling, and the adsorption of biomolecules and dyes. The integration of HAp and magnetic materials would offer several advantages for bio-separation process because the magnetic adsorbents is capable of recovered by applied magnetic field. C-phycocyanin (C-PC) and Allophycocyanin (APC), isolated from Spirulina platensis, can be used in fluorescent labeling probes, health care foods and clinical diagnostic reagents. Although the purification of C-PC and APC are reported by HAp adsorption, the adsorption of C-PC and APC by magnetic HAp composites was not reported yet. Therefore, the fabrication of HAp with magnetic silica nanoparticles for proteins adsorption was investigated in this work. First, the magnetic silica particles were prepared by covering silica layer on Fe3O4 nanoparticles with a reverse micelle method. Then, the Fe3O4@SiO2 nanoparticles were mixed with calcium carbonate to obtain magnetic silica/calcium carbonate composites (Fe3O4@SiO2/CaCO3). The Fe3O4@SiO2/CaCO3 was further reacted with K2HPO4 for preparing the magnetic silica/hydroxyapatite composites (Fe3O4@SiO2/HAp). The adsorption experiments indicated that the adsorption capacity of Fe3O4@SiO2/HAp toward C-PC and APC were highest at pH 6. The adsorption of C-PC and APC by Fe3O4@SiO2/HAp could be correlated by the pseudo-second-order model, indicating chemical adsorption dominating the adsorption process. Furthermore, the adsorption data showed that the adsorption of Fe3O4@SiO2/HAp toward C-PC and APC followed the Langmuir isotherm. The isoelectric points of C-PC and APC were around 5.0. Additionally, the zeta potential data showed the Fe3O4@SiO2/HAp composite was negative charged at pH 6. Accordingly, the adsorption mechanism of Fe3O4@SiO2/HAp toward C-PC and APC should be governed by hydrogen bonding rather than electrostatic interaction. On the other hand, as compared to C-PC, the Fe3O4@SiO2/HAp shows higher adsorption affinity toward APC. Although the Fe3O4@SiO2/HAp cannot recover C-PC and APC from Spirulina platensis homogenate, the Fe3O4@SiO2/HAp can be applied to separate C-PC and APC.

Keywords: hydroxyapatite, magnetic, C-phycocyanin, allophycocyanin

Procedia PDF Downloads 137
16574 Knitting Stitches’ Manipulation for Catenary Textile Structures

Authors: Virginia Melnyk

Abstract:

This paper explores the design for catenary structure using knitted textiles. Using the advantages of Grasshopper and Kangaroo parametric software to simulate and pre-design an overall form, the design is then translated to a pattern that can be made with hand manipulated stitches on a knitting machine. The textile takes advantage of the structure of knitted materials and the ability for it to stretch. Using different types of stitches to control the amount of stretch that can occur in portions of the textile generates an overall formal design. The textile is then hardened in an upside-down hanging position and then flipped right-side-up. This then becomes a structural catenary form. The resulting design is used as a small Cat House for a cat to sit inside and climb on top of.

Keywords: architectural materials, catenary structures, knitting fabrication, textile design

Procedia PDF Downloads 170
16573 Metabolic Profiling in Breast Cancer Applying Micro-Sampling of Biological Fluids and Analysis by Gas Chromatography – Mass Spectrometry

Authors: Mónica P. Cala, Juan S. Carreño, Roland J.W. Meesters

Abstract:

