Search results for: CNTs-silicon hybrid devices
183 The Charge Exchange and Mixture Formation Model in the ASz-62IR Radial Aircraft Engine
Authors: Pawel Magryta, Tytus Tulwin, Paweł Karpiński
Abstract:
The ASz62IR engine is a radial aircraft engine with 9 cylinders. This object is produced by the Polish company WSK "PZL-KALISZ" S.A. This is engine is currently being developed by the above company and Lublin University of Technology. In order to provide an effective work of the technological development of this unit it was decided to made the simulation model. The model of ASz-62IR was developed with AVL BOOST software which is a tool dedicated to the one-dimensional modeling of internal combustion engines. This model can be used to calculate parameters of an air and fuel flow in an intake system including charging devices as well as combustion and exhaust flow to the environment. The main purpose of this model is the analysis of the charge exchange and mixture formation in this engine. For this purpose, the model consists of elements such: as air inlet, throttle system, compressor connector, charging compressor, inlet pipes and injectors, outlet pipes, fuel injection and model of fuel mixing and evaporation. The model of charge exchange and mixture formation was based on the model of mass flow rate in intake and exhaust pipes, and also on the calculation of gas properties values like gas constant or thermal capacity. This model was based on the equations to describe isentropic flow. The energy equation to describe flow under steady conditions was transformed into the mass flow equation. In the model the flow coefficient μσ was used, that varies with the stroke/valve opening and was determined in a steady flow state. The geometry of the inlet channels and other key components was mapped with reference to the technical documentation of the engine and empirical measurements of the structure elements. The volume of elements on the charge flow path between the air inlet and the exhaust outlet was measured by the CAD mapping of the structure. Taken from the technical documentation, the original characteristics of the compressor engine was entered into the model. Additionally, the model uses a general model for the transport of chemical compounds of the mixture. There are 7 compounds used, i.e. fuel, O2, N2, CO2, H2O, CO, H2. A gasoline fuel of a calorific value of 43.5 MJ/kg and an air mass fraction for stoichiometric mixture of 14.5 were used. Indirect injection into the intake manifold is used in this model. The model assumes the following simplifications: the mixture is homogenous at the beginning of combustion, accordingly, mixture stoichiometric coefficient A/F remains constant during combustion, combusted and non-combusted charges show identical pressures and temperatures although their compositions change. As a result of the simulation studies based on the model described above, the basic parameters of combustion process, charge exchange, mixture formation in cylinders were obtained. The AVL Boost software is very useful for the piston engine performance simulations. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: aviation propulsion, AVL Boost, engine model, charge exchange, mixture formation
Procedia PDF Downloads 340182 Nursing Experience in the Intensive Care of a Lung Cancer Patient with Pulmonary Embolism on Extracorporeal Membrane Oxygenation
Authors: Huang Wei-Yi
Abstract:
Objective: This article explores the intensive care nursing experience of a lung cancer patient with pulmonary embolism who was placed on ECMO. Following a sudden change in the patient’s condition and a consensus reached during a family meeting, the decision was made to withdraw life-sustaining equipment and collaborate with the palliative care team. Methods: The nursing period was from October 20 to October 27, 2023. The author monitored physiological data, observed, provided direct care, conducted interviews, performed physical assessments, and reviewed medical records. Together with the critical care team and bypass personnel, a comprehensive assessment was conducted using Gordon's Eleven Functional Health Patterns to identify the patient’s health issues, which included pain related to lung cancer and invasive devices, fear of death due to sudden deterioration, and altered tissue perfusion related to hemodynamic instability. Results: The patient was admitted with fever, back pain, and painful urination. During hospitalization, the patient experienced sudden discomfort followed by cardiac arrest, requiring multiple CPR attempts and ECMO placement. A subsequent CT angiogram revealed a pulmonary embolism. The patient's condition was further complicated by severe pain due to compression fractures, and a diagnosis of terminal lung cancer was unexpectedly confirmed, leading to emotional distress and uncertainty about future treatment. Throughout the critical care process, ECMO was removed on October 24, stabilizing the patient’s body temperature between 36.5-37°C and maintaining a mean arterial pressure of 60-80 mmHg. Pain management, including Morphine 8mg in 0.9% N/S 100ml IV drip q6h PRN and Ultracet 37.5 mg/325 mg 1# PO q6h, kept the pain level below 3. The patient was transferred to the ward on October 27 and discharged home on October 30. Conclusion: During the care period, collaboration with the medical team and palliative care professionals was crucial. Adjustments to pain medication, symptom management, and lung cancer-targeted therapy improved the patient’s physical discomfort and pain levels. By applying the unique functions of nursing and the four principles of palliative care, positive encouragement was provided. Family members, along with social workers, clergy, psychologists, and nutritionists, participated in cross-disciplinary care, alleviating anxiety and fear. The consensus to withdraw ECMO and life-sustaining equipment enabled the patient and family to receive high-quality care and maintain autonomy in decision-making. A follow-up call on November 1 confirmed that the patient was emotionally stable, pain-free, and continuing with targeted lung cancer therapy.Keywords: intensive care, lung cancer, pulmonary embolism, ECMO
Procedia PDF Downloads 30181 Identification of Tangible and Intangible Heritage and Preparation of Conservation Proposal for the Historic City of Karanja Laad
Authors: Prachi Buche Marathe
Abstract:
Karanja Laad is a city located in the Vidarbha region in the state of Maharashtra, India. It has a huge amount of tangible and intangible heritage in the form of monuments, precincts, a group of structures, festivals and procession route, which is neglected and lost with time. Three different religions Hinduism, Islam and Jainism along with associations of being a birthplace of Swami Nrusinha Saraswati, an exponent of Datta Sampradaya sect and the British colonial layer have shaped the culture and society of the place over the period. The architecture of the town Karanja Laad has enhanced its unique historic and cultural value with a combination of all these historic layers. Karanja Laad is also a traditional trading historic town with unique hybrid architectural style and has a good potential for developing as a tourist place along with the present image of a pilgrim destination of Datta Sampradaya. The aim of the research is to prepare a conservation proposal for the historic town along with the management framework. Objectives of the research are to study the evolution of Karanja town, to identify the cultural resources along with issues of the historic core of the city, to understand Datta sampradaya, and contribution of Saint Nrusinha Saraswati in the religious sect and his association as an important personality with Karanja. The methodology of the research is site visits to the Karanja city, making field surveys for documentation and discussions and questionnaires with the residents to establish heritage and identify potential and issues within the historic core thereby establishing a case for conservation. Field surveys are conducted for town level study of land use, open spaces, occupancy, ownership, traditional commodity and community, infrastructure, streetscapes, and precinct activities during the festival and non-festival period. Building level study includes establishing various typologies like residential, institutional commercial, religious, and traditional infrastructure from the mythological references like waterbodies (kund), lake and wells. One of the main issues is that the loss of the traditional footprint as well as the traditional open spaces which are getting lost due to the new illegal encroachments and lack of guidelines for the new additions to conserve the original fabric of the structures. Traditional commodities are getting lost since there is no promotion of these skills like pottery and painting. Lavish bungalows like Kannava mansion, main temple Wada (birthplace of the saint) have a huge potential to be developed as a museum by adaptive re-use which will, in turn, attract many visitors during festivals which will boost the economy. Festival procession routes can be identified and a heritage walk can be developed so as to highlight the traditional features of the town. Overall study has resulted in establishing a heritage map with 137 heritage structures identified as potential. Conservation proposal is worked out on the town level, precinct level and building level with interventions such as developing construction guidelines for further development and establishing a heritage cell consisting architects and engineers for the upliftment of the existing rich heritage of the Karanja city.Keywords: built heritage, conservation, Datta Sampradaya, Karanja Laad, Swami Nrusinha Saraswati, procession route
Procedia PDF Downloads 161180 A Quality Index Optimization Method for Non-Invasive Fetal ECG Extraction
Authors: Lucia Billeci, Gennaro Tartarisco, Maurizio Varanini
Abstract:
