World Academy of Science, Engineering and Technology International Journal of Energy and Environmental Engineering Vol:12, No:05, 2018

Phenolic-Based Chemical Production from Catalytic Depolymerization of Alkaline Lignin over Fumed Silica Catalyst

Authors: S. Totong, P. Daorattanachai, N. Laosiripojana

Abstract : Lignin depolymerization into phenolic-based chemicals is an interesting process for utilizing and upgrading a benefit and value of lignin. In this study, the depolymerization reaction was performed to convert alkaline lignin into smaller molecule compounds. Fumed SiO_2 was used as a catalyst to improve catalytic activity in lignin decomposition. The important parameters in depolymerization process (i.e., reaction temperature, reaction time, etc.) were also investigated. In addition, gas chromatography with mass spectrometry (GC-MS), flame-ironized detector (GC-FID), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze and characterize the lignin products. It was found that fumed SiO_2 catalyst led the good catalytic activity in lignin depolymerization. The main products from catalytic depolymerization were guaiacol, syringol, vanillin, and phenols. Additionally, metal supported on fumed SiO_2 such as Cu/SiO_2 and Ni/SiO_2 increased the catalyst activity in terms of phenolic products yield.

Keywords: alkaline lignin, catalytic, depolymerization, fumed SiO₂, phenolic-based chemicals

Conference Title: ICSREE 2018: International Conference on Sustainable and Renewable Energy Engineering

Conference Location : Montreal, Canada **Conference Dates :** May 24-25, 2018