Search results for: efficient DMUs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5037

Search results for: efficient DMUs

1077 A Single-Channel BSS-Based Method for Structural Health Monitoring of Civil Infrastructure under Environmental Variations

Authors: Yanjie Zhu, André Jesus, Irwanda Laory

Abstract:

Structural Health Monitoring (SHM), involving data acquisition, data interpretation and decision-making system aim to continuously monitor the structural performance of civil infrastructures under various in-service circumstances. The main value and purpose of SHM is identifying damages through data interpretation system. Research on SHM has been expanded in the last decades and a large volume of data is recorded every day owing to the dramatic development in sensor techniques and certain progress in signal processing techniques. However, efficient and reliable data interpretation for damage detection under environmental variations is still a big challenge. Structural damages might be masked because variations in measured data can be the result of environmental variations. This research reports a novel method based on single-channel Blind Signal Separation (BSS), which extracts environmental effects from measured data directly without any prior knowledge of the structure loading and environmental conditions. Despite the successful application in audio processing and bio-medical research fields, BSS has never been used to detect damage under varying environmental conditions. This proposed method optimizes and combines Ensemble Empirical Mode Decomposition (EEMD), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) together to separate structural responses due to different loading conditions respectively from a single channel input signal. The ICA is applying on dimension-reduced output of EEMD. Numerical simulation of a truss bridge, inspired from New Joban Line Arakawa Railway Bridge, is used to validate this method. All results demonstrate that the single-channel BSS-based method can recover temperature effects from mixed structural response recorded by a single sensor with a convincing accuracy. This will be the foundation of further research on direct damage detection under varying environment.

Keywords: damage detection, ensemble empirical mode decomposition (EEMD), environmental variations, independent component analysis (ICA), principal component analysis (PCA), structural health monitoring (SHM)

Procedia PDF Downloads 310
1076 Preliminary Experience in Multiple Green Health Hospital Construction

Authors: Ming-Jyh Chen, Wen-Ming Huang, Yi-Chu Liu, Li-Hui Yang

Abstract:

Introduction: Social responsibility is the key to sustainable organizational development. Under the ground Green Health Hospital Declaration signed by our superintendent, we have launched comprehensive energy conservation management in medical services, the community, and the staff’s life. To execute environment-friendly promotion with robust strategies, we build up a low-carbon medical system and community with smart green public construction promotion as well as intensifying energy conservation education and communication. Purpose/Methods: With the support of the board and the superintendent, we construct an energy management team, commencing with an environment-friendly system, management, education, and ISO 50001 energy management system; we have ameliorated energy performance and energy efficiency and continuing. Results: In the year 2021, we have achieved multiple goals. The energy management system efficiently controls diesel, natural gas, and electricity usage. About 5% of the consumption is saved when compared to the numbers from 2018 and 2021. Our company develops intelligent services and promotes various paperless electronic operations to provide people with a vibrant and environmentally friendly lifestyle. The goal is to save 68.6% on printing and photocopying by reducing 35.15 million sheets of paper yearly. We strengthen the concept of environmental protection classification among colleagues. In the past two years, the amount of resource recycling has reached more than 650 tons, and the resource recycling rate has reached 70%. The annual growth rate of waste recycling is about 28 metric tons. Conclusions: To build a green medical system with “high efficacy, high value, low carbon, low reliance,” energy stewardship, economic prosperity, and social responsibility are our principles when it comes to formulation of energy conservation management strategies, converting limited sources to efficient usage, developing clean energy, and continuing with sustainable energy.

Keywords: energy efficiency, environmental education, green hospital, sustainable development

Procedia PDF Downloads 84
1075 Towards Learning Query Expansion

Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier

Abstract:

The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.

Keywords: supervised leaning, classification, query expansion, association rules

Procedia PDF Downloads 330
1074 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query

Procedia PDF Downloads 159
1073 Thermoelectric Cooler As A Heat Transfer Device For Thermal Conductivity Test

Authors: Abdul Murad Zainal Abidin, Azahar Mohd, Nor Idayu Arifin, Siti Nor Azila Khalid, Mohd Julzaha Zahari Mohamad Yusof

Abstract:

A thermoelectric cooler (TEC) is an electronic component that uses ‘peltier’ effect to create a temperature difference by transferring heat between two electrical junctions of two different types of materials. TEC can also be used for heating by reversing the electric current flow and even power generation. A heat flow meter (HFM) is an equipment for measuring thermal conductivity of building materials. During the test, water is used as heat transfer medium to cool the HFM. The existing re-circulating cooler in the market is very costly, and the alternative is to use piped tap water to extract heat from HFM. However, the tap water temperature is insufficiently low to enable heat transfer to take place. The operating temperature for isothermal plates in the HFM is 40°C with the range of ±0.02°C. When the temperature exceeds the operating range, the HFM stops working, and the test cannot be conducted. The aim of the research is to develop a low-cost but energy-efficient TEC prototype that enables heat transfer without compromising the function of the HFM. The objectives of the research are a) to identify potential of TEC as a cooling device by evaluating its cooling rate and b) to determine the amount of water savings using TEC compared to normal tap water. Four (4) peltier sets were used, with two (2) sets used as pre-cooler. The cooling water is re-circulated from the reservoir into HFM using a water pump. The thermal conductivity readings, the water flow rate, and the power consumption were measured while the HFM was operating. The measured data has shown decrease in average cooling temperature difference (ΔTave) of 2.42°C and average cooling rate of 0.031°C/min. The water savings accrued from using the TEC is projected to be 8,332.8 litres/year with the application of water re-circulation. The results suggest the prototype has achieved required objectives. Further research will include comparing the cooling rate of TEC prototype against conventional tap water and to optimize its design and performance in terms of size and portability. The possible application of the prototype could also be expanded to portable storage for medicine and beverages.

Keywords: energy efficiency, thermoelectric cooling, pre-cooling device, heat flow meter, sustainable technology, thermal conductivity

Procedia PDF Downloads 158
1072 Biosynthesis of Tumor Inhibitory Podophyllotoxin, Quercetin and Kaempferol from Callogenesis of Dysosma Pleiantha (Hance) Woodson

Authors: Palaniyandi Karuppaiya, Hsin Sheng Tsay, Fang Chen

Abstract:

Medicinal herbs do represent a huge and noteworthy reservoir for novel anticancer drugs discovery. Dysosma pleiantha (Hance) Woodson (Berberidaceae), one of the oldest traditional Chinese medicinal herb, highly prized by the mountain tribes of Taiwan and China for its medicinal properties contained pharmaceutically important antitumor compounds podophyllotoxin, quercetin and kaempferol. Among lignans, podophyllotoxin is an active antitumor compound and has now been modified to produce clinically useful drugs etoposide and teniposide. In recent years, natural populations of D. peliantha have declined considerably due to anthropogenic activities such as habitat destruction and commercial exploitation for medicinal applications. As to its overall conservation status, D. pleiantha has been ranked as threatened on the China Species Red List. In the present study, an efficient in vitro callus culture system of D. pleiantha was established on Gamborg’s medium with various combinations and concentrations of different auxins and cytokinins under dark condition. Best callus induction was recorded in 2 mg/L 2, 4 - Dichlorophenoxyacetic acid (2,4-D) along with 0.2 mg/L kinetin and the maximum callus proliferation was achieved at 1 mg/L 2,4-D. Among the explants tested, maximum callus induction (86 %) was achieved from tender leaves. Hence, in subsequent experiments, leaf callus was further investigated for suitable callus biomass and production level of anticancer compounds under the influence of different additives. A maximum fresh callus biomass (8.765 g) was recorded in callus proliferation medium contained 500 mg/L casein hydrolysate. High performance liquid chromatography results revealed that the addition of different concentrations of peptone (1, 2 and 4 g/L) in callus proliferation medium enhanced podophyllotoxin (16 fold), quercetin (12 fold) and kaempferol (5 fold) accumulation than control. Thus, the established in vitro callus culture under the influence of different additives may offer an alternative source of enhanced production of podophyllotoxin, kaempferol and quecertin without harming natural plant population.

Keywords: dysosma pleiantha, kaempferol, podophyllotoxin, quercetin

Procedia PDF Downloads 282
1071 The Effect of Transactional Analysis Group Training on Self-Knowledge and Its Ego States (The Child, Parent, and Adult): A Quasi-Experimental Study Applied to Counselors of Tehran

Authors: Mehravar Javid, Sadrieh Khajavi Mazanderani, Kelly Gleischman, Zoe Andris

Abstract:

The present study was conducted with the aim of investigating the effectiveness of transactional analysis group training on self-knowledge and Its dimensions (self, child, and adult) in counselors working in public and private high schools in Tehran. Counseling has become an important job for society, and there is a need for consultants in organizations. Providing better and more efficient counseling is one of the goals of the education system. The personal characteristics of counselors are important for the success of the therapy. In TA, humans have three ego states, which are named parent, adult, and child, and the main concept in the transactional analysis is self-state, which means a stable feeling and pattern of thinking related to behavioral patterns. Self-knowledge, considered a prerequisite to effective communication, fosters psychological growth, and recognizing it, is pivotal for emotional development, leading to profound insights. The research sample included 30 working counselors (22 women and 8 men) in the academic year 2019-2020 who achieved the lowest scores on the self-knowledge questionnaire. The research method was quasi-experimental with a control group (15 people in the experimental group and 15 people in the control group). The research tool was a self-awareness questionnaire with 29 questions and three subscales (child, parent, and adult Ego state). The experimental group was exposed to transactional analysis training for 10 once-weekly 2-hour sessions; the questionnaire was implemented in both groups (post-test). Multivariate covariance analysis was used to analyze the data. The data showed that the level of self-awareness of counselors who received transactional analysis training is higher than that of counselors who did not receive any training (p<0.01). The result obtained from this analysis shows that transactional analysis training is an effective therapy for enhancing self-knowledge and its subscales (Adult ego state, Parent ego state, and Child ego state). Teaching transactional analysis increases self-knowledge, and self-realization and helps people to achieve independence and remove irresponsibility to improve intra-personal and interpersonal relationships.

Keywords: ego state, group, transactional analysis, self-knowledge

Procedia PDF Downloads 79
1070 Multiscale Process Modeling of Ceramic Matrix Composites

Authors: Marianna Maiaru, Gregory M. Odegard, Josh Kemppainen, Ivan Gallegos, Michael Olaya

Abstract:

Ceramic matrix composites (CMCs) are typically used in applications that require long-term mechanical integrity at elevated temperatures. CMCs are usually fabricated using a polymer precursor that is initially polymerized in situ with fiber reinforcement, followed by a series of cycles of pyrolysis to transform the polymer matrix into a rigid glass or ceramic. The pyrolysis step typically generates volatile gasses, which creates porosity within the polymer matrix phase of the composite. Subsequent cycles of monomer infusion, polymerization, and pyrolysis are often used to reduce the porosity and thus increase the durability of the composite. Because of the significant expense of such iterative processing cycles, new generations of CMCs with improved durability and manufacturability are difficult and expensive to develop using standard Edisonian approaches. The goal of this research is to develop a computational process-modeling-based approach that can be used to design the next generation of CMC materials with optimized material and processing parameters for maximum strength and efficient manufacturing. The process modeling incorporates computational modeling tools, including molecular dynamics (MD), to simulate the material at multiple length scales. Results from MD simulation are used to inform the continuum-level models to link molecular-level characteristics (material structure, temperature) to bulk-level performance (strength, residual stresses). Processing parameters are optimized such that process-induced residual stresses are minimized and laminate strength is maximized. The multiscale process modeling method developed with this research can play a key role in the development of future CMCs for high-temperature and high-strength applications. By combining multiscale computational tools and process modeling, new manufacturing parameters can be established for optimal fabrication and performance of CMCs for a wide range of applications.

Keywords: digital engineering, finite elements, manufacturing, molecular dynamics

Procedia PDF Downloads 100
1069 Matrix-Based Linear Analysis of Switched Reluctance Generator with Optimum Pole Angles Determination

Authors: Walid A. M. Ghoneim, Hamdy A. Ashour, Asmaa E. Abdo

Abstract:

In this paper, linear analysis of a Switched Reluctance Generator (SRG) model is applied on the most common configurations (4/2, 6/4 and 8/6) for both conventional short-pitched and fully-pitched designs, in order to determine the optimum stator/rotor pole angles at which the maximum output voltage is generated per unit excitation current. This study is focused on SRG analysis and design as a proposed solution for renewable energy applications, such as wind energy conversion systems. The world’s potential to develop the renewable energy technologies through dedicated scientific researches was the motive behind this study due to its positive impact on economy and environment. In addition, the problem of rare earth metals (Permanent magnet) caused by mining limitations, banned export by top producers and environment restrictions leads to the unavailability of materials used for rotating machines manufacturing. This challenge gave authors the opportunity to study, analyze and determine the optimum design of the SRG that has the benefit to be free from permanent magnets, rotor windings, with flexible control system and compatible with any application that requires variable-speed operation. In addition, SRG has been proved to be very efficient and reliable in both low-speed or high-speed applications. Linear analysis was performed using MATLAB simulations based on the (Modified generalized matrix approach) of Switched Reluctance Machine (SRM). About 90 different pole angles combinations and excitation patterns were simulated through this study, and the optimum output results for each case were recorded and presented in detail. This procedure has been proved to be applicable for any SRG configuration, dimension and excitation pattern. The delivered results of this study provide evidence for using the 4-phase 8/6 fully pitched SRG as the main optimum configuration for the same machine dimensions at the same angular speed.

