Search results for: neural style transfer
1400 Effect of Chemical Concentration on the Rheology of Inks for Inkjet Printing
Authors: M. G. Tadesse, J. Yu, Y. Chen, L. Wang, V. Nierstrasz, C. Loghin
Abstract:
Viscosity and surface tension are the fundamental rheological property of an ink for inkjet printing. In this work, we optimized the viscosity and surface tension of inkjet inks by varying the concentration of glycerol with water, PEDOT:PSS with glycerol and water, finally by adding the surfactant. The surface resistance of the sample was characterized by four-probe measurement principle. The change in volume of PEDOT:PSS in water, as well as the change in weight of glycerol in water has got a great influence on the viscosity on both temperature dependence and shear dependence behavior of the ink solution. The surface tension of the solution changed from 37 to 28 mN/m due to the addition of Triton. Varying the volume of PEDOT:PSS and the volume of glycerol in water has a great influence on the viscosity of the ink solution for inkjet printing. Viscosity drops from 12.5 to 9.5 mPa s with the addition of Triton at 25 oC. The PEDOT:PSS solution was found to be temperature dependence but not shear dependence as it is a Newtonian fluid. The sample was used to connect the light emitting diode (LED), and hence the electrical conductivity, with a surface resistance of 0.158 KΩ/square, was sufficient enough to give transfer current for LED lamp. The rheology of the inkjet ink is very critical for the successful droplet formation of the inkjet printing.Keywords: shear rate, surface tension, surfactant, viscosity
Procedia PDF Downloads 1721399 Effects of Different Food Matrices on Viscosity and Protein Degradation during in vitro Digestion
Authors: Gulay Oncu Ince, Sibel Karakaya
Abstract:
Food is a worldwide concern. Among the factors that have influences on human health, food, nutrition and life style have been regarded as the most important factors since they can be intervened. While some parts of the world has been faced with food shortages and hence, chronic metabolic diseases, the other part of the world have been emerged from over consumption of food. Both situations can result in shorter life expectancy and represent a major global health problem. Hunger, satiety and appetite sensation form a balance ensures the operation of feeding behavior between food intake and energy consumption. Satiety is one of the approaches that is effective in ensuring weight control and avoid eating more in the postprandial period. By manipulating the microstructure of food macro and micronutrient bioavailability may be increased or reduced. For the food industry appearance, texture, taste structural properties as well as the gastrointestinal tract behavior of the food after the consumption is becoming increasingly important. Also, this behavior has been the subject of several researches in recent years by the scientific community. Numerous studies have been published about changing the food matrix in order to increase expected impacts. In this study, yogurts were enriched with caseinomacropeptide (CMP), whey protein (WP), CMP and sodium alginate (SA), and WP + SA in order to produce goat yogurts having different food matrices. SDS Page profiles of the samples after in vitro digestion and viscosities of the stomach digesta at different share rates were determined. Energy values were 62.11kcal/100 g, 70.27 kcal/100 g, 70.61 kcal/100 g, 71.20 kcal/100 g and 71.67 kcal/100 g for control, CMP added WP added, WP + SA added, and CMP + SA added yogurts respectively. The results of viscosity analysis showed that control yogurt had the lowest viscosity value and this was followed by CMP added, WP added, CMP + SA added and WP + SA added yogurts, respectively. Protein contents of the stomach and duedonal digests of the samples after subjected to two different in vitro digestion methods were changed between 5.34-5.91 mg protein / g sample and 16.93-19.75 mg protein /g of sample, respectively. Viscosity measurements of the stomach digests showed that CMP + SA added yogurt displayed the highest viscosity value in both in vitro digestion methods. There were differences between the protein profiles of the stomach and duedonal digests obtained by two different in vitro digestion methods (p<0.05).Keywords: caseinomacropeptide, protein profile, whey protein, yogurt
Procedia PDF Downloads 4891398 Controller Design for Highly Maneuverable Aircraft Technology Using Structured Singular Value and Direct Search Method
Authors: Marek Dlapa
Abstract:
The algebraic approach is applied to the control of the HiMAT (Highly Maneuverable Aircraft Technology). The objective is to find a robust controller which guarantees robust stability and decoupled control of longitudinal model of a scaled remotely controlled vehicle version of the advanced fighter HiMAT. Control design is performed by decoupling the nominal MIMO (multi-input multi-output) system into two identical SISO (single-input single-output) plants which are approximated by a 4th order transfer function. The algebraic approach is then used for pole placement design, and the nominal closed-loop poles are tuned so that the peak of the µ-function is minimal. As an optimization tool, evolutionary algorithm Differential Migration is used in order to overcome the multimodality of the cost function yielding simple controller with decoupling for nominal plant which is compared with the D-K iteration through simulations of standard longitudinal manoeuvres documenting decoupled control obtained from algebraic approach for nominal plant as well as worst case perturbation.Keywords: algebraic approach, evolutionary computation, genetic algorithms, HiMAT, robust control, structured singular value