Fetal cardiac monitoring by fetal electrocardiogram (fECG) can provide significant clinical information about the healthy condition of the fetus. Despite this potentiality till now the use of fECG in clinical practice has been quite limited due to the difficulties in its measuring. The recovery of fECG from the signals acquired non-invasively by using electrodes placed on the maternal abdomen is a challenging task because abdominal signals are a mixture of several components and the fetal one is very weak. This paper presents an approach for fECG extraction from abdominal maternal recordings, which exploits the characteristics of pseudo-periodicity of fetal ECG. It consists of devising a quality index (fQI) for fECG and of finding the linear combinations of preprocessed abdominal signals, which maximize these fQI (quality index optimization - QIO). It aims at improving the performances of the most commonly adopted methods for fECG extraction, usually based on maternal ECG (mECG) estimating and canceling. The procedure for the fECG extraction and fetal QRS (fQRS) detection is completely unsupervised and based on the following steps: signal pre-processing; maternal ECG (mECG) extraction and maternal QRS detection; mECG component approximation and canceling by weighted principal component analysis; fECG extraction by fQI maximization and fetal QRS detection. The proposed method was compared with our previously developed procedure, which obtained the highest at the Physionet/Computing in Cardiology Challenge 2013. That procedure was based on removing the mECG from abdominal signals estimated by a principal component analysis (PCA) and applying the Independent component Analysis (ICA) on the residual signals. Both methods were developed and tuned using 69, 1 min long, abdominal measurements with fetal QRS annotation of the dataset A provided by PhysioNet/Computing in Cardiology Challenge 2013. The QIO-based and the ICA-based methods were compared in analyzing two databases of abdominal maternal ECG available on the Physionet site. The first is the Abdominal and Direct Fetal Electrocardiogram Database (ADdb) which contains the fetal QRS annotations thus allowing a quantitative performance comparison, the second is the Non-Invasive Fetal Electrocardiogram Database (NIdb), which does not contain the fetal QRS annotations so that the comparison between the two methods can be only qualitative. In particular, the comparison on NIdb was performed defining an index of quality for the fetal RR series. On the annotated database ADdb the QIO method, provided the performance indexes Sens=0.9988, PPA=0.9991, F1=0.9989 overcoming the ICA-based one, which provided Sens=0.9966, PPA=0.9972, F1=0.9969. The comparison on NIdb was performed defining an index of quality for the fetal RR series. The index of quality resulted higher for the QIO-based method compared to the ICA-based one in 35 records out 55 cases of the NIdb. The QIO-based method gave very high performances with both the databases. The results of this study foresees the application of the algorithm in a fully unsupervised way for the implementation in wearable devices for self-monitoring of fetal health.Keywords: fetal electrocardiography, fetal QRS detection, independent component analysis (ICA), optimization, wearable
Procedia PDF Downloads 281179 Polymer Dispersed Liquid Crystals Based on Poly Vinyl Alcohol Boric Acid Matrix
Authors: Daniela Ailincai, Bogdan C. Simionescu, Luminita Marin
Abstract:
Polymer dispersed liquid crystals (PDLC) represent an interesting class of materials which combine the ability of polymers to form films and their mechanical strength with the opto-electronic properties of liquid crystals. The proper choice of the two components - the liquid crystal and the polymeric matrix - leads to materials suitable for a large area of applications, from electronics to biomedical devices. The objective of our work was to obtain PDLC films with potential applications in the biomedical field, using poly vinyl alcohol boric acid (PVAB) as a polymeric matrix for the first time. Presenting all the tremendous properties of poly vinyl alcohol (such as: biocompatibility, biodegradability, water solubility, good chemical stability and film forming ability), PVAB brings the advantage of containing the electron deficient boron atom, and due to this, it should promote the liquid crystal anchoring and a narrow liquid crystal droplets polydispersity. Two different PDLC systems have been obtained, by the use of two liquid crystals, a nematic commercial one: 4-cyano-4’-penthylbiphenyl (5CB) and a new smectic liquid crystal, synthesized by us: buthyl-p-[p’-n-octyloxy benzoyloxy] benzoate (BBO). The PDLC composites have been obtained by the encapsulation method, working with four different ratios between the polymeric matrix and the liquid crystal, from 60:40 to 90:10. In all cases, the composites were able to form free standing, flexible films. Polarized light microscopy, scanning electron microscopy, differential scanning calorimetry, RAMAN- spectroscopy and the contact angle measurements have been performed, in order to characterize the new composites. The new smectic liquid crystal has been characterized using 1H-NMR and single crystal X-ray diffraction and its thermotropic behavior has been established using differential scanning calorimetry and polarized light microscopy. The polarized light microscopy evidenced the formation of round birefringent droplets, anchored homeotropic in the first case and planar in the second, with a narrow dimensional polydispersity, especially for the PDLC containing the largest amount of liquid crystal, fact evidenced by SEM, also. The obtained values for the water to air contact angle showed that the composites have a proper hydrophilic-hydrophobic balance, making them potential candidates for bioapplications. More than this, our studies demonstrated that the water to air contact angle varies as a function of PVAB matrix crystalinity degree, which can be controled as a function of time. This fact allowed us to conclude that the use of PVAB as matrix for PDLCs obtaining offers the possibility to modulate their properties for specific applications.Keywords: 4-cyano-4’-penthylbiphenyl, buthyl-p-[p’-n-octyloxy benzoyloxy] benzoate, contact angle, polymer dispersed liquid crystals, poly vinyl alcohol boric acid
Procedia PDF Downloads 450178 Screens Design and Application for Sustainable Buildings
Authors: Fida Isam Abdulhafiz
Abstract:
Traditional vernacular architecture in the United Arab Emirates constituted namely of adobe houses with a limited number of openings in their facades. The thick mud and rubble walls and wooden window screens protected its inhabitants from the harsh desert climate and provided them with privacy and fulfilled their comfort zone needs to an extent. However, with the rise of the immediate post petroleum era reinforced concrete villas with glass and steel technology has replaced traditional vernacular dwellings. And more load was put on the mechanical cooling systems to ensure the satisfaction of today’s more demanding doweling inhabitants. However, In the early 21at century professionals started to pay more attention to the carbon footprint caused by the built constructions. In addition, many studies and innovative approaches are now dedicated to lower the impact of the existing operating buildings on their surrounding environments. The UAE government agencies started to regulate that aim to revive sustainable and environmental design through Local and international building codes and urban design policies such as Estidama and LEED. The focus in this paper is on the reduction of the emissions resulting from the use of energy sources in the cooling and heating systems, and that would be through using innovative screen designs and façade solutions to provide a green footprint and aesthetic architectural icons. Screens are one of the popular innovative techniques that can be added in the design process or used in existing building as a renovation techniques to develop a passive green buildings. Preparing future architects to understand the importance of environmental design was attempted through physical modelling of window screens as an educational means to combine theory with a hands on teaching approach. Designing screens proved to be a popular technique that helped them understand the importance of sustainable design and passive cooling. After creating models of prototype screens, several tests were conducted to calculate the amount of Sun, light and wind that goes through the screens affecting the heat load and light entering the building. Theory further explored concepts of green buildings and material that produce low carbon emissions. This paper highlights the importance of hands on experience for student architects and how physical modelling helped rise eco awareness in Design studio. The paper will study different types of façade screens and shading devices developed by Architecture students and explains the production of diverse patterns for traditional screens by student architects based on sustainable design concept that works properly with the climate requirements in the Middle East region.Keywords: building’s screens modeling, façade design, sustainable architecture, sustainable dwellings, sustainable education
Procedia PDF Downloads 300177 Education Management and Planning with Manual Based
Authors: Purna Bahadur Lamichhane
Abstract:
Education planning and management are foundational pillars for developing effective educational systems. However, in many educational contexts, especially in developing nations, technology-enabled management is still emerging. In such settings, manual-based systems, where instructions and guidelines are physically documented, remain central to educational planning and management. This paper examines the effectiveness, challenges, and potential of manual-based education planning systems in fostering structured, reliable, and adaptable management frameworks. The objective of this study is to explore how a manual-based approach can successfully guide administrators, educators, and policymakers in delivering high-quality education. By using structured, accessible instructions, this approach serves as a blueprint for educational governance, offering clear, actionable steps to achieve institutional goals. Through an analysis of case studies from various regions, the paper identifies key strategies for planning school schedules, managing resources, and monitoring academic and administrative performance without relying on automated systems. The findings underscore the significance of organized documentation, standard operating procedures, and comprehensive manuals that establish uniformity and maintain educational standards across institutions. With a manual-based approach, management can remain flexible, responsive, and user-friendly, especially in environments where internet access and digital literacy are limited. Moreover, it allows for localization, where instructions can be tailored to the unique cultural and socio-economic contexts of the community, thereby increasing relevancy and ownership among local stakeholders. This paper also highlights several challenges associated with manual-based education management. Manual systems often require significant time and human resources for maintenance and updating, potentially leading to inefficiencies and inconsistencies over time. Furthermore, manual records can be susceptible to loss, damage, and limited accessibility, which may affect decision-making and institutional memory. There is also the risk of siloed information, where crucial data resides with specific individuals rather than being accessible across the organization. However, with proper training and regular oversight, many of these limitations can be mitigated. The study further explores the potential for hybrid approaches, combining manual planning with selected digital tools for record-keeping, reporting, and analytics. This transitional strategy can enable schools and educational institutions to gradually embrace digital solutions without discarding the familiarity and reliability of manual instructions. In conclusion, this paper advocates for a balanced, context-sensitive approach to education planning and management. While digital systems hold the potential to streamline processes, manual-based systems offer resilience, inclusivity, and adaptability for institutions where technology adoption may be constrained. Ultimately, by reinforcing the importance of structured, detailed manuals and instructional guides, educational institutions can build robust management frameworks that facilitate both short-term successes and long-term growth in their educational mission. This research aims to provide a reference for policymakers, educators, and administrators seeking practical, low-cost, and adaptable solutions for sustainable educational planning and management.Keywords: educatoin, planning, management, manual