Keywords: generalized matrix approach, linear analysis, renewable applications, switched reluctance generator

Procedia PDF Downloads 201
1068 The Impact of Civil Disobedience on Tourist and Local Residents in Cameroon: Case Study the North West Region

Authors: Zita Fomukong Andam

Abstract:

Civil disobedience according to John Rawls (1971) is a public nonviolent and conscientious breach of laws undertaken with the aim of bringing about a change in government laws and policies. Thus individuals who engage themselves in such an act are aware and ready to accept the consequences of their actions. Cameroon more precisely the Northwest and the Southwest region which are the English part are considered as one of the societies facing this act of civil disobedience. It has been a tormenting issue in the country affecting its economy and the tourism sector. This is because these regions known as one of the best touristic sites of the country is not more considered as a destination to be visited by tourist because of its insecurities. Many commercial buildings have been burning down, leaving many young Cameroonians jobless. Education has been hindered, and youths are forced to relocate to nearby cities in order to continue their education. This crisis has created a lot of insecurity throughout the regions thus youths now have one common interest to travel abroad either to seek refuge or to continue their education and even search for jobs. The purpose of this research is to assess the issue of civil disobedience, trying to understand why it is affected only by a specific region in a country while the others are doing fine. A deep research discourse was conducted with randomly selected individuals aging between 15 to 40 years living both in the destination and abroad. Survey questionnaires and interviews were carried out as a method to collect data. The results show that this crisis has impacted the local residents psychologically and has injected a lot of fears into tourists and they are no more willing to visit the destination. In addition, it has brought a negative impact on the county’s economy since tourism is considered as the key sector in a country’s economy. On the other hand, the results showed that many local residents have remained jobless, others have lost family members, and the daily routine life has been affected. Understanding these results, the national government and international bodies might be able to propose possible and efficient solutions in order to attain stability and security in this region.

Keywords: civil disobedience, economic impact, local residents, tourist

Procedia PDF Downloads 120
1067 Enhanced Cytotoxic Effect of Expanded NK Cells with IL12 and IL15 from Leukoreduction Filter on K562 Cell Line Exhibits Comparable Cytotoxicity to Whole Blood

Authors: Abdulbaset Mazarzaei

Abstract:

Natural killer (NK) cells are innate immune effectors that play a pivotal role in combating tumors and infected cells. In recent years, the therapeutic potential of NK cells has gained significant attention due to their remarkable cytotoxic ability. This study focuses on investigating the cytotoxic effect of expanded NK cells enriched with interleukin 12 (IL12) and interleukin 15 (IL15), derived from the leukoreduction filter, on the K562 cell line. Firstly, NK cells were isolated from whole blood samples obtained from healthy volunteers. These cells were subsequently expanded ex vivo using a combination of feeder cells, IL12, and IL15. The expanded NK cells were then harvested and assessed for their cytotoxicity against K562, a well-established human chronic myelogenous leukemia cell line. The cytotoxicity was evaluated using flow cytometry assay. Results demonstrate that the expanded NK cells significantly exhibited enhanced cytotoxicity against K562 cells compared to non-expanded NK cells. Interestingly, the expanded NK cells derived specifically from IL12 and IL15-enriched leukoreduction filters showed a robust cytotoxic effect similar to the whole blood-derived NK cells. These findings suggest that IL12 and IL15 in the leukoreduction filter are crucial in promoting NK cell cytotoxicity. Furthermore, the expanded NK cells displayed relatively similar cytotoxicity profiles to whole blood-derived NK cells, indicating their comparable capability in targeting and eliminating tumor cells. This observation is of significant relevance as expanded NK cells from the leukoreduction filter could potentially serve as a readily accessible and efficient source for adoptive immunotherapy. In conclusion, this study highlights the significant cytotoxic effect of expanded NK cells enriched with IL12 and IL15 obtained from the leukoreduction filter on the K562 cell line. Moreover, it emphasizes that these expanded NK cells exhibit comparable cytotoxicity to whole blood-derived NK cells. These findings reinforce the potential clinical utility of using expanded NK cells from the leukoreduction filter as an effective strategy in adoptive immunotherapy for the treatment of cancer. Further studies are warranted to explore the broader implications of this approach in clinical settings.

Keywords: natural killer (NK) cells, Cytotoxicity, Leukoreduction filter, IL-12 and IL-15 Cytokines

Procedia PDF Downloads 70
1066 Arsenic (III) Removal by Zerovalent Iron Nanoparticles Synthesized with the Help of Tea Liquor

Authors: Tulika Malviya, Ritesh Chandra Shukla, Praveen Kumar Tandon

Abstract:

Traditional methods of synthesis are hazardous for the environment and need nature friendly processes for the treatment of industrial effluents and contaminated water. Use of plant parts for the synthesis provides an efficient alternative method. In this paper, we report an ecofriendly and nonhazardous biobased method to prepare zerovalent iron nanoparticles (ZVINPs) using the liquor of commercially available tea. Tea liquor as the reducing agent has many advantages over other polymers. Unlike other polymers, the polyphenols present in tea extract are nontoxic and water soluble at room temperature. In addition, polyphenols can form complexes with metal ions and thereafter reduce the metals. Third, tea extract contains molecules bearing alcoholic functional groups that can be exploited for reduction as well as stabilization of the nanoparticles. Briefly, iron nanoparticles were prepared by adding 2.0 g of montmorillonite K10 (MMT K10) to 5.0 mL of 0.10 M solution of Fe(NO3)3 to which an equal volume of tea liquor was then added drop wise over 20 min with constant stirring. The color of the mixture changed from whitish yellow to black, indicating the formation of iron nanoparticles. The nanoparticles were adsorbed on montmorillonite K10, which is safe and aids in the separation of hazardous arsenic species simply by filtration. Particle sizes ranging from 59.08±7.81 nm were obtained which is confirmed by using different instrumental analyses like IR, XRD, SEM, and surface area studies. Removal of arsenic was done via batch adsorption method. Solutions of As(III) of different concentrations were prepared by diluting the stock solution of NaAsO2 with doubly distilled water. The required amount of in situ prepared ZVINPs supported on MMT K10 was added to a solution of desired strength of As (III). After the solution had been stirred for the preselected time, the solid mass was filtered. The amount of arsenic [in the form of As (V)] remaining in the filtrate was measured using ion chromatograph. Stirring of contaminated water with zerovalent iron nanoparticles supported on montmorillonite K10 for 30 min resulted in up to 99% removal of arsenic as As (III) from its solution at both high and low pH (2.75 and 11.1). It was also observed that, under similar conditions, montmorillonite K10 alone provided only <10% removal of As(III) from water. Adsorption at low pH with precipitation at higher pH has been proposed for As(III) removal.