Procedia PDF Downloads 1401397 Design and Development of Solar Water Cooler Using Principle of Evaporation
Authors: Vipul Shiralkar, Rohit Khadilkar, Shekhar Kulkarni, Ismail Mullani, Omkar Malvankar
Abstract:
The use of water cooler has increased and become an important appliance in the world of global warming. Most of the coolers are electrically operated. In this study an experimental setup of evaporative water cooler using solar energy is designed and developed. It works on the principle of heat transfer using evaporation of water. Water is made to flow through copper tubes arranged in a specific array manner. Cotton plug is wrapped on copper tubes and rubber pipes are arranged in the same way as copper tubes above it. Water percolated from rubber pipes is absorbed by cotton plug. The setup has 40L water carrying capacity with forced cooling arrangement and variable speed fan which uses solar energy stored in 20Ah capacity battery. Fan speed greatly affects the temperature drop. Tests were performed at different fan speed. Maximum temperature drop achieved was 90C at 1440 rpm of fan speed. This temperature drop is very attractive. This water cooler uses solar energy hence it is cost efficient and it is affordable to rural community as well. The cooler is free from any harmful emissions like other refrigerants and hence environmental friendly. Very less maintenance is required as compared to the conventional electrical water cooler.Keywords: evaporation, cooler, energy, copper, solar, cost
Procedia PDF Downloads 3181396 Cartagena Protocol and Beyond: Issues and Challenges in the Nigeria's Response to Biosafety
Authors: Dalhat Binta Dan - Ali
Abstract:
The reality of the new world economic order and the ever increasing importance of biotechnology in the global economy have necessitated the ratification of the Cartagena Protocol on Biosafety and the recent promulgation of Biosafety Act in Nigeria 2015. The legal regimes are anchored on the need to create an enabling environment for the flourishing of bio-trade and also to ensure the safety of the environment and human health. This paper critically examines the legal framework on biosafety by taking a cursory look at its philosophical foundation, key issues and milestones. The paper argues that the extant laws, though a giant leap in the establishment of a legal framework on biosafety, it posits that the legal framework raises debate and controversy on the difficulties of risk assessment on biodiversity and human health, other challenges includes lack of sound institutional capacity and the regimes direction of a hybrid approach between environmental conservation and trade issues. The paper recommend the need for the country to do more in the area of stimulating awareness and establishment of a sound institutional capacity to enable the law ensure adequate level of protection in the field of safe transfer, handling, and use of genetically modified organisms (GMOs) in Nigeria.Keywords: Cartagena protocol, biosafety, issues, challenges, biotrade, genetically modified organism (GMOs), environment
Procedia PDF Downloads 3261395 CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery
Authors: Jinliang Yuan, Jong-Sung Yu, Bengt Sundén
Abstract:
A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance.Keywords: Computational Fluid Dynamics (CFD), modeling, multi-phase, transport phenomena, lithium-air battery
Procedia PDF Downloads 4511394 Analysis of Translational Ship Oscillations in a Realistic Environment
Authors: Chen Zhang, Bernhard Schwarz-Röhr, Alexander Härting
Abstract:
To acquire accurate ship motions at the center of gravity, a single low-cost inertial sensor is utilized and applied on board to measure ship oscillating motions. As observations, the three axes accelerations and three axes rotational rates provided by the sensor are used. The mathematical model of processing the observation data includes determination of the distance vector between the sensor and the center of gravity in x, y, and z directions. After setting up the transfer matrix from sensor’s own coordinate system to the ship’s body frame, an extended Kalman filter is applied to deal with nonlinearities between the ship motion in the body frame and the observation information in the sensor’s frame. As a side effect, the method eliminates sensor noise and other unwanted errors. Results are not only roll and pitch, but also linear motions, in particular heave and surge at the center of gravity. For testing, we resort to measurements recorded on a small vessel in a well-defined sea state. With response amplitude operators computed numerically by a commercial software (Seaway), motion characteristics are estimated. These agree well with the measurements after processing with the suggested method.Keywords: extended Kalman filter, nonlinear estimation, sea trial, ship motion estimation
Procedia PDF Downloads 5221393 Downscaling Seasonal Sea Surface Temperature Forecasts over the Mediterranean Sea Using Deep Learning
Authors: Redouane Larbi Boufeniza, Jing-Jia Luo
Abstract:
This study assesses the suitability of deep learning (DL) for downscaling sea surface temperature (SST) over the Mediterranean Sea in the context of seasonal forecasting. We design a set of experiments that compare different DL configurations and deploy the best-performing architecture to downscale one-month lead forecasts of June–September (JJAS) SST from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for the period of 1982–2020. We have also introduced predictors over a larger area to include information about the main large-scale circulations that drive SST over the Mediterranean Sea region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results showed that the convolutional neural network (CNN)-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme SST spatial patterns. Besides, the CNN-based downscaling yields a much more accurate forecast of extreme SST and spell indicators and reduces the significant relevant biases exhibited by the raw model predictions. Moreover, our results show that the CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of the Mediterranean Sea. The results demonstrate the potential usefulness of CNN in downscaling seasonal SST predictions over the Mediterranean Sea, particularly in providing improved forecast products.Keywords: Mediterranean Sea, sea surface temperature, seasonal forecasting, downscaling, deep learning
Procedia PDF Downloads 761392 Task Validity in Neuroimaging Studies: Perspectives from Applied Linguistics
Authors: L. Freeborn
Abstract:
Recent years have seen an increasing number of neuroimaging studies related to language learning as imaging techniques such as fMRI and EEG have become more widely accessible to researchers. By using a variety of structural and functional neuroimaging techniques, these studies have already made considerable progress in terms of our understanding of neural networks and processing related to first and second language acquisition. However, the methodological designs employed in neuroimaging studies to test language learning have been questioned by applied linguists working within the field of second language acquisition (SLA). One of the major criticisms is that tasks designed to measure language learning gains rarely have a communicative function, and seldom assess learners’ ability to use the language in authentic situations. This brings the validity of many neuroimaging tasks into question. The fundamental reason why people learn a language is to communicate, and it is well-known that both first and second language proficiency are developed through meaningful social interaction. With this in mind, the SLA field is in agreement that second language acquisition and proficiency should be measured through learners’ ability to communicate in authentic real-life situations. Whilst authenticity is not always possible to achieve in a classroom environment, the importance of task authenticity should be reflected in the design of language assessments, teaching materials, and curricula. Tasks that bear little relation to how language is used in real-life situations can be considered to lack construct validity. This paper first describes the typical tasks used in neuroimaging studies to measure language gains and proficiency, then analyses to what extent these tasks can validly assess these constructs.Keywords: neuroimaging studies, research design, second language acquisition, task validity
Procedia PDF Downloads 1381391 d-Block Metal Nanoparticles Confined in Triphenylphosphine Oxide Functionalized Core-Crosslinked Micelles for the Application in Biphasic Hydrogenation
Authors: C. Joseph Abou-Fayssal, K. Philippot, R. Poli, E. Manoury, A. Riisager
Abstract:
The use of soluble polymer-supported metal nanoparticles (MNPs) has received significant attention for the ease of catalyst recovery and recycling. Of particular interest are MNPs that are supported on polymers that are either soluble or form stable colloidal dispersion in water, as this allows to combine of the advantages of the aqueous biphasic protocol with the catalytical performances of MNPs. The objective is to achieve good confinement of the catalyst in the nanoreactor cores and, thus, a better catalyst recovery in order to overcome the previously witnessed MNP extraction. Inspired by previous results, we are interested in the design of polymeric nanoreactors functionalized with ligands able to solidly anchor metallic nanoparticles in order to control the activity and selectivity of the developed nanocatalysts. The nanoreactors are core-crosslinked micelles (CCM) synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Varying the nature of the core-linked functionalities allows us to get differently stabilized metal nanoparticles and thus compare their performance in the catalyzed aqueous biphasic hydrogenation of model substrates. Particular attention is given to catalyst recyclability.Keywords: biphasic catalysis, metal nanoparticles, polymeric nanoreactors, catalyst recovery, RAFT polymerization
Procedia PDF Downloads 1001390 Literary Words of Foreign Origin as Social Markers in Jeffrey Archer's Novels Speech Portrayals
Authors: Tatiana Ivushkina
Abstract:
The paper is aimed at studying the use of literary words of foreign origin in modern fiction from a sociolinguistic point of view, which presupposes establishing correlation between this category of words in a speech portrayal or narrative and a social status of the speaker, verifying that it bears social implications and serves as a social marker or index of socially privileged identity in the British literature of the 21-st century. To this end, there were selected literary words of foreign origin in context (60 contexts) and subjected to careful examination. The study is carried out on two novels by Jeffrey Archer – Not a Penny More, Not a Penny Less and A Prisoner of Birth – who, being a graduate from Oxford, represents socially privileged classes himself and gives a wide depiction of characters with different social backgrounds and statuses. The analysis of the novels enabled us to categorize the selected words into four relevant groups. The first represented by terms (commodity, debenture, recuperation, syringe, luminescence, umpire, etc.) serves to unambiguously indicate education, occupation, a field of knowledge in which a character is involved or a situation of communication. The second group is formed of words used in conjunction with their Germanic counterparts (perspiration – sweat, padre – priest, convivial – friendly) to contrast social position of the characters: literary words serving as social indices of upper class speakers whereas their synonyms of Germanic origin characterize middle or lower class speech portrayals. The third class of words comprises socially marked words (verbs, nouns, and adjectives), or U-words (the term first coined by Allan Ross and Nancy Mitford), the status acquired in the course of social history development (elegant, excellent, sophistication, authoritative, preposterous, etc.). The fourth includes words used in a humorous or ironic meaning to convey the narrator’s attitude to the characters or situation itself (ministrations, histrionic, etc.). Words of this group are perceived as 'alien', stylistically distant as they create incongruity between style and subject matter. Social implication of the selected words is enhanced by French words and phrases often accompanying them.Keywords: British literature of the XXI century, literary words of foreign origin, social context, social meaning
Procedia PDF Downloads 1341389 Numerical Study of Rayleight Number and Eccentricity Effect on Free Convection Fluid Flow and Heat Transfer of Annulus
Authors: Ali Reza Tahavvor‚ Saeed Hosseini, Behnam Amiri
Abstract:
Concentric and eccentric annulus is used frequently in technical and industrial applications such as nuclear reactors, thermal storage system and etc. In this paper, computational fluid dynamics (CFD) is used to investigate two dimensional free convection of laminar flow in annulus with isotherm cylinders surface and cooler inner surface. Problem studied in thirty different cases. Due to natural convection continuity and momentum equations are coupled and must be solved simultaneously. Finite volume method is used for solving governing equations. The purpose was to obtain the eccentricity effect on Nusselt number in different Rayleight numbers, so streamlines and temperature fields must be determined. Results shown that the highest Nusselt number values occurs in degree of eccentricity equal to 0.5 upward for inner cylinder and degree of eccentricity equal to 0.3 upward for outer cylinder. Side eccentricity reduces the outer cylinder Nusselt number but increases inner cylinder Nusselt number. The trend in variation of Nusselt number with respect to eccentricity remain similar in different Rayleight numbers. Correlations are included to calculate the Nusselt number of the cylinders.Keywords: natural convection, concentric, eccentric, Nusselt number, annulus
Procedia PDF Downloads 3701388 Identification of Switched Reluctance Motor Parameters Using Exponential Swept-Sine Signal
Authors: Abdelmalek Ouannou, Adil Brouri, Laila Kadi, Tarik
Abstract:
Switched reluctance motor (SRM) has a major interest in a large domain as in electric vehicle driving because of its wide range of speed operation, high performances, low cost, and robustness to run under degraded conditions. The purpose of the paper is to develop a new analytical approach for modeling SRM parameters. Then, an identification scheme is proposed to obtain the SRM parameters. Since the SRM is featured by a highly nonlinear behavior, modeling these devices is difficult. Then, it is convenient to develop an accurate model describing the SRM. Furthermore, it is always operated in the magnetically saturated mode to maximize the energy transfer. Accordingly, it is shown that the SRM can be accurately described by a generalized polynomial Hammerstein model, i.e., the parallel connection of several Hammerstein models having polynomial nonlinearity. Presently an analytical identification method is developed using a chirp excitation signal. Afterward, the parameters of the obtained model have been determined using Finite Element Method analysis. Finally, in order to show the effectiveness of the proposed method, a comparison between the true and estimate models has been performed. The obtained results show that the output responses are very close.Keywords: switched reluctance motor, swept-sine signal, generalized Hammerstein model, nonlinear system
Procedia PDF Downloads 2371387 Spatial Distribution of Cellular Water in Pear Fruit: An Experimental Investigation
Authors: Md. Imran H. Khan, T. Farrell, M. A. Karim
Abstract:
Highly porous and hygroscopic characteristics of pear make it complex to understand the cellular level water distribution. In pear tissue, water is mainly distributed in three different spaces namely, intercellular water, intracellular water, and cell wall water. Understanding of these three types of water in pear tissue is crucial for predicting actual heat and mass transfer during drying. Therefore, the aim of the present study was to investigate the proportion of intercellular water, intracellular water, and cell wall water inside the pear tissue. During this study, Green Anjou Pear was taken for the investigation. The experiment was performed using 1H-NMR- T2 relaxometry. Various types of water component were calculated by using multi-component fits of the T2 relaxation curves. The experimental result showed that in pear tissue 78-82% water exist in intracellular space; 12-16% water in intercellular space and only 2-4% water exist in the cell wall space. The investigated results quantify different types of water in plant-based food tissue. The highest proportion of water exists in intracellular spaces. It was also investigated that the physical properties of pear and the proportion of the different types of water has a strong relationship. Cell wall water depends on the proportion of solid in the sample tissue whereas free water depends on the porosity of the material.Keywords: intracellular water, intercellular water, cell wall water, physical property, pear
Procedia PDF Downloads 2531386 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 1551385 Optimisation of Nitrogen as a Protective Gas via the Alternating Shielding Gas Technique in the Gas Metal Arc Welding Process
Authors: M. P. E. E Silva, A. M. Galloway, A. I. Toumpis
Abstract:
An increasing concern exists in the welding industry in terms of faster joining processes. Methods such as the alternation between shielding gases such Ar, CO₂ and He have been able to provide improved penetration of the joint, reduced heat transfer to the workpiece, and increased travel speeds of the welding torch. Nitrogen as a shielding gas is not desirable due to its reactive behavior within the arc plasma, being absorbed by the molten pool during the welding process. Below certain amounts, nitrogen is not harmful. However, the nitrogen threshold is reduced during the solidification of the joint, and if its subsequent desorption is not completed on time, gas entrapment and blowhole formation may occur. The present study expanded the use of the alternating shielding gas method in the gas metal arc welding (GMAW) process by alternately supplying Ar/5%N₂ and He. Improvements were introduced in terms of joint strength and grain refinement. Microstructural characterization findings showed porosity-free welds with reduced inclusion formation while mechanical tests such as tensile and bend tests confirmed the reinforcement of the joint by the addition of nitrogen. Additionally, significant reductions of the final distortion of the workpiece were found after the welding procedure as well as decreased heat affected zones and temperatures of the weld.Keywords: alternating shielding gas method, GMAW, grain refinement, nitrogen, porosity, mechanical testing
Procedia PDF Downloads 1101384 Text Emotion Recognition by Multi-Head Attention based Bidirectional LSTM Utilizing Multi-Level Classification
Authors: Vishwanath Pethri Kamath, Jayantha Gowda Sarapanahalli, Vishal Mishra, Siddhesh Balwant Bandgar
Abstract:
Recognition of emotional information is essential in any form of communication. Growing HCI (Human-Computer Interaction) in recent times indicates the importance of understanding of emotions expressed and becomes crucial for improving the system or the interaction itself. In this research work, textual data for emotion recognition is used. The text being the least expressive amongst the multimodal resources poses various challenges such as contextual information and also sequential nature of the language construction. In this research work, the proposal is made for a neural architecture to resolve not less than 8 emotions from textual data sources derived from multiple datasets using google pre-trained word2vec word embeddings and a Multi-head attention-based bidirectional LSTM model with a one-vs-all Multi-Level Classification. The emotions targeted in this research are Anger, Disgust, Fear, Guilt, Joy, Sadness, Shame, and Surprise. Textual data from multiple datasets were used for this research work such as ISEAR, Go Emotions, Affect datasets for creating the emotions’ dataset. Data samples overlap or conflicts were considered with careful preprocessing. Our results show a significant improvement with the modeling architecture and as good as 10 points improvement in recognizing some emotions.Keywords: text emotion recognition, bidirectional LSTM, multi-head attention, multi-level classification, google word2vec word embeddings
Procedia PDF Downloads 1741383 Inclusive Design for Regaining Lost Identity: Accessible, Aesthetic and Effortless Clothing
Authors: S. Tandon, A. Oussoren
Abstract:
Clothing is a need for all humans. Besides serving the commonly understood function of protection, it also is a means of self-expression and adornment. However, most clothing for people with disabilities is developed to respond to their functional needs merely. Such clothing aggravates feelings of inadequacy and lowers their self-esteem. Investigations into apparel-related barriers faced by women with disabilities and their expectations and desires about clothing pointed to a huge void in terms of well-designed inclusive clothing. The incredible stories and experiences shared by the participants in this research highlighted the fact that people with disabilities wanted to feel, dress, and look at how they wanted to look by wearing what they wanted to wear. Clothing should be about self-expression – reflecting their moods, taste, and style and not limited to fulfilling merely their functional needs. Inclusive Design for Regaining Lost Identity was undertaken to design and develop accessible clothing that is inclusive and fashionable to foster psycho-social well-being and to enhance the self-esteem of women with disabilities. The research explored inclusive design