Procedia PDF Downloads 19176 Developing a Performance Measurement System for Arts-Based Initiatives: Action Research on Italian Corporate Museums
Authors: Eleonora Carloni, Michela Arnaboldi
Abstract:
In academia, the investigation of the relationship between cultural heritage and corporations is ubiquitous in several fields of studies. In practice corporations are more and more integrating arts and cultural heritage in their strategies for disparate benefits, such as: to foster customer’s purchase intention with authentic and aesthetic experiences, to improve their reputation towards local communities, and to motivate employees with creative thinking. There are diverse forms under which corporations set these artistic interventions, from sponsorships to arts-based training centers for employees, but scholars agree that the maximum expression of this cultural trend are corporate museums, growing in number and relevance. Corporate museums are museum-like settings, hosting artworks of corporations’ history and interests. In academia they have been ascribed as strategic asset and they have been associated with diverse uses for corporations’ benefits, from place for preservation of cultural heritage, to tools for public relations and cultural flagship stores. Previous studies have thus extensively but fragmentally studied the diverse benefits of corporate museum opening to corporations, with a lack of comprehensive approach and a digression on how to evaluate and report corporate museum’s performances. Stepping forward, the present study aims to investigate: 1) what are the key performance measures corporate museums need to report to the associated corporations; 2) how are the key performance measures reported to the concerned corporations. This direction of study is not only suggested as future direction in academia but it has solid basis in practice, aiming to answer to the need of corporate museums’ directors to account for corporate museum’s activities to the concerned corporation. Coherently, at an empirical level the study relies on action research method, whose distinctive feature is to develop practical knowledge through a participatory process. This paper indeed relies on the experience of a collaborative project between the researchers and a set of corporate museums in Italy, aimed at co-developing a performance measurement system. The project involved two steps: a first step, in which researchers derived the potential performance measures from literature along with exploratory interviews; a second step, in which researchers supported the pool of corporate museums’ directors in co-developing a set of key performance indicators for reporting. Preliminary empirical findings show that while scholars insist on corporate museums’ capability to develop networking relations, directors insist on the role of museums as internal supplier of knowledge for innovation goals. Moreover, directors stress museums’ cultural mission and outcomes as potential benefits for corporation, by remarking to include both cultural and business measures in the final tool. In addition, they give relevant attention to the wording used in humanistic terms while struggling to express all measures in economic terms. The paper aims to contribute to corporate museums’ and more broadly to arts-based initiatives’ literature in two directions. Firstly, it elaborates key performance measures with related indicators to report on cultural initiatives for corporations. Secondly, it provides evidence of challenges and practices to handle reporting on these initiatives, because of tensions arising from the co-existence of diverse perspectives, namely arts and business worlds.Keywords: arts-based initiative, corporate museum, hybrid organization, performance measurement
Procedia PDF Downloads 177175 Guard@Lis: Birdwatching Augmented Reality Mobile Application
Authors: Jose A. C. Venancio, Alexandrino J. M. Goncalves, Anabela Marto, Nuno C. S. Rodrigues, Rita M. T. Ascenso
Abstract:
Nowadays, it is common to find people who are concerned about getting away from the everyday life routine, looking forward to outcome well-being and pleasant emotions. Trying to disconnect themselves from the usual places of work and residence, they pursue different places, such as tourist destinations, aiming to have unexpected experiences. In order to make this exploration process easier, cities and tourism agencies seek new opportunities and solutions, creating routes with diverse cultural landmarks, including natural landscapes and historic buildings. These offers frequently aspire to the preservation of the local patrimony. In nature and wildlife, birdwatching is an activity that has been increasing, both in cities and in the countryside. This activity seeks to find, observe and identify the diversity of birds that live permanently or temporarily in these places, and it is usually supported by birdwatching guides. Leiria (Portugal) is a well-known city, presenting several historical and natural landmarks, like the Lis river and the castle where King D. Dinis lived in the 13th century. Along the Lis River, a conservation process was carried out and a pedestrian route was created (Polis project). This is considered an excellent spot for birdwatching, especially for the gray heron (Ardea cinerea) and for the kingfisher (Alcedo atthis). There is also a route through the city, from the riverside to the castle, which encloses a characterized variety of species, such as the barn swallow (Hirundo rustica), known for passing through different seasons of the year. Birdwatching is sometimes a difficult task since it is not always possible to see all bird species that inhabit a given place. For this reason, a need to create a technological solution was found to ease this activity. This project aims to encourage people to learn about the various species of birds that live along the Lis River and to promote the preservation of nature in a conscious way. This work is being conducted in collaboration with Leiria Municipal Council and with the Environmental Interpretation Centre. It intends to show the majesty of the Lis River, a place visited daily by several people, such as children and families, who use it for didactic and recreational activities. We are developing a mobile multi-platform application (Guard@Lis) that allows bird species to be observed along a given route, using representative digital 3D models through the integration of augmented reality technologies. Guard@Lis displays a route with points of interest for birdwatching and a list of species for each point of interest, along with scientific information, images and sounds for every species. For some birds, to ensure their observation, the user can watch them in loco, in their real and natural environment, with their mobile device by means of augmented reality, giving the sensation of presence of these birds, even if they cannot be seen in that place at that moment. The augmented reality feature is being developed with Vuforia SDK, using a hybrid approach to recognition and tracking processes, combining marks and geolocation techniques. This application proposes routes and notifies users with alerts for the possibility of viewing models of augmented reality birds. The final Guard@Lis prototype will be tested by volunteers in-situ.Keywords: augmented reality, birdwatching route, mobile application, nature tourism, watch birds using augmented reality
Procedia PDF Downloads 178174 The Asymptotic Hole Shape in Long Pulse Laser Drilling: The Influence of Multiple Reflections
Authors: Torsten Hermanns, You Wang, Stefan Janssen, Markus Niessen, Christoph Schoeler, Ulrich Thombansen, Wolfgang Schulz
Abstract:
In long pulse laser drilling of metals, it can be demonstrated that the ablation shape approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from ultra short pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in long pulse drilling of metals is identified, a model for the description of the asymptotic hole shape numerically implemented, tested and clearly confirmed by comparison with experimental data. The model assumes a robust process in that way that the characteristics of the melt flow inside the arising melt film does not change qualitatively by changing the laser or processing parameters. Only robust processes are technically controllable and thus of industrial interest. The condition for a robust process is identified by a threshold for the mass flow density of the assist gas at the hole entrance which has to be exceeded. Within a robust process regime the melt flow characteristics can be captured by only one model parameter, namely the intensity threshold. In analogy to USP ablation (where it is already known for a long time that the resulting hole shape results from a threshold for the absorbed laser fluency) it is demonstrated that in the case of robust long pulse ablation the asymptotic shape forms in that way that along the whole contour the absorbed heat flux density is equal to the intensity threshold. The intensity threshold depends on the special material and radiation properties and has to be calibrated be one reference experiment. The model is implemented in a numerical simulation which is called AsymptoticDrill and requires such a few amount of resources that it can run on common desktop PCs, laptops or even smart devices. Resulting hole shapes can be calculated within seconds what depicts a clear advantage over other simulations presented in literature in the context of industrial every day usage. Against this background the software additionally is equipped with a user-friendly GUI which allows an intuitive usage. Individual parameters can be adjusted using sliders while the simulation result appears immediately in an adjacent window. A platform independent development allow a flexible usage: the operator can use the tool to adjust the process in a very convenient manner on a tablet during the developer can execute the tool in his office in order to design new processes. Furthermore, at the best knowledge of the authors AsymptoticDrill is the first simulation which allows the import of measured real beam distributions and thus calculates the asymptotic hole shape on the basis of the real state of the specific manufacturing system. In this paper the emphasis is placed on the investigation of the effect of multiple reflections on the asymptotic hole shape which gain in importance when drilling holes with large aspect ratios.Keywords: asymptotic hole shape, intensity threshold, long pulse laser drilling, robust process
Procedia PDF Downloads 214173 Relationship between Thumb Length and Pointing Performance on Portable Terminal with Touch-Sensitive Screen
Authors: Takahiro Nishimura, Kouki Doi, Hiroshi Fujimoto
Abstract:
Touch-sensitive screens that serve as displays and input devices have been adopted in many portable terminals such as smartphones and personal media players, and the market of touch-sensitive screens has expanded greatly. One of the advantages of touch-sensitive screen is the flexibility in the graphical user interface (GUI) design, and it is imperative to design an appropriate GUI to realize an easy-to-use interface. Moreover, it is important to evaluate the relationship between pointing performance and GUI design. There is much knowledge regarding easy-to-use GUI designs for portable terminals with touch-sensitive screens, and most have focused on GUI design approaches for women or children with small hands. In contrast, GUI design approaches for users with large hands have not received sufficient attention. In this study, to obtain knowledge that contributes to the establishment of individualized easy-to-use GUI design guidelines, we conducted experiments to investigate the relationship between thumb length and pointing performance on portable terminals with touch-sensitive screens. In this study, fourteen college students who participated in the experiment were divided into two groups based on the length of their thumbs. Specifically, we categorized the participants into two groups, thumbs longer than 64.2 mm into L (Long) group, and thumbs longer than 57.4 mm but shorter than 64.2 mm into A (Average) group, based on Japanese anthropometric database. They took part in this study under the authorization of Waseda University’s ‘Ethics Review Committee on Research with Human Subjects’. We created an application for the experimental task and implemented it on the projected capacitive touch-sensitive screen portable terminal (iPod touch (4th generation)). The display size was 3.5 inch and 960 × 640 - pixel resolution at 326 ppi (pixels per inch). This terminal was selected as the experimental device, because of its wide use and market share. The operational procedure of the application is as follows. First, the participants placed their thumb on the start position. Then, one cross-shaped target in a 10 × 7 array of 70 positions appeared at random. The participants pointed the target with their thumb as accurately and as fast as possible. Then, they returned their thumb to the start position and waited. The operation ended when this procedure had been repeated until all 70 targets had each been pointed at once by the participants. We adopted the evaluation indices for absolute error, variable error, and pointing time to investigate pointing performance when using the portable terminal. The results showed that pointing performance varied with thumb length. In particular, on the lower right side of the screen, the performance of L group with long thumb was low. Further, we presented an approach for designing easy-to- use button GUI for users with long thumbs. The contributions of this study include revelation of the relationship between pointing performance and user’s thumb length when using a portable terminal in terms of accuracy, precision, and speed of pointing. We hope that these findings contribute to an easy-to-use GUI design for users with large hands.Keywords: pointing performance, portable terminal, thumb length, touch-sensitive screen
Procedia PDF Downloads 164172 A Study of the Effect of the Flipped Classroom on Mixed Abilities Classes in Compulsory Secondary Education in Italy
Authors: Giacoma Pace
Abstract:
The research seeks to evaluate whether students with impairments can achieve enhanced academic progress by actively engaging in collaborative problem-solving activities with teachers and peers, to overcome the obstacles rooted in socio-economic disparities. Furthermore, the research underscores the significance of fostering students' self-awareness regarding their learning process and encourages teachers to adopt a more interactive teaching approach. The research also posits that reducing conventional face-to-face lessons can motivate students to explore alternative learning methods, such as collaborative teamwork and peer education within the classroom. To address socio-cultural barriers it is imperative to assess their internet access and possession of technological devices, as these factors can contribute to a digital divide. The research features a case study of a Flipped Classroom Learning Unit, administered to six third-year high school classes: Scientific Lyceum, Technical School, and Vocational School, within the city of Turin, Italy. Data are about teachers and the students involved in the case study, some impaired students in each class, level of entry, students’ performance and attitude before using Flipped Classrooms, level of motivation, family’s involvement level, teachers’ attitude towards Flipped Classroom, goal obtained, the pros and cons of such activities, technology availability. The selected schools were contacted; meetings for the English teachers to gather information about their attitude and knowledge of the Flipped Classroom approach. Questionnaires to teachers and IT staff were administered. The information gathered, was used to outline the profile of the subjects involved in the study and was further compared with the second step of the study made up of a study conducted with the classes of the selected schools. The learning unit is the same, structure and content are decided together with the English colleagues of the classes involved. The pacing and content are matched in every lesson and all the classes participate in the same labs, use the same materials, homework, same assessment by summative and formative testing. Each step follows a precise scheme, in order to be as reliable as possible. The outcome of the case study will be statistically organised. The case study is accompanied by a study on the literature concerning EFL approaches and the Flipped Classroom. Document analysis method was employed, i.e. a qualitative research method in which printed and/or electronic documents containing information about the research subject are reviewed and evaluated with a systematic procedure. Articles in the Web of Science Core Collection, Education Resources Information Center (ERIC), Scopus and Science Direct databases were searched in order to determine the documents to be examined (years considered 2000-2022).Keywords: flipped classroom, impaired, inclusivity, peer instruction
Procedia PDF Downloads 53171 Barriers for Sustainable Consumption of Antifouling Products in the Baltic Sea
Authors: Bianca Koroschetz, Emma Mäenpää
Abstract:
The purpose of this paper is to study consumer practices and meanings of different antifouling methods in order to identify the main barriers for sustainable consumption of antifouling products in the Baltic Sea. The Baltic Sea is considered to be an important tourism area. More than 3.5 million leisure boaters use the sea for recreational boating. Most leisure boat owners use toxic antifouling paint to keep barnacles from attaching to the hull. Attached barnacles limit maneuverability and add drag which in turn increases fuel costs. Antifouling paint used to combat barnacles causes particular problems, as the use of these products continuously adds to the distribution of biocides in the coastal ecosystem and leads to the death of marine organisms. To keep the Baltic Sea as an attractive tourism area measures need to be undertaken to stop the pollution coming from toxic antifouling paints. The antifouling market contains a wide range of environment-friendly alternative products such as a brush wash for boats, hand scrubbing devices, hull covers and boat lifts. Unfortunately, not a lot of boat owners use these environment-friendly alternatives and instead prefer the use of the traditional toxic copper paints. We ask “Why is the unsustainable consumption of toxic paints still predominant when there is a big range of environment-friendly alternatives available? What are the barriers for sustainable consumption?” Environmental psychology has concentrated on developing models of human behavior, including the main factors that influence pro-environmental behavior. The main focus of these models was directed to the individual’s attitudes, principals, and beliefs. However, social practice theory emphasizes the importance to study practices, as they have a stronger explanatory power than attitude-behavior to explain unsustainable consumer behavior. Thus, the study focuses on describing the material, meaning and competence of antifouling practice in order to understand the social and cultural embeddedness of the practice. Phenomenological interviews were conducted with boat owners using antifouling products such as paints and alternative methods. This data collection was supplemented with participant observations in marinas. Preliminary results indicate that different factors such as costs, traditions, advertising, frequency of use, marinas and application of method impact on the consumption of antifouling products. The findings have shown that marinas have a big influence on the consumption of antifouling goods. Some marinas are very active in supporting the sustainable consumption of antifouling products as for example in Stockholm area several marinas subsidize costs for using environmental friendly alternatives or even forbid toxic paints. Furthermore the study has revealed that environmental friendly methods are very effective and do not have to be more expensive than painting with toxic paints. This study contributes to a broader understanding why the unsustainable consumption of toxic paints is still predominant when a big range of environment-friendly alternatives exist. Answers to this phenomenon will be gained by studying practices instead of attitudes offering a new perspective on environmental issues.Keywords: antifouling paint, Baltic Sea, boat tourism, sustainable consumption
Procedia PDF Downloads 194170 The Effect of Emotional Intelligence on Physiological Stress of Managers
Authors: Mikko Salminen, Simo Järvelä, Niklas Ravaja
Abstract:
One of the central models of emotional intelligence (EI) is that of Mayer and Salovey’s, which includes ability to monitor own feelings and emotions and those of others, ability to discriminate different emotions, and to use this information to guide thinking and actions. There is vast amount of previous research where positive links between EI and, for example, leadership successfulness, work outcomes, work wellbeing and organizational climate have been reported. EI has also a role in the effectiveness of work teams, and the effects of EI are especially prominent in jobs requiring emotional labor. Thus, also the organizational context must be taken into account when considering the effects of EI on work outcomes. Based on previous research, it is suggested that EI can also protect managers from the negative consequences of stress. Stress may have many detrimental effects on the manager’s performance in essential work tasks. Previous studies have highlighted the effects of stress on, not only health, but also, for example, on cognitive tasks such as decision-making, which is important in managerial work. The motivation for the current study came from the notion that, unfortunately, many stressed individuals may not be aware of the circumstance; periods of stress-induced physiological arousal may be prolonged if there is not enough time for recovery. To tackle this problem, physiological stress levels of managers were collected using recording of heart rate variability (HRV). The goal was to use this data to provide the managers with feedback on their stress levels. The managers could access this feedback using a www-based learning environment. In the learning environment, in addition to the feedback on stress level and other collected data, also developmental tasks were provided. For example, those with high stress levels were sent instructions for mindfulness exercises. The current study focuses on the relation between the measured physiological stress levels and EI of the managers. In a pilot study, 33 managers from various fields wore the Firstbeat Bodyguard HRV measurement devices for three consecutive days and nights. From the collected HRV data periods (minutes) of stress and recovery were detected using dedicated software. The effects of EI on HRV-calculated stress indexes were studied using Linear Mixed Models procedure in SPSS. There was a statistically significant effect of total EI, defined as an average score of Schutte’s emotional intelligence test, on the percentage of stress minutes during the whole measurement period (p=.025). More stress minutes were detected on those managers who had lower emotional intelligence. It is suggested, that high EI provided managers with better tools to cope with stress. Managing of own emotions helps the manager in controlling possible negative emotions evoked by, e.g., critical feedback or increasing workload. High EI managers may also be more competent in detecting emotions of others, which would lead to smoother interactions and less conflicts. Given the recent trend to different quantified-self applications, it is suggested that monitoring of bio-signals would prove to be a fruitful direction to further develop new tools for managerial and leadership coaching.Keywords: emotional intelligence, leadership, heart rate variability, personality, stress