Recently, collection of biological fluids on special filter papers has become a popular micro-sampling technique. Especially, the dried blood spot (DBS) micro-sampling technique has gained much attention and is momently applied in various life sciences reserach areas. As a result of this popularity, DBS are not only intensively competing with the venous blood sampling method but are at this moment widely applied in numerous bioanalytical assays. In particular, in the screening of inherited metabolic diseases, pharmacokinetic modeling and in therapeutic drug monitoring. Recently, microsampling techniques were also introduced in “omics” areas, whereunder metabolomics. For a metabolic profiling study we applied micro-sampling of biological fluids (blood and plasma) from healthy controls and from women with breast cancer. From blood samples, dried blood and plasma samples were prepared by spotting 8uL sample onto pre-cutted 5-mm paper disks followed by drying of the disks for 100 minutes. Dried disks were then extracted by 100 uL of methanol. From liquid blood and plasma samples 40 uL were deproteinized with methanol followed by centrifugation and collection of supernatants. Supernatants and extracts were evaporated until dryness by nitrogen gas and residues derivated by O-methyxyamine and MSTFA. As internal standard C17:0-methylester in heptane (10 ppm) was used. Deconvolution and alignment of and full scan (m/z 50-500) MS data were done by AMDIS and SpectConnect (http://spectconnect.mit.edu) software, respectively. Statistical Data analysis was done by Principal Component Analysis (PCA) using R software. The results obtained from our preliminary study indicate that the use of dried blood/plasma on paper disks could be a powerful new tool in metabolic profiling. Many of the metabolites observed in plasma (liquid/dried) were also positively identified in whole blood samples (liquid/dried). Whole blood could be a potential substitute matrix for plasma in Metabolomic profiling studies as well also micro-sampling techniques for the collection of samples in clinical studies. It was concluded that the separation of the different sample methodologies (liquid vs. dried) as observed by PCA was due to different sample treatment protocols applied. More experiments need to be done to confirm obtained observations as well also a more rigorous validation .of these micro-sampling techniques is needed. The novelty of our approach can be found in the application of different biological fluid micro-sampling techniques for metabolic profiling.

Keywords: biofluids, breast cancer, metabolic profiling, micro-sampling

Procedia PDF Downloads 400
16572 Building Information Modelling Based Value for Money Assessment in Public-Private Partnership

Authors: Guoqian Ren, Haijiang Li, Jisong Zhang

Abstract:

Over the past 40 years, urban development has undergone large-scale, high-speed expansion, beyond what was previously considered normal and in a manner not proportionally related to population growth or physical considerations. With more scientific and refined decision-making in the urban construction process, new urbanization approaches, aligned with public-private partnerships (PPPs) which evolved in the early 1990s, have become acceptable and, in some situations, even better solutions to outstanding urban municipal construction projects, especially in developing countries. However, as the main driving force to deal with urban public services, PPPs are still problematic regarding value for money (VFM) process in most large-scale construction projects. This paper therefore reviews recent PPP articles in popular project management journals and relevant toolkits, published in the last 10 years, to identify the indicators that influence VFM within PPPs across regions. With increasing concerns about profitability and environmental and social impacts, the current PPP structure requires a more integrated platform to manage multi-performance project life cycles. Building information modelling (BIM), a popular approach to the procurement process in AEC sectors, provides the potential to ensure VFM while also working in tandem with the semantic approach to holistically measure life cycle costs (LCC) and achieve better sustainability. This paper suggests that BIM applied to the entire PPP life cycle could support holistic decision-making regarding VFM processes and thus meet service targets.

Keywords: public-private partnership, value for money, building information modelling, semantic approach

Procedia PDF Downloads 196
16571 Challenges in Employment and Adjustment of Academic Expatriates Based in Higher Education Institutions in the KwaZulu-Natal Province, South Africa

Authors: Thulile Ndou

Abstract:

The purpose of this study was to examine the challenges encountered in the mediation of attracting and recruiting academic expatriates who in turn encounter their own obstacles in adjusting into and settling in their host country, host academic institutions and host communities. The none-existence of literature on attraction, placement and management of academic expatriates in the South African context has been acknowledged. Moreover, Higher Education Institutions in South Africa have voiced concerns relating to delayed and prolonged recruitment and selection processes experienced in the employment process of academic expatriates. Once employed, academic expatriates should be supported and acquainted with the surroundings, the local communities as well as be assisted to establish working relations with colleagues in order to facilitate their adjustment and integration process. Hence, an employer should play a critical role in facilitating the adjustment of academic expatriates. This mixed methods study was located in four Higher Education Institutions based in the KwaZulu-Natal province, in South Africa. The explanatory sequential design approach was deployed in the study. The merits of this approach were chiefly that it employed both the quantitative and qualitative techniques of inquiry. Therefore, the study examined and interrogated its subject from a multiplicity of quantitative and qualitative vantage points, yielding a much more enriched and enriching illumination. Mixing the strengths of both the quantitative and the qualitative techniques delivered much more durable articulation and understanding of the subject. A 5-point Likert scale questionnaire was used to collect quantitative data relating to interaction adjustment, general adjustment and work adjustment from academic expatriates. One hundred and forty two (142) academic expatriates participated in the quantitative study. Qualitative data relating to employment process and support offered to academic expatriates was collected through a structured questionnaire and semi-structured interviews. A total of 48 respondents; including, line managers, human resources practitioners, and academic expatriates participated in the qualitative study. The Independent T-test, ANOVA and Descriptive Statistics were performed to analyse, interpret and make meaning of quantitative data and thematic analysis was used to analyse qualitative data. The qualitative results revealed that academic talent is sourced from outside the borders of the country because of the academic skills shortage in almost all academic disciplines especially in the disciplines associated with Science, Engineering and Accounting. However, delays in work permit application process made it difficult to finalise the recruitment and selection process on time. Furthermore, the quantitative results revealed that academic expatriates experience general and interaction adjustment challenges associated with the use of local language and understanding of local culture. However, female academic expatriates were found to be better adjusted in the two areas as compared to male academic expatriates. Moreover, significant mean differences were found between institutions suggesting that academic expatriates based in rural areas experienced adjustment challenges differently from the academic expatriates based in urban areas. The study gestured to the need for policy revisions in the area of immigration, human resources and academic administration.

Keywords: academic expatriates, recruitment and selection, interaction and general adjustment, work adjustment

Procedia PDF Downloads 288
16570 Causes of Pokir in the Budgeting Process: Case Study in the Province of Jakarta, Indonesia

Authors: Tri Nopiyanto, Rahardhyani Dwiannisa, Arief Ismaryanto

Abstract:

One main issue for a certain region in order to achieve development is if the government that consists of the executive, legislative and judicial board are able to work together. However, there are certain conditions that these boards are the sources of conflict, especially between the executive and legislative board. One of the example of the conflict is between the Local Government and Legislative Board (DPRD) in the Province of Jakarta in 2015. The cause of this conflict is because of the occurrence of pokir (pokok pikiran or ideas of budgeting). Pokir is driven by a budgeting plan that is arranged by DPRD that is supposed to be sourced from the aspiration of the people and delivered 5 months before the legalization of Local Government Budget (APBD), but the current condition in Jakarta is that pokir is a project by DPRD members itself and delivered just 3 days before the legalization in order to facilitate the interests of the members of the legislative. This paper discusses how pokir happens and what factors caused it. This paper uses political budgeting theory by Andy Norton and Diane Elson to analyze the issue. The method used in this paper is qualitative to collect the data and solve the problem of this research. The methods involved are in depth interview, experimental questionnaire, and literature studies. Results of this research are that Pokir occurs because of the distribution of power among DPRD members, between parties, executive, and legislative board. Beside that, Pokir also occurs because of the lack of the people’s participation in budgeting process and monitoring. Other than that, this paper also found that pokir also happens because of the budgeting system that is not able to provide a clean budgeting process, so it enables the creation of certain slots to add pokir into the budgets. Pokir also affects the development of Jakarta that goes through stagnation. This research recommends the implementation of e-budgeting to prevent the occurrence of pokir itself in the Province of Jakarta.