solutions for the saree – a traditional Indian garment for women. The saree is an elaborate garment that requires precise draping, which makes the saree complicated to wear and inconvenient to carry, particularly for women with physical disabilities. For many women in India, the saree remains the customary dress, especially for work and occasions, yet minimal advancement has been made to enhance its accessibility and ease of use. The project followed a qualitative research approach whilst incorporating a combination of methods, which consisted of a questionnaire, an interview, and co-creation workshops. The research adhered to the principles of applied research such that the designed products aim to solve a problem that is functional and purposeful. In order to reduce the complications and to simplify the wrapping of the garment fabric around the body, different combinations of pre-stitching of the layers of the saree were created to investigate the outcomes. The technology of 3D drawing and printing was employed to develop feasible fasteners keeping in mind the participants’ movement limitations and to enhance their agency with these newly designed fasteners. The underlying principle of the project is that every individual should be able to access life the way they wish to and should not have to compromise their desires due to their disability.Keywords: accessibility, co-creation, design ethics, inclusive
Procedia PDF Downloads 1141382 A Comparative Study on Deep Learning Models for Pneumonia Detection
Authors: Hichem Sassi
Abstract:
Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.Keywords: deep learning, computer vision, pneumonia, models, comparative study
Procedia PDF Downloads 641381 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 421380 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework
Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin
Abstract:
During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.Keywords: artificial intelligence, COVID-19, depression detection, psychiatric disorder
Procedia PDF Downloads 1311379 Comparative Study of Concrete Filled Steel I-Girder Bridge with Conventional Type of Bridge
Authors: Waheed Ahmad Safi, Shunichi Nakamura, Abdul Habib Ghaforzai
Abstract:
Steel and concrete composite bridge with concrete filled steel I-girder (CFIG) was proposed and FEM and laboratory tests were conducted to analysis bending and shear behavior. The proposed form of structural steel I-section is mainly used at the intermediate support zone by placing infilled concrete into the top and bottom flanges of steel I-section to resist negative bending moment. The bending and shear tests were carried out to find out the significance of CFIG section. The result for test showing that the bending and shear capacity of proposed CFIG is at least 3 times and 2 times greater than conventional steel I-section (IG) respectively. Finite element study was also carried out to ensure the result for laboratory tests due to bending and shear behavior and load transfer behavior of proposed structural form. Finite element result result agreed the test result. A design example was carried out for a four-span continuous highway bridge and design method was established.Keywords: bending strength, concrete filled steel I-girder, steel I-girder, FEM, limit states design and shear strength
Procedia PDF Downloads 1301378 Developing Alternatives: Citizens Perspectives on Causes and Ramification of Political Conflict in Ivory Coast from 2002 - 2009
Authors: Suaka Yaro
Abstract:
This article provides an alternative examination of the causes and the ramifications of the Ivorian political conflict from 2002 to 2009. The researcher employed a constructivist epistemology and qualitative study based upon fieldwork in different African cities interviewing Ivorians outside and within Ivory Coast. A purposive sampling of fourteen participants was selected. A purposive sampling was used to select fourteen respondents. The respondents were selected based on their involvement in Ivorian conflict. Their experiences on the causes and effects of the conflict were tapped for analysis. Qualitative methodology was used for the study. The data collection instruments were semi-structured interview questions, open-ended semi-structured questionnaire, and documentary analysis. The perceptions of these participants on the causes, effects and the possible solution to the endemic conflict in their homeland hold key perspectives that have hitherto been ignored in the whole debate about the Ivorian political conflict and its legacies. Finally, from the synthesized findings of the investigation, the researcher concluded that the analysed data revealed that the causes of the conflict were competition for scarce resources, bad governance, media incitement, xenophobia, incessant political power struggle and the proliferation of small firearms entering the country. The effects experienced during the conflict were the human rights violation, destruction of property including UN premises and displaced people both internally and externally. Some recommendations made include: Efforts should be made by the government to strengthen good relationship among different ethnic groups and help them adapt to new challenges that confront democratic developments in the country. The government should organise the South African style of Truth and Reconciliation Commission to revisit the horrors of the past in order to heal wounds and prevent future occurrence of the conflict. Employment opportunities and other income generating ventures for Ivorian should be created by the government by attracting local and foreign investors. The numerous rebels should be given special skills training in other for them to be able to live among the communities in Ivory Coast. Government of national unity should be encouraged in situation like this.Keywords: displaced, federalism, pluralism, identity politics, grievance, eligibility, greed