Procedia PDF Downloads 226169 Optimal Control of Generators and Series Compensators within Multi-Space-Time Frame
Authors: Qian Chen, Lin Xu, Ping Ju, Zhuoran Li, Yiping Yu, Yuqing Jin
Abstract:
The operation of power grid is becoming more and more complex and difficult due to its rapid development towards high voltage, long distance, and large capacity. For instance, many large-scale wind farms have connected to power grid, where their fluctuation and randomness is very likely to affect the stability and safety of the grid. Fortunately, many new-type equipments based on power electronics have been applied to power grid, such as UPFC (Unified Power Flow Controller), TCSC (Thyristor Controlled Series Compensation), STATCOM (Static Synchronous Compensator) and so on, which can help to deal with the problem above. Compared with traditional equipment such as generator, new-type controllable devices, represented by the FACTS (Flexible AC Transmission System), have more accurate control ability and respond faster. But they are too expensive to use widely. Therefore, on the basis of the comparison and analysis of the controlling characteristics between traditional control equipment and new-type controllable equipment in both time and space scale, a coordinated optimizing control method within mutil-time-space frame is proposed in this paper to bring both kinds of advantages into play, which can better both control ability and economical efficiency. Firstly, the coordination of different space sizes of grid is studied focused on the fluctuation caused by large-scale wind farms connected to power grid. With generator, FSC (Fixed Series Compensation) and TCSC, the coordination method on two-layer regional power grid vs. its sub grid is studied in detail. The coordination control model is built, the corresponding scheme is promoted, and the conclusion is verified by simulation. By analysis, interface power flow can be controlled by generator and the specific line power flow between two-layer regions can be adjusted by FSC and TCSC. The smaller the interface power flow adjusted by generator, the bigger the control margin of TCSC, instead, the total consumption of generator is much higher. Secondly, the coordination of different time sizes is studied to further the amount of the total consumption of generator and the control margin of TCSC, where the minimum control cost can be acquired. The coordination method on two-layer ultra short-term correction vs. AGC (Automatic Generation Control) is studied with generator, FSC and TCSC. The optimal control model is founded, genetic algorithm is selected to solve the problem, and the conclusion is verified by simulation. Finally, the aforementioned method within multi-time-space scale is analyzed with practical cases, and simulated on PSASP (Power System Analysis Software Package) platform. The correctness and effectiveness are verified by the simulation result. Moreover, this coordinated optimizing control method can contribute to the decrease of control cost and will provide reference to the following studies in this field.Keywords: FACTS, multi-space-time frame, optimal control, TCSC
Procedia PDF Downloads 267168 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys
Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit
Abstract:
Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction
Procedia PDF Downloads 286167 Material Handling Equipment Selection Using Fuzzy AHP Approach
Authors: Priyanka Verma, Vijaya Dixit, Rishabh Bajpai
Abstract:
This research paper is aimed at selecting appropriate material handling equipment among the given choices so that the automation level in material handling can be enhanced. This work is a practical case scenario of material handling systems in consumer electronic appliances manufacturing organization. The choices of material handling equipment among which the decision has to be made are Automated Guided Vehicle’s (AGV), Autonomous Mobile Robots (AMR), Overhead Conveyer’s (OC) and Battery Operated Trucks/Vehicle’s (BOT). There is a need of attaining a certain level of automation in order to reduce human interventions in the organization. This requirement of achieving certain degree of automation can be attained by material handling equipment’s mentioned above. The main motive for selecting above equipment’s for study was solely based on corporate financial strategy of investment and return obtained through that investment made in stipulated time framework. Since the low cost automation with respect to material handling devices has to be achieved hence these equipment’s were selected. Investment to be done on each unit of this equipment is less than 20 lakh rupees (INR) and the recovery period is less than that of five years. Fuzzy analytic hierarchic process (FAHP) is applied here for selecting equipment where the four choices are evaluated on basis of four major criteria’s and 13 sub criteria’s, and are prioritized on the basis of weight obtained. The FAHP used here make use of triangular fuzzy numbers (TFN). The inability of the traditional AHP in order to deal with the subjectiveness and impreciseness in the pair-wise comparison process has been improved in the FAHP. The range of values for general rating purposes for all decision making parameters is kept between 0 and 1 on the basis of expert opinions captured on shop floor. These experts were familiar with operating environment and shop floor activity control. Instead of generating exact value the FAHP generates the ranges of values to accommodate the uncertainty in decision-making process. The four major criteria’s selected for the evaluation of choices of material handling equipment’s available are materials, technical capabilities, cost and other features. The thirteen sub criteria’s listed under these following four major criteria’s are weighing capacity, load per hour, material compatibility, capital cost, operating cost and maintenance cost, speed, distance moved, space required, frequency of trips, control required, safety and reliability issues. The key finding shows that among the four major criteria selected, cost is emerged as the most important criteria and is one of the key decision making aspect on the basis of which material equipment selection is based on. While further evaluating the choices of equipment available for each sub criteria it is found that AGV scores the highest weight in most of the sub-criteria’s. On carrying out complete analysis the research shows that AGV is the best material handling equipment suiting all decision criteria’s selected in FAHP and therefore it is beneficial for the organization to carry out automated material handling in the facility using AGV’s.Keywords: fuzzy analytic hierarchy process (FAHP), material handling equipment, subjectiveness, triangular fuzzy number (TFN)
Procedia PDF Downloads 434166 Aeroelastic Stability Analysis in Turbomachinery Using Reduced Order Aeroelastic Model Tool
Authors: Chandra Shekhar Prasad, Ludek Pesek Prasad
Abstract:
In the present day fan blade of aero engine, turboprop propellers, gas turbine or steam turbine low-pressure blades are getting bigger, lighter and thus, become more flexible. Therefore, flutter, forced blade response and vibration related failure of the high aspect ratio blade are of main concern for the designers, thus need to be address properly in order to achieve successful component design. At the preliminary design stage large number of design iteration is need to achieve the utter free safe design. Most of the numerical method used for aeroelastic analysis is based on field-based methods such as finite difference method, finite element method, finite volume method or coupled. These numerical schemes are used to solve the coupled fluid Flow-Structural equation based on full Naiver-Stokes (NS) along with structural mechanics’ equations. These type of schemes provides very accurate results if modeled properly, however, they are computationally very expensive and need large computing recourse along with good personal expertise. Therefore, it is not the first choice for aeroelastic analysis during preliminary design phase. A reduced order aeroelastic model (ROAM) with acceptable accuracy and fast execution is more demanded at this stage. Similar ROAM are being used by other researchers for aeroelastic and force response analysis of turbomachinery. In the present paper new medium fidelity ROAM is successfully developed and implemented in numerical tool to simulated the aeroelastic stability phenomena in turbomachinery and well as flexible wings. In the present, a hybrid flow solver based on 3D viscous-inviscid coupled 3D panel method (PM) and 3d discrete vortex particle method (DVM) is developed, viscous parameters are estimated using boundary layer(BL) approach. This method can simulate flow separation and is a good compromise between accuracy and speed compared to CFD. In the second phase of the research work, the flow solver (PM) will be coupled with ROM non-linear beam element method (BEM) based FEM structural solver (with multibody capabilities) to perform the complete aeroelastic simulation of a steam turbine bladed disk, propellers, fan blades, aircraft wing etc. The partitioned based coupling approach is used for fluid-structure interaction (FSI). The numerical results are compared with experimental data for different test cases and for the blade cascade test case, experimental data is obtained from in-house lab experiments at IT CAS. Furthermore, the results from the new aeroelastic model will be compared with classical CFD-CSD based aeroelastic models. The proposed methodology for the aeroelastic stability analysis of gas turbine or steam turbine blades, or propellers or fan blades will provide researchers and engineers a fast, cost-effective and efficient tool for aeroelastic (classical flutter) analysis for different design at preliminary design stage where large numbers of design iteration are required in short time frame.Keywords: aeroelasticity, beam element method (BEM), discrete vortex particle method (DVM), classical flutter, fluid-structure interaction (FSI), panel method, reduce order aeroelastic model (ROAM), turbomachinery, viscous-inviscid coupling