Keywords: legislative and executive board, Jakarta, political budgeting, Pokir

Procedia PDF Downloads 251
16569 Sensitivity Analysis of the Heat Exchanger Design in Net Power Oxy-Combustion Cycle for Carbon Capture

Authors: Hirbod Varasteh, Hamidreza Gohari Darabkhani

Abstract:

The global warming and its impact on climate change is one of main challenges for current century. Global warming is mainly due to the emission of greenhouse gases (GHG) and carbon dioxide (CO2) is known to be the major contributor to the GHG emission profile. Whilst the energy sector is the primary source for CO2 emission, Carbon Capture and Storage (CCS) are believed to be the solution for controlling this emission. Oxyfuel combustion (Oxy-combustion) is one of the major technologies for capturing CO2 from power plants. For gas turbines, several Oxy-combustion power cycles (Oxyturbine cycles) have been investigated by means of thermodynamic analysis. NetPower cycle is one of the leading oxyturbine power cycles with almost full carbon capture capability from a natural gas fired power plant. In this manuscript, sensitivity analysis of the heat exchanger design in NetPower cycle is completed by means of process modelling. The heat capacity variation and supercritical CO2 with gaseous admixtures are considered for multi-zone analysis with Aspen Plus software. It is found that the heat exchanger design has a major role to increase the efficiency of NetPower cycle. The pinch-point analysis is done to extract the composite and grand composite curve for the heat exchanger. In this paper, relationship between the cycle efficiency and the minimum approach temperature (∆Tmin) of the heat exchanger has also been evaluated.  Increase in ∆Tmin causes a decrease in the temperature of the recycle flue gases (RFG) and an overall decrease in the required power for the recycled gas compressor. The main challenge in the design of heat exchangers in power plants is a tradeoff between the capital and operational costs. To achieve lower ∆Tmin, larger size of heat exchanger is required. This means a higher capital cost but leading to a better heat recovery and lower operational cost. To achieve this, ∆Tmin is selected from the minimum point in the diagrams of capital and operational costs. This study provides an insight into the NetPower Oxy-combustion cycle’s performance analysis and operational condition based on its heat exchanger design.

Keywords: carbon capture and storage, oxy-combustion, netpower cycle, oxy turbine cycles, zero emission, heat exchanger design, supercritical carbon dioxide, oxy-fuel power plant, pinch point analysis

Procedia PDF Downloads 192
16568 Design Optimization of the Primary Containment Building of a Pressurized Water Reactor

Authors: M. Hossain, A. H. Khan, M. A. R. Sarkar

Abstract:

Primary containment structure is one of the five safety layers of a nuclear facility which is needed to be designed in such a manner that it can withstand the pressure and excessive radioactivity during accidental situations. It is also necessary to ensure minimization of cost with maximum possible safety in order to make the design economically feasible and attractive. This paper attempts to identify the optimum design conditions for primary containment structure considering both mechanical and radiation safety keeping the economic aspects in mind. This work takes advantage of commercial simulation software to identify the suitable conditions without the requirement of costly experiments. Generated data may be helpful for further studies.

Keywords: PWR, concrete containment, finite element approach, neutron attenuation, Von Mises stress

Procedia PDF Downloads 171
16567 An Analysis of the Relations between Aggregates’ Shape and Mechanical Properties throughout the Railway Ballast Service Life

Authors: Daianne Fernandes Diogenes

Abstract:

Railway ballast aggregates’ shape properties and size distribution can be directly affected by several factors, such as traffic, fouling, and maintenance processes, which cause breakage and wearing, leading to the fine particles’ accumulation through the ballast layer. This research aims to analyze the influence of traffic, tamping process, and sleepers’ stiffness on aggregates' shape and mechanical properties, by using traditional and digital image processing (DIP) techniques and cyclic tests, like resilient modulus (RM) and permanent deformation (PD). Aggregates were collected in different phases of the railway service life: (i) right after the crushing process; (ii) after construction, for the aggregates positioned below the sleepers and (iii) after 5 years of operation. An increase in the percentage of cubic particles was observed for the materials (ii) and (iii), providing a better interlocking, increasing stiffness and reducing axial deformation after 5 years of service, when compared to the initial conditions.