Procedia PDF Downloads 2241377 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment
Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara
Abstract:
One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙−) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.Keywords: heterogeneous catalysis, photodegradation, reactive oxygen species, TiO₂ nanowires
Procedia PDF Downloads 1441376 A Cohort Study of Early Cardiologist Consultation by Telemedicine on the Critical Non-STEMI Inpatients
Authors: Wisit Wichitkosoom
Abstract:
Objectives: To find out the more effect of early cardiologist consultation using a simple technology on the diagnosis and early proper management of patients with Non-STEMI at emergency department of district hospitals without cardiologist on site before transferred. Methods: A cohort study was performed in Udonthani general hospital at Udonthani province. From 1 October 2012–30 September 2013 with 892 patients diagnosed with Non-STEMI. All patients mean aged 46.8 years of age who had been transferred because of Non-STEMI diagnosed, over a 12 week period of studied. Patients whose transferred, in addition to receiving proper care, were offered a cardiologist consultation with average time to Udonthani hospital 1.5 hour. The main outcome measure was length of hospital stay, mortality at 3 months, inpatient investigation, and transfer rate to the higher facilitated hospital were also studied. Results: Hospital stay was significantly shorter for those didn’t consult cardiologist (hazard ratio 1.19; approximate 95% CI 1.001 to 1.251; p = 0.039). The 136 cases were transferred to higher facilitated hospital. No statistically significant in overall mortality between the groups (p=0.068). Conclusions: Early cardiologist consultant can reduce length of hospital stay for patients with cardiovascular conditions outside of cardiac center. The new basic technology can apply for the safety patient.Keywords: critical, telemedicine, safety, non STEMI
Procedia PDF Downloads 4181375 A Hybrid Combustion Chamber Design for Diesel Engines
Authors: R. Gopakumar, G. Nagarajan
Abstract:
Both DI and IDI systems possess inherent advantages as well as disadvantages. The objective of the present work is to obtain maximum advantages of both systems by implementing a hybrid design. A hybrid combustion chamber design consists of two combustion chambers viz., the main combustion chamber and an auxiliary combustion chamber. A fuel injector supplies major quantity of fuel to the auxiliary chamber. Due to the increased swirl motion in auxiliary chamber, mixing becomes more efficient which contributes to reduction in soot/particulate emissions. Also, by increasing the fuel injection pressure, NOx emissions can be reduced. The main objective of the hybrid combustion chamber design is to merge the positive features of both DI and IDI combustion chamber designs, which provides increased swirl motion and improved thermal efficiency. Due to the efficient utilization of fuel, low specific fuel consumption can be ensured. This system also aids in increasing the power output for same compression ratio and injection timing as compared with the conventional combustion chamber designs. The present system also reduces heat transfer and fluid dynamic losses which are encountered in IDI diesel engines. Since the losses are reduced, overall efficiency of the engine increases. It also minimizes the combustion noise and NOx emissions in conventional DI diesel engines.Keywords: DI, IDI, hybrid combustion, diesel engines
Procedia PDF Downloads 5331374 Strategies for Good Governance during Crisis in Higher Education
Authors: Naziema B. Jappie
Abstract:
Over the last 23 years leaders in government, political parties and universities have been spending much time on identifying and discussing various gaps in the system that impact systematically on students especially those from historically Black communities. Equity and access to higher education were two critical aspects that featured in achieving the transformation goals together with a funding model for those previously disadvantaged. Free education was not a feasible option for the government. Institutional leaders in higher education face many demands on their time and resources. Often, the time for crisis management planning or consideration of being proactive and preventative is not a standing agenda item. With many issues being priority in academia, people become complacent and think that crisis may not affect them or they will cross the bridge when they get to it. Historically South Africa has proven to be a country of militancy, strikes and protests in most industries, some leading to disastrous outcomes. Higher education was not different between October 2015 and late 2016 when the #Rhodes Must Fall which morphed into the # Fees Must Fall protest challenged the establishment, changed the social fabric of universities, bringing the sector to a standstill. Some institutional leaders and administrators were better at handling unexpected, high-consequence situations than others. At most crisis leadership is viewed as a situation more than a style of leadership which is usually