Keywords: arsenic removal, montmorillonite K10, tea liquor, zerovalent iron nanoparticles

Procedia PDF Downloads 133
1065 Empirical Analysis of the Effect of Cloud Movement in a Basic Off-Grid Photovoltaic System: Case Study Using Transient Response of DC-DC Converters

Authors: Asowata Osamede, Christo Pienaar, Johan Bekker

Abstract:

Mismatch in electrical energy (power) or outage from commercial providers, in general, does not promote development to the public and private sector, these basically limit the development of industries. The necessity for a well-structured photovoltaic (PV) system is of importance for an efficient and cost-effective monitoring system. The major renewable energy potential on earth is provided from solar radiation and solar photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduction on the dependence on fossil fuels. Solar arrays which consist of various PV module should be operated at the maximum power point in order to reduce the overall cost of the system. So power regulation and conditioning circuits should be incorporated in the set-up of a PV system. Power regulation circuits used in PV systems include maximum power point trackers, DC-DC converters and solar chargers. Inappropriate choice of power conditioning device in a basic off-grid PV system can attribute to power loss, hence the need for a right choice of power conditioning device to be coupled with the system of the essence. This paper presents the design and implementation of a power conditioning devices in order to improve the overall yield from the availability of solar energy and the system’s total efficiency. The power conditioning devices taken into consideration in the project includes the Buck and Boost DC-DC converters as well as solar chargers with MPPT. A logging interface circuit (LIC) is designed and employed into the system. The LIC is designed on a printed circuit board. It basically has DC current signalling sensors, specifically the LTS 6-NP. The LIC is consequently required to program the voltages in the system (these include the PV voltage and the power conditioning device voltage). The voltage is structured in such a way that it can be accommodated by the data logger. Preliminary results which include availability of power as well as power loss in the system and efficiency will be presented and this would be used to draw the final conclusion.

Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation

Procedia PDF Downloads 138
1064 Evaluation of the Efficacy of Surface Hydrophobisation and Properties of Composite Based on Lime Binder with Flax Fillers

Authors: Stanisław Fic, Danuta Barnat-Hunek, Przemysław Brzyski

Abstract:

The aim of the study was to evaluate the possibility of applying modified lime binder together with natural flax fibers and straw to the production of wall blocks to the usage in energy-efficient construction industry and the development of proposals for technological solutions. The following laboratory tests were performed: the analysis of the physical characteristics of the tested materials (bulk density, total porosity, and thermal conductivity), compressive strength, a water droplet absorption test, water absorption of samples, diffusion of water vapor, and analysis of the structure by using SEM. In addition, the process of surface hydrophobisation was analyzed. In the paper, there was examined the effectiveness of two formulations differing in the degree of hydrolytic polycondensation, viscosity and concentration, as these are the factors that determine the final impregnation effect. Four composites, differing in composition, were executed. Composites, as a result of the presence of flax straw and fibers showed low bulk density in the range from 0.44 to 1.29 kg/m3 and thermal conductivity between 0.13 W/mK and 0.22 W/mK. Compressive strength changed in the range from 0,45 MPa to 0,65 MPa. The analysis of results allowed observing the relationship between the formulas and the physical properties of the composites. The results of the effectiveness of hydrophobisation of composites after 2 days showed a decrease in water absorption. Depending on the formulation, after 2 days, the water absorption ratio WH of composites was from 15 to 92% (effectiveness of hydrophobization was suitably from 8 to 85%). In practice, preparations based on organic solvents often cause sealing of surface, hindering the diffusion of water vapor from materials but studies have shown good water vapor permeability by the hydrophobic silicone coating. The conducted pilot study demonstrated the possibility of applying flax composites. The article shows that the reduction of CO2 which is produced in the building process can be affected by using natural materials for the building components whose quality is not inferior as compared to the materials which are commonly used.

Keywords: ecological construction, flax fibers, hydrophobisation, lime

Procedia PDF Downloads 335
1063 Evaluating the Performance of Organic, Inorganic and Liquid Sheep Manure on Growth, Yield and Nutritive Value of Hybrid Napier CO-3

Authors: F. A. M. Safwan, H. N. N. Dilrukshi, P. U. S. Peiris

Abstract:

Less availability of high quality green forages leads to low productivity of national dairy herd of Sri Lanka. Growing grass and fodder to suit the production system is an efficient and economical solution for this problem. CO-3 is placed in a higher category, especially on tillering capacity, green forage yield, regeneration capacity, leaf to stem ratio, high crude protein content, resistance to pests and diseases and free from adverse factors along with other fodder varieties grown within the country. An experiment was designed to determine the effect of organic sheep manure, inorganic fertilizers and liquid sheep manure on growth, yield and nutritive value of CO-3. The study was consisted with three treatments; sheep manure (T1), recommended inorganic fertilizers (T2) and liquid sheep manure (T3) which was prepared using bucket fermentation method and each treatment was consisted with three replicates and those were assigned randomly. First harvest was obtained after 40 days of plant establishment and number of leaves (NL), leaf area (LA), tillering capacity (TC), fresh weight (FW) and dry weight (DW) were recorded and second harvest was obtained after 30 days of first harvest and same set of data were recorded. SPSS 16 software was used for data analysis. For proximate analysis AOAC, 2000 standard methods were used. Results revealed that the plants treated with T1 recorded highest NL, LA, TC, FW and DW and were statistically significant at first and second harvest of CO-3 (p˂ 0.05) and it was found that T1 was statistically significant from T2 and T3. Although T3 was recorded higher than the T2 in almost all growth parameters; it was not statistically significant (p ˃0.05). In addition, the crude protein content was recorded highest in T1 with the value of 18.33±1.61 and was lowest in T2 with the value of 10.82±1.14 and was statistically significant (p˂ 0.05). Apart from this, other proximate composition crude fiber, crude fat, ash, moisture content and dry matter were not statistically significant between treatments (p ˃0.05). In accordance with the results, it was found that the organic fertilizer is the best fertilizer for CO-3 in terms of growth parameters and crude protein content.

Keywords: fertilizer, growth parameters, Hybrid Napier CO-3, proximate composition

Procedia PDF Downloads 294
1062 Bridging Healthcare Information Systems and Customer Relationship Management for Effective Pandemic Response

Authors: Sharda Kumari

Abstract:

As the Covid-19 pandemic continues to leave its mark on the global business landscape, companies have had to adapt to new realities and find ways to sustain their operations amid social distancing measures, government restrictions, and heightened public health concerns. This unprecedented situation has placed considerable stress on both employees and employers, underscoring the need for innovative approaches to manage the risks associated with Covid-19 transmission in the workplace. In response to these challenges, the pandemic has accelerated the adoption of digital technologies, with an increasing preference for remote interactions and virtual collaboration. Customer relationship management (CRM) systems have risen to prominence as a vital resource for organizations navigating the post-pandemic world, providing a range of benefits that include acquiring new customers, generating insightful consumer data, enhancing customer relationships, and growing market share. In the context of pandemic management, CRM systems offer three primary advantages: (1) integration features that streamline operations and reduce the need for multiple, costly software systems; (2) worldwide accessibility from any internet-enabled device, facilitating efficient remote workforce management during a pandemic; and (3) the capacity for rapid adaptation to changing business conditions, given that most CRM platforms boast a wide array of remotely deployable business growth solutions, a critical attribute when dealing with a dispersed workforce in a pandemic-impacted environment. These advantages highlight the pivotal role of CRM systems in helping organizations remain resilient and adaptive in the face of ongoing global challenges.