Keywords: digital image processing, mechanical behavior, railway ballast, shape properties

Procedia PDF Downloads 110
16566 The Current Application of BIM - An Empirical Study Focusing on the BIM-Maturity Level

Authors: Matthias Stange

Abstract:

Building Information Modelling (BIM) is one of the most promising methods in the building design process and plays an important role in the digitalization of the Architectural, Engineering, and Construction (AEC) Industry. The application of BIM is seen as the key enabler for increasing productivity in the construction industry. The model-based collaboration using the BIM method is intended to significantly reduce cost increases, schedule delays, and quality problems in the planning and construction of buildings. Numerous qualitative studies based on expert interviews support this theory and report perceived benefits from the use of BIM in terms of achieving project objectives related to cost, schedule, and quality. However, there is a large research gap in analysing quantitative data collected from real construction projects regarding the actual benefits of applying BIM based on representative sample size and different application regions as well as different project typologies. In particular, the influence of the project-related BIM maturity level is completely unexplored. This research project examines primary data from 105 construction projects worldwide using quantitative research methods. Projects from the areas of residential, commercial, and industrial construction as well as infrastructure and hydraulic engineering were examined in application regions North America, Australia, Europe, Asia, MENA region, and South America. First, a descriptive data analysis of 6 independent project variables (BIM maturity level, application region, project category, project type, project size, and BIM level) were carried out using statistical methods. With the help of statisticaldata analyses, the influence of the project-related BIM maturity level on 6 dependent project variables (deviation in planning time, deviation in construction time, number of planning collisions, frequency of rework, number of RFIand number of changes) was investigated. The study revealed that most of the benefits of using BIM perceived through numerous qualitative studies have not been confirmed. The results of the examined sample show that the application of BIM did not have an improving influence on the dependent project variables, especially regarding the quality of the planning itself and the adherence to the schedule targets. The quantitative research suggests the conclusion that the BIM planning method in its current application has not (yet) become a recognizable increase in productivity within the planning and construction process. The empirical findings indicate that this is due to the overall low level of BIM maturity in the projects of the examined sample. As a quintessence, the author suggests that the further implementation of BIM should primarily focus on an application-oriented and consistent development of the project-related BIM maturity level instead of implementing BIM for its own sake. Apparently, there are still significant difficulties in the interweaving of people, processes, and technology.

Keywords: AEC-process, building information modeling, BIM maturity level, project results, productivity of the construction industry

Procedia PDF Downloads 61
16565 Grain Structure Evolution during Friction-Stir Welding of 6061-T6 Aluminum Alloy

Authors: Aleksandr Kalinenko, Igor Vysotskiy, Sergey Malopheyev, Sergey Mironov, Rustam Kaibyshev

Abstract:

From a thermo-mechanical standpoint, friction-stir welding (FSW) represents a unique combination of very large strains, high temperature and relatively high strain rate. The material behavior under such extreme deformation conditions is not studied well and thus, the microstructural examinations of the friction-stir welded materials represent an essential academic interest. Moreover, a clear understanding of the microstructural mechanisms operating during FSW should improve our understanding of the microstructure-properties relationship in the FSWed materials and thus enables us to optimize their service characteristics. Despite extensive research in this field, the microstructural behavior of some important structural materials remains not completely clear. In order to contribute to this important work, the present study was undertaken to examine the grain structure evolution during the FSW of 6061-T6 aluminum alloy. To provide an in-depth insight into this process, the electron backscatter diffraction (EBSD) technique was employed for this purpose. Microstructural observations were conducted by using an FEI Quanta 450 Nova field-emission-gun scanning electron microscope equipped with TSL OIMTM software. A suitable surface finish for EBSD was obtained by electro-polishing in a solution of 25% nitric acid in methanol. A 15° criterion was employed to differentiate low-angle boundaries (LABs) from high-angle boundaries (HABs). In the entire range of the studied FSW regimes, the grain structure evolved in the stir zone was found to be dominated by nearly-equiaxed grains with a relatively high fraction of low-angle boundaries and the moderate-strength B/-B {112}<110> simple-shear texture. In all cases, the grain-structure development was found to be dictated by an extensive formation of deformation-induced boundaries, their gradual transformation to the high-angle grain boundaries. Accordingly, the grain subdivision was concluded to the key microstructural mechanism. Remarkably, a gradual suppression of this mechanism has been observed at relatively high welding temperatures. This surprising result has been attributed to the reduction of dislocation density due to the annihilation phenomena.