Procedia PDF Downloads 268165 The Influence of Age and Education on Patients' Attitudes Towards Contraceptives in Rural California
Authors: Shivani Thakur, Jasmin Dominguez Cervantes, Ahmed Zabiba, Fatima Zabiba, Sandhini Agarwal, Kamalpreet Kaur, Hussein Maatouk, Shae Chand, Omar Madriz, Tiffany Huang, Saloni Bansal
Abstract:
Contraceptives are an effective public health achievement, allowing for family planning and reducing the risk of sexually transmitted diseases (STDs). California’s rural Central Valley has high rates of teenage pregnancy and STDs. Factors affecting contraceptive usage here may include religious concerns, financial issues, and regional variations in the accessibility and availability of contraceptives. The increasing population and diversity of the Central Valley make the understanding of the determinants of unintended pregnancy and STDs increasingly nuanced. Patients in California’s Central Valley were surveyed at 6 surgical clinics to assess attitudes toward contraceptives. The questionnaire consisted of demographics and 14 Likert-scale statements investigating patients’ feelings regarding contraceptives. Parametric and non-parametric analysis was performed on the Likert statements. A correlation matrix for the Likert-scale statements was used to evaluate the strength of the relationship between each question. 76 patients aged 18-75 years completed the questionnaire. 90% of the participants were female, 76% Hispanic, 36% married, 44% with an income range between 30-60K, and 83% were between childbearing ages. 60% of participants stated they are currently using or had used some type of contraceptive. 25% of participants had at least one unplanned pregnancy. The most common type of contraceptives used were oral contraceptives(28%) and condoms(38%). The top reasons for patients’ contraceptive usage were: prevention of pregnancy (72%), safe sex/prevention of STDs (32%), and regulation of menstrual cycle (19%). Further analysis of Likert responses revealed that contraception usage increased due to approval of contraceptives (x̄=3.98, σ =1.02); partner approval of contraceptives (x̄=3.875, σ =1.16); and reduced anxiety about pregnancy (x̄=3.875, σ =1.23). Younger females (18-34 years old) agreed more with the statement that the cost of contraceptive supplies is too expensive than older females (35-75 years old), (x̄=3.2, σ = 1.4 vs x̄=2.8, σ =1.3, p<0.05). Younger females (44%) were also more likely to use short-acting contraceptive methods (oral and male condoms) compared to older females (64%) who use long-acting methods (implants/ intrauterine devices). 51% of Hispanic females were using some type of contraceptive. Of those Hispanic females who do not use contraceptives, 33% stated having no children, and all plan to have at least one child in the future. 35% of participants had a bachelor's degree. Those with bachelor’s degrees were more likely to use contraceptives, 58% vs 51%, p<0.05, and less likely to have unplanned pregnancy, 50% vs. 12%, p<0.01. There is increasing use and awareness among patients in rural settings concerning contraceptives. Our finding shows that younger women and women with higher educational attainment tend to have more positive attitudes towards the use of contraceptives. This work gives physicians an understanding of patients’ concerns about contraceptive methods and offers insight into culturally competent intervention programs that respect individual values.Keywords: contraceptives, public health, rural california, women of child baring age
Procedia PDF Downloads 60164 Using Passive Cooling Strategies to Reduce Thermal Cooling Load for Coastal High-Rise Buildings of Jeddah, Saudi Arabia
Authors: Ahmad Zamzam
Abstract:
With the development of the economy in recent years, Saudi Arabia has been maintaining high economic growth. Therefore, its energy consumption has increased dramatically. This economic growth reflected on the expansion of high-rise tower's construction. Jeddah coastal strip (cornice) has many high-rise buildings planned to start next few years. These projects required a massive amount of electricity that was not planned to be supplied by the old infrastructure. This research studies the effect of the building envelope on its thermal performance. It follows a parametric simulation methodology using Ecotect software to analyze the effect of the building envelope design on its cooling energy load for an office high-rise building in Jeddah, Saudi Arabia, which includes building geometrical form, massing treatments, orientation and glazing type effect. The research describes an integrated passive design approach to reduce the cooling requirement for high-rise building through an improved building envelope design. The research used Ecotect to make four simulation studies; the first simulation compares the thermal performance of five high-rise buildings, presenting the basic shape of the plan. All the buildings have the same plan area and same floor height. The goal of this simulation is to find out the best shape for the thermal performance. The second simulation studies the effect of orientation on the thermal performance by rotating the same building model to find out the best and the worst angle for the building thermal performance. The third simulation studies the effect of the massing treatment on the total cooling load. It compared five models with different massing treatment, but with the same total built up area. The last simulation studied the effect of the glazing type by comparing the total cooling load of the same building using five different glass type and also studies the feasibility of using these glass types by studying the glass cost effect. The results indicate that using the circle shape as building plan could reduce the thermal cooling load by 40%. Also, using shading devices could reduce the cooling loads by 5%. The study states that using any of the massing grooving, recess or any treatment that could increase the outer exposed surface is not preferred and will decrease the building thermal performance. Also, the result shows that the best direction for glazing and openings from thermal performance viewpoint in Jeddah is the North direction while the worst direction is the East one. The best direction angle for openings - regarding the thermal performance in Jeddah- is 15 deg West and the worst is 250 deg West (110 deg East). Regarding the glass type effect, comparing to the double glass with air fill type as a reference case, the double glass with Air-Low-E will save 14% from the required amount of the thermal cooling load annually. Argon fill and triple glass will save 16% and 17% from the total thermal cooling load respectively, but for the glass cost purpose, using the Argon fill and triple glass is not feasible.Keywords: passive cooling, reduce thermal load, Jeddah, building shape, energy
Procedia PDF Downloads 128163 Reconceptualizing Evidence and Evidence Types for Digital Journalism Studies
Authors: Hai L. Tran
Abstract:
In the digital age, evidence-based reporting is touted as a best practice for seeking the truth and keeping the public well-informed. Journalists are expected to rely on evidence to demonstrate the validity of a factual statement and lend credence to an individual account. Evidence can be obtained from various sources, and due to a rich supply of evidence types available, the definition of this important concept varies semantically. To promote clarity and understanding, it is necessary to break down the various types of evidence and categorize them in a more coherent, systematic way. There is a wide array of devices that digital journalists deploy as proof to back up or refute a truth claim. Evidence can take various formats, including verbal and visual materials. Verbal evidence encompasses quotes, soundbites, talking heads, testimonies, voice recordings, anecdotes, and statistics communicated through written or spoken language. There are instances where evidence is simply non-verbal, such as when natural sounds are provided without any verbalized words. On the other hand, other language-free items exhibited in photos, video footage, data visualizations, infographics, and illustrations can serve as visual evidence. Moreover, there are different sources from which evidence can be cited. Supporting materials, such as public or leaked records and documents, data, research studies, surveys, polls, or reports compiled by governments, organizations, and other entities, are frequently included as informational evidence. Proof can also come from human sources via interviews, recorded conversations, public and private gatherings, or press conferences. Expert opinions, eye-witness insights, insider observations, and official statements are some of the common examples of testimonial evidence. Digital journalism studies tend to make broad references when comparing qualitative versus quantitative forms of evidence. Meanwhile, limited efforts are being undertaken to distinguish between sister terms, such as “data,” “statistical,” and “base-rate” on one side of the spectrum and “narrative,” “anecdotal,” and “exemplar” on the other. The present study seeks to develop the evidence taxonomy, which classifies evidence through the quantitative-qualitative juxtaposition and in a hierarchical order from broad to specific. According to this scheme, data, statistics, and base rate belong to the quantitative evidence group, whereas narrative, anecdote, and exemplar fall into the qualitative evidence group. Subsequently, the taxonomical classification arranges data versus narrative at the top of the hierarchy of types of evidence, followed by statistics versus anecdote and base rate versus exemplar. This research reiterates the central role of evidence in how journalists describe and explain social phenomena and issues. By defining the various types of evidence and delineating their logical connections it helps remove a significant degree of conceptual inconsistency, ambiguity, and confusion in digital journalism studies.Keywords: evidence, evidence forms, evidence types, taxonomy
Procedia PDF Downloads 69162 Evaluation of Kabul BRT Route Network with Application of Integrated Land-use and Transportation Model
Authors: Mustafa Mutahari, Nao Sugiki, Kojiro Matsuo
Abstract:
The four decades of war, lack of job opportunities, poverty, lack of services, and natural disasters in different provinces of Afghanistan have contributed to a rapid increase in the population of Kabul, the capital city of Afghanistan. Population census has not been conducted since 1979, the first and last population census in Afghanistan. However, according to population estimations by Afghan authorities, the population of Kabul has been estimated at more than 4 million people, whereas the city was designed for two million people. Although the major transport mode of Kabul residents is public transport, responsible authorities within the country failed to supply the required means of transportation systems for the city. Besides, informal resettlement, lack of intersection control devices, presence of illegal vendors on streets, presence of illegal and unstandardized on-street parking and bus stops, driver`s unprofessional behavior, weak traffic law enforcement, and blocked roads and sidewalks have contributed to the extreme traffic congestion of Kabul. In 2018, the government of Afghanistan approved the Kabul city Urban Design Framework (KUDF), a vision towards the future of Kabul, which provides strategies and design guidance at different scales to direct urban development. Considering traffic congestion of the city and its budget limitations, the KUDF proposes a BRT route network with seven lines to reduce the traffic congestion, and it is said to facilitate more than 50% of Kabul population to benefit from this service. Based on the KUDF, it is planned to increase the BRT mode share from 0% to 17% and later to 30% in medium and long-term planning scenarios, respectively. Therefore, a detailed research study is needed to evaluate the proposed system before the implementation stage starts. The integrated land-use transport model is an effective tool to evaluate the Kabul BRT because of its future assessment capabilities that take into account the interaction between land use and transportation. This research aims to analyze and evaluate the proposed BRT route network with the application of an integrated land-use and transportation model. The research estimates the population distribution and travel behavior of Kabul within small boundary scales. The actual road network and land-use detailed data of the city are used to perform the analysis. The BRT corridors are evaluated not only considering its impacts on the spatial interactions in the city`s transportation system but also on the spatial developments. Therefore, the BRT are evaluated with the scenarios of improving the Kabul transportation system based on the distribution of land-use or spatial developments, planned development typology and population distribution of the city. The impacts of the new improved transport system on the BRT network are analyzed and the BRT network is evaluated accordingly. In addition, the research also focuses on the spatial accessibility of BRT stops, corridors, and BRT line beneficiaries, and each BRT stop and corridor are evaluated in terms of both access and geographic coverage, as well.Keywords: accessibility, BRT, integrated land-use and transport model, travel behavior, spatial development
Procedia PDF Downloads 222161 Adopting Data Science and Citizen Science to Explore the Development of African Indigenous Agricultural Knowledge Platform
Authors: Steven Sam, Ximena Schmidt, Hugh Dickinson, Jens Jensen
Abstract:
The goal of this study is to explore the potential of data science and citizen science approaches to develop an interactive, digital, open infrastructure that pulls together African indigenous agriculture and food systems data from multiple sources, making it accessible and reusable for policy, research and practice in modern food production efforts. The World Bank has recognised that African Indigenous Knowledge (AIK) is innovative and unique among local and subsistent smallholder farmers, and it is central to sustainable food production and enhancing biodiversity and natural resources in many poor, rural societies. AIK refers to tacit knowledge held in different languages, cultures and skills passed down from generation to generation by word of mouth. AIK is a key driver of food production, preservation, and consumption for more than 80% of citizens in Africa, and can therefore assist modern efforts of reducing food insecurity and hunger. However, the documentation and dissemination of AIK remain a big challenge confronting librarians and other information professionals in Africa, and there is a risk of losing AIK owing to urban migration, modernisation, land grabbing, and the emergence of relatively small-scale commercial farming businesses. There is also a clear disconnect between the AIK and scientific knowledge and modern efforts for sustainable food production. The study combines data science and citizen science approaches through active community participation to generate and share AIK for facilitating learning and promoting knowledge that is relevant for policy intervention and sustainable food production through a curated digital platform based on FAIR principles. The study adopts key informant interviews along with participatory photo and video elicitation approach, where farmers are given digital devices (mobile phones) to record and document their every practice involving agriculture, food production, processing, and consumption by traditional means. Data collected are analysed using the UK Science and Technology Facilities Council’s proven methodology of citizen science (Zooniverse) and data science. Outcomes are presented in participatory stakeholder workshops, where the researchers outline plans for creating the platform and developing the knowledge sharing standard framework and copyrights agreement. Overall, the study shows that learning from AIK, by investigating what local communities know and have, can improve understanding of food production and consumption, in particular in times of stress or shocks affecting the food systems and communities. Thus, the platform can be useful for local populations, research, and policy-makers, and it could lead to transformative innovation in the food system, creating a fundamental shift in the way the North supports sustainable, modern food production efforts in Africa.Keywords: Africa indigenous agriculture knowledge, citizen science, data science, sustainable food production, traditional food system
Procedia PDF Downloads 83160 Benzenepropanamine Analogues as Non-detergent Microbicidal Spermicide for Effective Pre-exposure Prophylaxis
Authors: Veenu Bala, Yashpal S. Chhonker, Bhavana Kushwaha, Rabi S. Bhatta, Gopal Gupta, Vishnu L. Sharma
Abstract:
According to UNAIDS 2013 estimate nearly 52% of all individuals living with HIV are now women of reproductive age (15–44 years). Seventy-five percent cases of HIV acquisition are through heterosexual contacts and sexually transmitted infections (STIs), attributable to unsafe sexual behaviour. Each year, an estimated 500 million people acquire atleast one of four STIs: chlamydia, gonorrhoea, syphilis and trichomoniasis. Trichomonas vaginalis (TV) is exclusively sexually transmitted in adults, accounting for 30% of STI cases and associated with pelvic inflammatory disease (PID), vaginitis and pregnancy complications in women. TV infection resulted in impaired vaginal milieu, eventually favoring HIV transmission. In the absence of an effective prophylactic HIV vaccine, prevention of new infections has become a priority. It was thought worthwhile to integrate HIV prevention and reproductive health services including unintended pregnancy protection for women as both are related with unprotected sex. Initially, nonoxynol-9 (N-9) had been proposed as a spermicidal agent with microbicidal activity but on the contrary it increased HIV susceptibility due to surfactant action. Thus, to accomplish an urgent need of novel woman controlled non-detergent microbicidal spermicides benzenepropanamine analogues have been synthesized. At first, five benzenepropanamine-dithiocarbamate hybrids have been synthesized and evaluated for their spermicidal, anti-Trichomonas and anti-fungal activities along with safety profiling to cervicovaginal cells. In order to further enhance the scope of above study benzenepropanamine was hybridized with thiourea as to introduce anti-HIV potential. The synthesized hybrid molecules were evaluated for their reverse transcriptase (RT) inhibition, spermicidal, anti-Trichomonas and antimicrobial activities as well as their safety against vaginal flora and cervical cells. simulated vaginal fluid (SVF) stability and pharmacokinetics of most potent compound versus N-9 was examined in female Newzealand (NZ) rabbits to observe its absorption into systemic circulation and subsequent exposure in blood plasma through vaginal wall. The study resulted in the most promising compound N-butyl-4-(3-oxo-3-phenylpropyl) piperazin-1-carbothioamide (29) exhibiting better activity profile than N-9 as it showed RT inhibition (72.30 %), anti-Trichomonas (MIC, 46.72 µM against MTZ susceptible and MIC, 187.68 µM against resistant strain), spermicidal (MEC, 0.01%) and antifungal activity (MIC, 3.12–50 µg/mL) against four fungal strains. The high safety against vaginal epithelium (HeLa cells) and compatibility with vaginal flora (lactobacillus), SVF stability and least vaginal absorption supported its suitability for topical vaginal application. Docking study was performed to gain an insight into the binding mode and interactions of the most promising compound, N-butyl-4-(3-oxo-3-phenylpropyl) piperazin-1-carbothioamide (29) with HIV-1 Reverse Transcriptase. The docking study has revealed that compound (29) interacted with HIV-1 RT similar to standard drug Nevirapine. It may be concluded that hybridization of benzenepropanamine and thiourea moiety resulted into novel lead with multiple activities including RT inhibition. A further lead optimization may result into effective vaginal microbicides having spermicidal, anti-Trichomonas, antifungal and anti-HIV potential altogether with enhanced safety to cervico-vaginal cells in comparison to Nonoxynol-9.Keywords: microbicidal, nonoxynol-9, reverse transcriptase, spermicide
Procedia PDF Downloads 344159 An Adaptable Semi-Numerical Anisotropic Hyperelastic Model for the Simulation of High Pressure Forming
Authors: Daniel Tscharnuter, Eliza Truszkiewicz, Gerald Pinter
Abstract:
High-quality surfaces of plastic parts can be achieved in a very cost-effective manner using in-mold processes, where e.g. scratch resistant or high gloss polymer films are pre-formed and subsequently receive their support structure by injection molding. The pre-forming may be done by high-pressure forming. In this process, a polymer sheet is heated and subsequently formed into the mold by pressurized air. Due to the heat transfer to the cooled mold the polymer temperature drops below its glass transition temperature. This ensures that the deformed microstructure is retained after depressurizing, giving the sheet its final formed shape. The development of a forming process relies heavily on the experience of engineers and trial-and-error procedures. Repeated mold design and testing cycles are however both time- and cost-intensive. It is, therefore, desirable to study the process using reliable computer simulations. Through simulations, the construction of the mold and the effect of various process parameters, e.g. temperature levels, non-uniform heating or timing and magnitude of pressure, on the deformation of the polymer sheet can be analyzed. Detailed knowledge of the deformation is particularly important in the forming of polymer films with integrated electro-optical functions. Care must be taken in the placement of devices, sensors and electrical and optical paths, which are far more sensitive to deformation than the polymers. Reliable numerical prediction of the deformation of the polymer sheets requires sophisticated material models. Polymer films are often either transversely isotropic or orthotropic due to molecular orientations induced during manufacturing. The anisotropic behavior affects the resulting strain field in the deformed film. For example, parts of the same shape but different strain fields may be created by varying the orientation of the film with respect to the mold. The numerical simulation of the high-pressure forming of such films thus requires material models that can capture the nonlinear anisotropic mechanical behavior. There are numerous commercial polymer grades for the engineers to choose from when developing a new part. The effort required for comprehensive material characterization may be prohibitive, especially when several materials are candidates for a specific application. We, therefore, propose a class of models for compressible hyperelasticity, which may be determined from basic experimental data and which can capture key features of the mechanical response. Invariant-based hyperelastic models with a reduced number of invariants are formulated in a semi-numerical way, such that the models are determined from a single uniaxial tensile tests for isotropic materials, or two tensile tests in the principal directions for transversely isotropic or orthotropic materials. The simulation of the high pressure forming of an orthotropic polymer film is finally done using an orthotropic formulation of the hyperelastic model.Keywords: hyperelastic, anisotropic, polymer film, thermoforming