Keywords: healthcare, CRM, customer relationship management, customer experience, digital transformation, pandemic response, patient monitoring, patient management, healthcare automation, electronic health record, patient billing, healthcare information systems, remote workforce, virtual collaboration, resilience, adaptable business models, integration features, CRM in healthcare, telehealth, pandemic management

Procedia PDF Downloads 105
1061 Enhanced Tensor Tomographic Reconstruction: Integrating Absorption, Refraction and Temporal Effects

Authors: Lukas Vierus, Thomas Schuster

Abstract:

A general framework is examined for dynamic tensor field tomography within an inhomogeneous medium characterized by refraction and absorption, treated as an inverse source problem concerning the associated transport equation. Guided by Fermat’s principle, the Riemannian metric within the specified domain is determined by the medium's refractive index. While considerable literature exists on the inverse problem of reconstructing a tensor field from its longitudinal ray transform within a static Euclidean environment, limited inversion formulas and algorithms are available for general Riemannian metrics and time-varying tensor fields. It is established that tensor field tomography, akin to an inverse source problem for a transport equation, persists in dynamic scenarios. Framing dynamic tensor tomography as an inverse source problem embodies a comprehensive perspective within this domain. Ensuring well-defined forward mappings necessitates establishing existence and uniqueness for the underlying transport equations. However, the bilinear forms of the associated weak formulations fail to meet the coercivity condition. Consequently, recourse to viscosity solutions is taken, demonstrating their unique existence within suitable Sobolev spaces (in the static case) and Sobolev-Bochner spaces (in the dynamic case), under a specific assumption restricting variations in the refractive index. Notably, the adjoint problem can also be reformulated as a transport equation, with analogous results regarding uniqueness. Analytical solutions are expressed as integrals over geodesics, facilitating more efficient evaluation of forward and adjoint operators compared to solving partial differential equations. Certainly, here's the revised sentence in English: Numerical experiments are conducted using a Nesterov-accelerated Landweber method, encompassing various fields, absorption coefficients, and refractive indices, thereby illustrating the enhanced reconstruction achieved through this holistic modeling approach.

Keywords: attenuated refractive dynamic ray transform of tensor fields, geodesics, transport equation, viscosity solutions

Procedia PDF Downloads 55
1060 Revolutionizing Legal Drafting: Leveraging Artificial Intelligence for Efficient Legal Work

Authors: Shreya Poddar

Abstract:

Legal drafting and revising are recognized as highly demanding tasks for legal professionals. This paper introduces an approach to automate and refine these processes through the use of advanced Artificial Intelligence (AI). The method employs Large Language Models (LLMs), with a specific focus on 'Chain of Thoughts' (CoT) and knowledge injection via prompt engineering. This approach differs from conventional methods that depend on comprehensive training or fine-tuning of models with extensive legal knowledge bases, which are often expensive and time-consuming. The proposed method incorporates knowledge injection directly into prompts, thereby enabling the AI to generate more accurate and contextually appropriate legal texts. This approach substantially decreases the necessity for thorough model training while preserving high accuracy and relevance in drafting. Additionally, the concept of guardrails is introduced. These are predefined parameters or rules established within the AI system to ensure that the generated content adheres to legal standards and ethical guidelines. The practical implications of this method for legal work are considerable. It has the potential to markedly lessen the time lawyers allocate to document drafting and revision, freeing them to concentrate on more intricate and strategic facets of legal work. Furthermore, this method makes high-quality legal drafting more accessible, possibly reducing costs and expanding the availability of legal services. This paper will elucidate the methodology, providing specific examples and case studies to demonstrate the effectiveness of 'Chain of Thoughts' and knowledge injection in legal drafting. The potential challenges and limitations of this approach will also be discussed, along with future prospects and enhancements that could further advance legal work. The impact of this research on the legal industry is substantial. The adoption of AI-driven methods by legal professionals can lead to enhanced efficiency, precision, and consistency in legal drafting, thereby altering the landscape of legal work. This research adds to the expanding field of AI in law, introducing a method that could significantly alter the nature of legal drafting and practice.

Keywords: AI-driven legal drafting, legal automation, futureoflegalwork, largelanguagemodels

Procedia PDF Downloads 72
1059 Cauda Equina Syndrome: An Audit on Referral Adequacy and its Impact on Delay to Surgery

Authors: David Mafullul, Jiang Lei, Edward Goacher, Jibin Francis

Abstract:

PURPOSE: Timely decompressive surgery for cauda equina syndrome (CES) is dependent on efficient referral pathways for patients presenting at local primary or secondary centres to tertiary spinal centres in the United Kingdom (UK). Identifying modifiable points of delay within this process is important as minimising time between presentation and surgery may improve patient outcomes. This study aims to analyse whether adequacy of referral impacts on time to surgery in CES. MATERIALS AND METHODS: Data from all cases of confirmed CES referred to a single tertiary UK hospital between August 2017 to December 2019, via a suspected CES e-referral pathway, were obtained retrospectively. Referral adequacy was defined by the inclusion of sufficient information to determine the presence or absence of several NICE ‘red flags’. Correlation between referral adequacy and delay from referral-to-surgery was then analysed. RESULTS: In total, 118 confirmed CES cases were included. Adequate documentation for saddle anaesthesia was associated with reduced delays of more than 48 hours from referral-to-surgery [X2(1, N=116)=7.12, p=.024], an effect partly attributable to these referrals being accepted sooner [U=16.5; n1=27, n2=4, p=.029, r=.39]. Other red flags had poor association with delay. Referral adequacy was better for somatic red flags [bilateral sciatica (97.5%); severe or progressive bilateral neurological deficit of the legs (95.8%); saddle anaesthesia (91.5%)] compared to autonomic red flags [loss of anal tone (80.5%); urinary retention (79.7%); faecal incontinence or lost sensation of rectal fullness (57.6%)]. Although referral adequacy for urinary retention was 79.7%, only 47.5% of referrals documented a post-void residual numerical value. CONCLUSIONS: Adequate documentation of saddle anaesthesia in e-referrals is associated with reduced delay-to-surgery for confirmed CES, partly attributable to these referrals being accepted sooner. Other red flags had poor association with delay to surgery. Referral adequacy for autonomic red flags, including documentation for post-void residuals, has significant room for improvement.