Keywords: electron backscatter diffraction, friction-stir welding, heat-treatable aluminum alloys, microstructure

Procedia PDF Downloads 224
16564 Simulation Study of a Fault at the Switch on the Operation of the Doubly Fed Induction Generator Based on the Wind Turbine

Authors: N. Zerzouri, N. Benalia, N. Bensiali

Abstract:

This work is devoted to an analysis of the operation of a doubly fed induction generator (DFIG) integrated with a wind system. The power transfer between the stator and the network is carried out by acting on the rotor via a bidirectional signal converter. The analysis is devoted to the study of a fault in the converter due to an interruption of the control of a semiconductor. Simulation results obtained by the MATLAB / Simulink software illustrate the quality of the power generated at the default.

Keywords: doubly fed induction generator (DFIG), wind power generation, back to back PWM converter, default switching

Procedia PDF Downloads 454
16563 Learning for the Future: Flipping English Language Learning Classrooms for Future

Authors: Natarajan Hema, Tamilarasan Karunakaran

Abstract:

Technology is remodeling the process of teaching and learning. An inflection point is faced where technological interventions are rewiring learning process in formal classrooms. Employment depends on dynamic learning capability. Transforming the functionalities of teaching-learning-assessment through innovation is needed to modify the roles of teacher to enabler and learner to the dynamic learner. This makeover is vital for English language teaching where English is acquired as a skill, exercised as ability and get stabilized as a competence. This reshaping could be achieved through providing autonomy to participants of learning. This paper explores parameters and components aiding such a transformation. The differentiated responsibilities and other critical learning support systems are projected as viable options. New age teaching practices are studied for feasibilities to aid transformation and being put forth an inter-operable teaching-learning system for a learner-centric ELT classrooms. LOTUS model developed by the authors is also studied for its inclusiveness to promote skill acquisition.

Keywords: ELT methodology, communicative competence, skill acquisition , new age teaching

Procedia PDF Downloads 342
16562 Phenolic-Based Chemical Production from Catalytic Depolymerization of Alkaline Lignin over Fumed Silica Catalyst

Authors: S. Totong, P. Daorattanachai, N. Laosiripojana

Abstract:

Lignin depolymerization into phenolic-based chemicals is an interesting process for utilizing and upgrading a benefit and value of lignin. In this study, the depolymerization reaction was performed to convert alkaline lignin into smaller molecule compounds. Fumed SiO₂ was used as a catalyst to improve catalytic activity in lignin decomposition. The important parameters in depolymerization process (i.e., reaction temperature, reaction time, etc.) were also investigated. In addition, gas chromatography with mass spectrometry (GC-MS), flame-ironized detector (GC-FID), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze and characterize the lignin products. It was found that fumed SiO₂ catalyst led the good catalytic activity in lignin depolymerization. The main products from catalytic depolymerization were guaiacol, syringol, vanillin, and phenols. Additionally, metal supported on fumed SiO₂ such as Cu/SiO₂ and Ni/SiO₂ increased the catalyst activity in terms of phenolic products yield.

Keywords: alkaline lignin, catalytic, depolymerization, fumed SiO₂, phenolic-based chemicals

Procedia PDF Downloads 233