characterized by crisis management. The objective of this paper is to show how institutions managed catastrophes of disastrous proportions, down through unexpected incidents of 2015/2016. The content draws on the vast past crisis management experience of the presenter and includes the occurrences of the recent protests giving an event timeline. Using responses from interviews with institutional leaders and administrators as well as students will ensure first-hand information on their experiences and the outcomes. Students have tasted the power of organized action and they demand immediate change, if not the revolt will continue. This paper will examine the approaches that guided institutional leaders and their crisis teams and sector crisis response. It will further expand on whether the solutions effectively changed governance in higher education or has it minimized the need for more protests. The conclusion will give an insight into the future of higher education in South Africa from a leadership perspective.Keywords: crisis, governance, intervention, leadership, strategies, protests
Procedia PDF Downloads 1471373 Coefficient of Performance (COP) Optimization of an R134a Cross Vane Expander Compressor Refrigeration System
Authors: Y. D. Lim, K. S. Yap, K. T. Ooi
Abstract:
Cross Vane Expander Compressor (CVEC) is a newly invented expander-compressor combined unit, where it is introduced to replace the compressor and the expansion valve in traditional refrigeration system. The mathematical model of CVEC has been developed to examine its performance, and it was found that the energy consumption of a conventional refrigeration system was reduced by as much as 18%. It is believed that energy consumption can be further reduced by optimizing the device. In this study, the coefficient of performance (COP) of CVEC has been optimized under predetermined operational parameters and constrained main design parameters. Several main design parameters of CVEC were selected to be the variables, and the optimization was done with theoretical model in a simulation program. The theoretical model consists of geometrical model, dynamic model, heat transfer model and valve dynamics model. Complex optimization method, which is a constrained, direct search and multi-variables method was used in the study. As a result, the optimization study suggested that with an appropriate combination of design parameters, a 58% COP improvement in CVEC R134a refrigeration system is possible.Keywords: COP, cross vane expander-compressor, CVEC, design, simulation, refrigeration system, air-conditioning, R134a, multi variables
Procedia PDF Downloads 3341372 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models
Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri
Abstract:
Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation
Procedia PDF Downloads 741371 Silent Culminations in Operas Aida and Mazeppa
Authors: Stacy Jarvis
Abstract:
A silent culmination is a musical technique that creates or increases tension in a piece of music. It is a type of cadence in which the music gradually builds to a climax but suddenly stops without any resolution. This technique can create suspense and anticipation in the listener as they wait to find out what will happen next. It can also draw attention to a particular element of the music, such as a particular instrument or vocal line. Silent culminations can evoke a sense of mystery or ambiguity by not resolving the tension created. This technique has been used by composers of all musical genres, from classical to jazz, as well as in film scores. Silent culminations can also make a piece of music more dynamic and exciting. Verdi’s Aida is a classic example of the use of silent culminations to create tension and suspense. Throughout the opera, Verdi uses a technique of gradually building to a climax, only to abruptly stop without any resolution. This technique brings out the story's drama and intensity and creates anticipation for the climactic moments. For example, at the end of the second act, Verdi reaches a crescendo of tension as Aida and Radamès swear their undying love for one another, only to stop with a moment of silence. This technique also helps to draw attention to the important moments in the story, such as the duets between Aida and Radamès. By stopping the music just before it resolves, Verdi can create an atmosphere of anticipation and suspense that carries through to the opera's end. Silent culminations are used greatly in Aida and are integral to Verdi’s dramatic style. In his symphonic poem Mazeppa, Tchaikovsky uses silent culminations to emphasize the piece's drama and powerful emotions. The piece begins with a gentle introduction but quickly builds to a powerful climax. Throughout the piece, Tchaikovsky uses silent culminations to create tension and suspense, drawing the listener in and heightening the intensity of the music 2. The most dramatic moment of the piece comes when the music builds to a frantic climax and then suddenly cuts out, leaving the listener hanging in anticipation of what will happen next. This technique creates an intense atmosphere and leaves the listener eager to hear what comes next. In addition, the use of silent culminations helps to emphasize the strong emotions of the piece, such as fear, horror, and despair. By not resolving the tension with a resolution, the listener is left with a feeling of uneasiness and uncertainty that helps to convey the story of Mazeppa’s tragic fate.Keywords: Verdi, Tchaikovsky, opera, culmination
Procedia PDF Downloads 94