Keywords: cauda equina, cauda equina syndrome, neurosurgery, spinal surgery, decompression, delay, referral, referral adequacy

Procedia PDF Downloads 48
1058 A Topology-Based Dynamic Repair Strategy for Enhancing Urban Road Network Resilience under Flooding

Authors: Xuhui Lin, Qiuchen Lu, Yi An, Tao Yang

Abstract:

As global climate change intensifies, extreme weather events such as floods increasingly threaten urban infrastructure, making the vulnerability of urban road networks a pressing issue. Existing static repair strategies fail to adapt to the rapid changes in road network conditions during flood events, leading to inefficient resource allocation and suboptimal recovery. The main research gap lies in the lack of repair strategies that consider both the dynamic characteristics of networks and the progression of flood propagation. This paper proposes a topology-based dynamic repair strategy that adjusts repair priorities based on real-time changes in flood propagation and traffic demand. Specifically, a novel method is developed to assess and enhance the resilience of urban road networks during flood events. The method combines road network topological analysis, flood propagation modelling, and traffic flow simulation, introducing a local importance metric to dynamically evaluate the significance of road segments across different spatial and temporal scales. Using London's road network and rainfall data as a case study, the effectiveness of this dynamic strategy is compared to traditional and Transport for London (TFL) strategies. The most significant highlight of the research is that the dynamic strategy substantially reduced the number of stranded vehicles across different traffic demand periods, improving efficiency by up to 35.2%. The advantage of this method lies in its ability to adapt in real-time to changes in network conditions, enabling more precise resource allocation and more efficient repair processes. This dynamic strategy offers significant value to urban planners, traffic management departments, and emergency response teams, helping them better respond to extreme weather events like floods, enhance overall urban resilience, and reduce economic losses and social impacts.

Keywords: Urban resilience, road networks, flood response, dynamic repair strategy, topological analysis

Procedia PDF Downloads 41
1057 Comparative Study of Greenhouse Locations through Satellite Images and Geographic Information System: Methodological Evaluation in Venezuela

Authors: Maria A. Castillo H., Andrés R. Leandro C.

Abstract:

During the last decades, agricultural productivity in Latin America has increased with precision agriculture and more efficient agricultural technologies. The use of automated systems, satellite images, geographic information systems, and tools for data analysis, and artificial intelligence have contributed to making more effective strategic decisions. Twenty years ago, the state of Mérida, located in the Venezuelan Andes, reported the largest area covered by greenhouses in the country, where certified seeds of potatoes, vegetables, ornamentals, and flowers were produced for export and consumption in the central region of the country. In recent years, it is estimated that production under greenhouses has changed, and the area covered has decreased due to different factors, but there are few historical statistical data in sufficient quantity and quality to support this estimate or to be used for analysis and decision making. The objective of this study is to compare data collected about geoposition, use, and covered areas of the greenhouses in 2007 to data available in 2021, as support for the analysis of the current situation of horticultural production in the main municipalities of the state of Mérida. The document presents the development of the work in the diagnosis and integration of geographic coordinates in GIS and data analysis phases. As a result, an evaluation of the process is made, a dashboard is presented with the most relevant data along with the geographical coordinates integrated into GIS, and an analysis of the obtained information is made. Finally, some recommendations for actions are added, and works that expand the information obtained and its geographical traceability over time are proposed. This study contributes to granting greater certainty in the supporting data for the evaluation of social, environmental, and economic sustainability indicators and to make better decisions according to the sustainable development goals in the area under review. At the same time, the methodology provides improvements to the agricultural data collection process that can be extended to other study areas and crops.

Keywords: greenhouses, geographic information system, protected agriculture, data analysis, Venezuela

Procedia PDF Downloads 96
1056 Effectiveness of Research Promotion Organizations in Higher Education and Research (ESR)

Authors: Jonas Sanon

Abstract:

The valorization of research is becoming a transversal instrument linking different sectors (academic, public and industrial). The practice of valorization seems to impact innovation techniques within companies where, there is often the implementation of industrial conventions of training through research (CIFRE), continuous training programs for employees, collaborations and partnerships around joint research and R&D laboratories focused on the needs of companies to improve or develop more efficient innovations. Furthermore, many public initiatives to support innovation and technology transfer have been developed at the international, European and national levels, with significant budget allocations. Thus, in the context of this work, we tried to analyze the way in which research transfer structures are evaluated within the Saclay ecosystem. In fact, the University-Paris-Saclay is one of the best French universities; it is made up of 10 university components, more than 275 laboratories and is in partnership with the largest French research centers This work mainly focused on how evaluations affected research transfer structures, how evaluations were conducted, and what the managers of research transfer structures thought about assessments. Thus, with the aid of the conducted interviews, it appears that the evaluations do not have a significant impact on the qualitative aspect of research and innovation, but is rather present a directive aspect to allow the structures to benefit or not from the financial resources to develop certain research work, sometimes directed and influenced by the market, some researchers might try to accentuate their research and experimentation work on themes that are not necessarily their areas of interest, but just to comply with the calls for proposed thematic projects. The field studies also outline the primary indicators used to assess the effectiveness of valorization structures as "the number of start-ups generated, the license agreements signed, the structure's patent portfolio, and the innovations of items developed from public research.". Finally, after mapping the actors, it became clear that the ecosystem of the University of Paris-Saclay benefits from a richness allowing it to better value its research in relation to the three categories of actors it has (internal, external and transversal), united and linked by a relationship of proximity of sharing and endowed with a real opportunity to innovate openly.

Keywords: research valorization, technology transfer, innovation, evaluation, impacts and performances, innovation policy

Procedia PDF Downloads 79
1055 Study of Unsteady Behaviour of Dynamic Shock Systems in Supersonic Engine Intakes

Authors: Siddharth Ahuja, T. M. Muruganandam

Abstract:

An analytical investigation is performed to study the unsteady response of a one-dimensional, non-linear dynamic shock system to external downstream pressure perturbations in a supersonic flow in a varying area duct. For a given pressure ratio across a wind tunnel, the normal shock's location can be computed as per one-dimensional steady gas dynamics. Similarly, for some other pressure ratio, the location of the normal shock will change accordingly, again computed using one-dimensional gas dynamics. This investigation focuses on the small-time interval between the first steady shock location and the new steady shock location (corresponding to different pressure ratios). In essence, this study aims to shed light on the motion of the shock from one steady location to another steady location. Further, this study aims to create the foundation of the Unsteady Gas Dynamics field enabling further insight in future research work. According to the new pressure ratio, a pressure pulse, generated at the exit of the tunnel which travels and perturbs the shock from its original position, setting it into motion. During such activity, other numerous physical phenomena also happen at the same time. However, three broad phenomena have been focused on, in this study - Traversal of a Wave, Fluid Element Interactions and Wave Interactions. The above mentioned three phenomena create, alter and kill numerous waves for different conditions. The waves which are created by the above-mentioned phenomena eventually interact with the shock and set it into motion. Numerous such interactions with the shock will slowly make it settle into its final position owing to the new pressure ratio across the duct, as estimated by one-dimensional gas dynamics. This analysis will be extremely helpful in the prediction of inlet 'unstart' of the flow in a supersonic engine intake and its prominence with the incoming flow Mach number, incoming flow pressure and the external perturbation pressure is also studied to help design more efficient supersonic intakes for engines like ramjets and scramjets.

Keywords: analytical investigation, compression and expansion waves, fluid element interactions, shock trajectory, supersonic flow, unsteady gas dynamics, varying area duct, wave interactions

Procedia PDF Downloads 223
1054 UV-Enhanced Room-Temperature Gas-Sensing Properties of ZnO-SnO2 Nanocomposites Obtained by Hydrothermal Treatment

Authors: Luís F. da Silva, Ariadne C. Catto, Osmando F. Lopes, Khalifa Aguir, Valmor R. Mastelaro, Caue Ribeiro, Elson Longo

Abstract:

Gas detection is important for controlling industrial, and vehicle emissions, agricultural residues, and environmental control. In last decades, several semiconducting oxides have been used to detect dangerous or toxic gases. The excellent gas-sensing performance of these devices have been observed at high temperatures (~250 °C), which forbids the use for the detection of flammable and explosive gases. In this way, ultraviolet light activated gas sensors have been a simple and promising alternative to achieve room temperature sensitivity. Among the semiconductor oxides which exhibit a good performance as gas sensor, the zinc oxide (ZnO) and tin oxide (SnO2) have been highlighted. Nevertheless, their poor selectivity is the main disadvantage for application as gas sensor devices. Recently, heterostructures combining these two semiconductors (ZnO-SnO2) have been studied as an alternative way to enhance the gas sensor performance (sensitivity, selectivity, and stability). In this work, we investigated the influence of mass ratio Zn:Sn on the properties of ZnO-SnO2 nanocomposites prepared by hydrothermal treatment for 4 hours at 200 °C. The crystalline phase, surface, and morphological features were characterized by X-ray diffraction (XRD), high-resolution transmission electron (HR-TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The gas sensor measurements were carried out at room-temperature under ultraviolet (UV) light irradiation using different ozone levels (0.06 to 0.61 ppm). The XRD measurements indicate the presence of ZnO and SnO2 crystalline phases, without the evidence of solid solution formation. HR-TEM analysis revealed that a good contact between the SnO2 nanoparticles and the ZnO nanorods, which are very important since interface characteristics between nanostructures are considered as challenge to development new and efficient heterostructures. Electrical measurements proved that the best ozone gas-sensing performance is obtained for ZnO:SnO2 (50:50) nanocomposite under UV light irradiation. Its sensitivity was around 6 times higher when compared to SnO2 pure, a traditional ozone gas sensor. These results demonstrate the potential of ZnO-SnO2 heterojunctions for the detection of ozone gas at room-temperature when irradiated with UV light irradiation.

Keywords: hydrothermal, zno-sno2, ozone sensor, uv-activation, room-temperature

Procedia PDF Downloads 287
1053 Computational Pipeline for Lynch Syndrome Detection: Integrating Alignment, Variant Calling, and Annotations

Authors: Rofida Gamal, Mostafa Mohammed, Mariam Adel, Marwa Gamal, Marwa kamal, Ayat Saber, Maha Mamdouh, Amira Emad, Mai Ramadan

Abstract:

Lynch Syndrome is an inherited genetic condition associated with an increased risk of colorectal and other cancers. Detecting Lynch Syndrome in individuals is crucial for early intervention and preventive measures. This study proposes a computational pipeline for Lynch Syndrome detection by integrating alignment, variant calling, and annotation. The pipeline leverages popular tools such as FastQC, Trimmomatic, BWA, bcftools, and ANNOVAR to process the input FASTQ file, perform quality trimming, align reads to the reference genome, call variants, and annotate them. It is believed that the computational pipeline was applied to a dataset of Lynch Syndrome cases, and its performance was evaluated. It is believed that the quality check step ensured the integrity of the sequencing data, while the trimming process is thought to have removed low-quality bases and adaptors. In the alignment step, it is believed that the reads were accurately mapped to the reference genome, and the subsequent variant calling step is believed to have identified potential genetic variants. The annotation step is believed to have provided functional insights into the detected variants, including their effects on known Lynch Syndrome-associated genes. The results obtained from the pipeline revealed Lynch Syndrome-related positions in the genome, providing valuable information for further investigation and clinical decision-making. The pipeline's effectiveness was demonstrated through its ability to streamline the analysis workflow and identify potential genetic markers associated with Lynch Syndrome. It is believed that the computational pipeline presents a comprehensive and efficient approach to Lynch Syndrome detection, contributing to early diagnosis and intervention. The modularity and flexibility of the pipeline are believed to enable customization and adaptation to various datasets and research settings. Further optimization and validation are believed to be necessary to enhance performance and applicability across diverse populations.

Keywords: Lynch Syndrome, computational pipeline, alignment, variant calling, annotation, genetic markers

Procedia PDF Downloads 84
1052 3-D Strain Imaging of Nanostructures Synthesized via CVD

Authors: Sohini Manna, Jong Woo Kim, Oleg Shpyrko, Eric E. Fullerton

Abstract:

CVD techniques have emerged as a promising approach in the formation of a broad range of nanostructured materials. The realization of many practical applications will require efficient and economical synthesis techniques that preferably avoid the need for templates or costly single-crystal substrates and also afford process adaptability. Towards this end, we have developed a single-step route for the reduction-type synthesis of nanostructured Ni materials using a thermal CVD method. By tuning the CVD growth parameters, we can synthesize morphologically dissimilar nanostructures including single-crystal cubes and Au nanostructures which form atop untreated amorphous SiO2||Si substrates. An understanding of the new properties that emerge in these nanostructures materials and their relationship to function will lead to for a broad range of magnetostrictive devices as well as other catalysis, fuel cell, sensor, and battery applications based on high-surface-area transition-metal nanostructures. We use coherent X-ray diffraction imaging technique to obtain 3-D image and strain maps of individual nanocrystals. Coherent x-ray diffractive imaging (CXDI) is a technique that provides the overall shape of a nanostructure and the lattice distortion based on the combination of highly brilliant coherent x-ray sources and phase retrieval algorithm. We observe a fine interplay of reduction of surface energy vs internal stress, which plays an important role in the morphology of nano-crystals. The strain distribution is influenced by the metal-substrate interface and metal-air interface, which arise due to differences in their thermal expansion. We find the lattice strain at the surface of the octahedral gold nanocrystal agrees well with the predictions of the Young-Laplace equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate interface resulting from the interface. The strain in the bottom side of the Ni nanocube, which is contacted on the substrate surface is compressive. This is caused by dissimilar thermal expansion coefficients between Ni nanocube and Si substrate. Research at UCSD support by NSF DMR Award # 1411335.

Keywords: CVD, nanostructures, strain, CXRD

Procedia PDF Downloads 395
1051 Comparative Analysis of Reinforcement Learning Algorithms for Autonomous Driving

Authors: Migena Mana, Ahmed Khalid Syed, Abdul Malik, Nikhil Cherian

Abstract:

In recent years, advancements in deep learning enabled researchers to tackle the problem of self-driving cars. Car companies use huge datasets to train their deep learning models to make autonomous cars a reality. However, this approach has certain drawbacks in that the state space of possible actions for a car is so huge that there cannot be a dataset for every possible road scenario. To overcome this problem, the concept of reinforcement learning (RL) is being investigated in this research. Since the problem of autonomous driving can be modeled in a simulation, it lends itself naturally to the domain of reinforcement learning. The advantage of this approach is that we can model different and complex road scenarios in a simulation without having to deploy in the real world. The autonomous agent can learn to drive by finding the optimal policy. This learned model can then be easily deployed in a real-world setting. In this project, we focus on three RL algorithms: Q-learning, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO). To model the environment, we have used TORCS (The Open Racing Car Simulator), which provides us with a strong foundation to test our model. The inputs to the algorithms are the sensor data provided by the simulator such as velocity, distance from side pavement, etc. The outcome of this research project is a comparative analysis of these algorithms. Based on the comparison, the PPO algorithm gives the best results. When using PPO algorithm, the reward is greater, and the acceleration, steering angle and braking are more stable compared to the other algorithms, which means that the agent learns to drive in a better and more efficient way in this case. Additionally, we have come up with a dataset taken from the training of the agent with DDPG and PPO algorithms. It contains all the steps of the agent during one full training in the form: (all input values, acceleration, steering angle, break, loss, reward). This study can serve as a base for further complex road scenarios. Furthermore, it can be enlarged in the field of computer vision, using the images to find the best policy.

Keywords: autonomous driving, DDPG (deep deterministic policy gradient), PPO (proximal policy optimization), reinforcement learning

Procedia PDF Downloads 153
1050 Research of Stalled Operational Modes of Axial-Flow Compressor for Diagnostics of Pre-Surge State

Authors: F. Mohammadsadeghi

Abstract:

Relevance of research: Axial compressors are used in both aircraft engine construction and ground-based gas turbine engines. The compressor is considered to be one of the main gas turbine engine units, which define absolute and relative indicators of engine in general. Failure of compressor often leads to drastic consequences. Therefore, safe (stable) operation must be maintained when using axial compressor. Currently, we can observe a tendency of increase of power unit, productivity, circumferential velocity and compression ratio of axial compressors in gas turbine engines of aircraft and ground-based application whereas metal consumption of their structure tends to fall. This causes the increase of dynamic loads as well as danger of damage of high load compressor or engine structure elements in general due to transient processes. In operating practices of aeronautical engineering and ground units with gas turbine drive the operational stability failure of gas turbine engines is one of relatively often failure causes what can lead to emergency situations. Surge occurrence is considered to be an absolute buckling failure. This is one of the most dangerous and often occurring types of instability. However detailed were the researches of this phenomenon the development of measures for surge before-the-fact prevention is still relevant. This is why the research of transient processes for axial compressors is necessary in order to provide efficient, stable and secure operation. The paper addresses the problem of automatic control system improvement by integrating the anti-surge algorithms for axial compressor of aircraft gas turbine engine. Paper considers dynamic exhaustion of gas dynamic stability of compressor stage, results of numerical simulation of airflow flowing through the airfoil at design and stalling modes, experimental researches to form the criteria that identify the compressor state at pre-surge mode detection. Authors formulated basic ways for developing surge preventing systems, i.e. forming the algorithms that allow detecting the surge origination and the systems that implement the proposed algorithms.

Keywords: axial compressor, rotation stall, Surg, unstable operation of gas turbine engine

Procedia PDF Downloads 413
1049 Performance Assessment of Horizontal Axis Tidal Turbine with Variable Length Blades

Authors: Farhana Arzu, Roslan Hashim

Abstract:

Renewable energy is the only alternative sources of energy to meet the current energy demand, healthy environment and future growth which is considered essential for essential sustainable development. Marine renewable energy is one of the major means to meet this demand. Turbines (both horizontal and vertical) play a vital role for extraction of tidal energy. The influence of swept area on the performance improvement of tidal turbine is a vital factor to study for the reduction of relatively high power generation cost in marine industry. This study concentrates on performance investigation of variable length blade tidal turbine concept that has already been proved as an efficient way to improve energy extraction in the wind industry. The concept of variable blade length utilizes the idea of increasing swept area through the turbine blade extension when the tidal stream velocity falls below the rated condition to maximize energy capture while blade retracts above rated condition. A three bladed horizontal axis variable length blade horizontal axis tidal turbine was modelled by modifying a standard fixed length blade turbine. Classical blade element momentum theory based numerical investigation has been carried out using QBlade software to predict performance. The results obtained from QBlade were compared with the available published results and found very good agreement. Three major performance parameters (i.e., thrust, moment, and power coefficients) and power output for different blade extensions were studied and compared with a standard fixed bladed baseline turbine at certain operational conditions. Substantial improvement in performance coefficient is observed with the increase in swept area of the turbine rotor. Power generation is found to increase in great extent when operating at below rated tidal stream velocity reducing the associated cost per unit electric power generation.

Keywords: variable length blade, performance, tidal turbine, power generation

Procedia PDF Downloads 280
1048 Assessment and Optimisation of Building Services Electrical Loads for Off-Grid or Hybrid Operation

Authors: Desmond Young

Abstract:

In building services electrical design, a key element of any project will be assessing the electrical load requirements. This needs to be done early in the design process to allow the selection of infrastructure that would be required to meet the electrical needs of the type of building. The type of building will define the type of assessment made, and the values applied in defining the maximum demand for the building, and ultimately the size of supply or infrastructure required, and the application that needs to be made to the distribution network operator, or alternatively to an independent network operator. The fact that this assessment needs to be undertaken early in the design process provides limits on the type of assessment that can be used, as different methods require different types of information, and sometimes this information is not available until the latter stages of a project. A common method applied in the earlier design stages of a project, typically during stages 1,2 & 3, is the use of benchmarks. It is a possibility that some of the benchmarks applied are excessive in relation to the current loads that exist in a modern installation. This lack of accuracy is based on information which does not correspond to the actual equipment loads that are used. This includes lighting and small power loads, where the use of more efficient equipment and lighting has reduced the maximum demand required. The electrical load can be used as part of the process to assess the heat generated from the equipment, with the heat gains from other sources, this feeds into the sizing of the infrastructure required to cool the building. Any overestimation of the loads would contribute to the increase in the design load for the heating and ventilation systems. Finally, with the new policies driving the industry to decarbonise buildings, a prime example being the recently introduced London Plan, loads are potentially going to increase. In addition, with the advent of the pandemic and changes to working practices, and the adoption of electric heating and vehicles, a better understanding of the loads that should be applied will aid in ensuring that infrastructure is not oversized, as a cost to the client, or undersized to the detriment of the building. In addition, more accurate benchmarks and methods will allow assessments to be made for the incorporation of energy storage and renewable technologies as these technologies become more common in buildings new or refurbished.

Keywords: energy, ADMD, electrical load assessment, energy benchmarks

Procedia PDF Downloads 119