Procedia PDF Downloads 618158 Intensive Care Experience of Providing Palliative Care for a Terminal Lung Cancer Patient
Authors: Ting-I Lin
Abstract:
Objective: This article explores the nursing care experience of a 51-year-old terminal lung cancer patient admitted to the intensive care unit (ICU) following an upper right lobectomy. The patient initially sought emergency treatment due to worsening cough and dyspnea, which led to the placement of an endotracheal tube following sudden deterioration. Subsequent CT scans and chest X-rays revealed a tumor in the upper right lung with metastases to the lungs, liver, bones, and adrenal glands. The patient underwent a right upper lobectomy and a wedge resection of the right middle lobe. Pathology staging: T4N3M1c and the patient was diagnosed with advanced cancer postoperatively. Method: During the care period, nursing staff continuously monitored the patient’s physiological data through observations, direct care, interviews, physical assessments, and review of the patient’s medical records. The nursing team collaborated with the critical care team and the palliative care team, using Gordon's Eleven Functional Health Patterns to conduct a comprehensive assessment. The key health problems identified included pain related to postoperative cancer resection and invasive devices, fear of death due to rapid disease progression, and altered tissue perfusion associated with hemodynamic instability. Results: Postoperatively, the patient experienced pain from the surgical wound and dyspnea due to extensive metastasis, often leading to confusion. Through the adjustment of pain medication, the patient’s discomfort was alleviated, using Morphine 8 mg in 0.9% normal saline 60 ml IV drip q6h prn, and Ultracet 37.5 mg/325 mg 1# PO q6h. Additionally, lavender essential oil inhalation and limb massage were provided for 15 minutes four times a day. The patient’s FLACC pain score decreased from 7 to below 3. After respiratory training, the endotracheal tube was successfully removed, and the patient was weaned off the ventilator. Triflow exercises were used to promote alveolar expansion, with the goal of achieving 2 balls for 10 seconds, 5 repetitions per session, 6-8 times a day. The patient’s breathing stabilized at 16-18 breaths per minute, body temperature remained between 35.8°C and 36.1°C, and the mean arterial pressure was maintained between 60-80 mmHg. Conclusion: The critical care team and the palliative care team held a family meeting to discuss not only the patient’s care but also the emotional well-being of the family. Visiting hours were increased to two times per day, one hour each time, allowing the patient and family to express love and gratitude, which strengthened their emotional connection and reduced the patient’s anxiety from severe to mild. The family expressed that they had no regrets. After the patient was transferred to the general ward, the nursing team continued to provide end-of-life care with genuine empathy, compassion, and religious support, helping both the patient and family through the final stage of life.Keywords: multiple metastases, lung cancer, palliative care, nursing experience
Procedia PDF Downloads 30157 Reconstruction of Signal in Plastic Scintillator of PET Using Tikhonov Regularization
Authors: L. Raczynski, P. Moskal, P. Kowalski, W. Wislicki, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, L. Kaplon, A. Kochanowski, G. Korcyl, J. Kowal, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, Z. Rudy, O. Rundel, P. Salabura, N.G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, M. Zielinski, N. Zon
Abstract:
The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The J-PET detector improves the TOF resolution due to the use of fast plastic scintillators. Since registration of the waveform of signals with duration times of few nanoseconds is not feasible, a novel front-end electronics allowing for sampling in a voltage domain at four thresholds was developed. To take fully advantage of these fast signals a novel scheme of recovery of the waveform of the signal, based on ideas from the Tikhonov regularization (TR) and Compressive Sensing methods, is presented. The prior distribution of sparse representation is evaluated based on the linear transformation of the training set of waveform of the signals by using the Principal Component Analysis (PCA) decomposition. Beside the advantage of including the additional information from training signals, a further benefit of the TR approach is that the problem of signal recovery has an optimal solution which can be determined explicitly. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This step is crucial to introduce and prove the formula for calculations of the signal recovery error. It has been proven that an average recovery error is approximately inversely proportional to the number of samples at voltage levels. The method is tested using signals registered by means of the single detection module of the J-PET detector built out from the 30 cm long BC-420 plastic scintillator strip. It is demonstrated that the experimental and theoretical functions describing the recovery errors in the J-PET scenario are largely consistent. The specificity and limitations of the signal recovery method in this application are discussed. It is shown that the PCA basis offers high level of information compression and an accurate recovery with just eight samples, from four voltage levels, for each signal waveform. Moreover, it is demonstrated that using the recovered waveform of the signals, instead of samples at four voltage levels alone, improves the spatial resolution of the hit position reconstruction. The experiment shows that spatial resolution evaluated based on information from four voltage levels, without a recovery of the waveform of the signal, is equal to 1.05 cm. After the application of an information from four voltage levels to the recovery of the signal waveform, the spatial resolution is improved to 0.94 cm. Moreover, the obtained result is only slightly worse than the one evaluated using the original raw-signal. The spatial resolution calculated under these conditions is equal to 0.93 cm. It is very important information since, limiting the number of threshold levels in the electronic devices to four, leads to significant reduction of the overall cost of the scanner. The developed recovery scheme is general and may be incorporated in any other investigation where a prior knowledge about the signals of interest may be utilized.Keywords: plastic scintillators, positron emission tomography, statistical analysis, tikhonov regularization
Procedia PDF Downloads 447156 Engineering Topology of Photonic Systems for Sustainable Molecular Structure: Autopoiesis Systems
Authors: Moustafa Osman Mohammed
Abstract:
This paper introduces topological order in descried social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. Topological order is important in describing the physical systems for exploiting optical systems and improving photonic devices. The stats of topological order have some interesting properties of topological degeneracy and fractional statistics that reveal the entanglement origin of topological order, etc. Topological ideas in photonics form exciting developments in solid-state materials, that being; insulating in the bulk, conducting electricity on their surface without dissipation or back-scattering, even in the presence of large impurities. A specific type of autopoiesis system is interrelated to the main categories amongst existing groups of the ecological phenomena interaction social and medical sciences. The hypothesis, nevertheless, has a nonlinear interaction with its natural environment 'interactional cycle' for exchange photon energy with molecules without changes in topology. The engineering topology of a biosensor is based on the excitation boundary of surface electromagnetic waves in photonic band gap multilayer films. The device operation is similar to surface Plasmonic biosensors in which a photonic band gap film replaces metal film as the medium when surface electromagnetic waves are excited. The use of photonic band gap film offers sharper surface wave resonance leading to the potential of greatly enhanced sensitivity. So, the properties of the photonic band gap material are engineered to operate a sensor at any wavelength and conduct a surface wave resonance that ranges up to 470 nm. The wavelength is not generally accessible with surface Plasmon sensing. Lastly, the photonic band gap films have robust mechanical functions that offer new substrates for surface chemistry to understand the molecular design structure and create sensing chips surface with different concentrations of DNA sequences in the solution to observe and track the surface mode resonance under the influences of processes that take place in the spectroscopic environment. These processes led to the development of several advanced analytical technologies: which are; automated, real-time, reliable, reproducible, and cost-effective. This results in faster and more accurate monitoring and detection of biomolecules on refractive index sensing, antibody-antigen reactions with a DNA or protein binding. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other in order to form unique spatial structure and dynamics of biological molecules for providing the environment mutual contribution in investigation of changes due to the pathogenic archival architecture of cell clusters.Keywords: autopoiesis, photonics systems, quantum topology, molecular structure, biosensing
Procedia PDF Downloads 94155 Environmental Impact of Pallets in the Supply Chain: Including Logistics and Material Durability in a Life Cycle Assessment Approach
Authors: Joana Almeida, Kendall Reid, Jonas Bengtsson
Abstract:
Pallets are devices that are used for moving and storing freight and are nearly omnipresent in supply chains. The market is dominated by timber pallets, with plastic being a common alternative. Either option underpins the use of important resources (oil, land, timber), the emission of greenhouse gases and additional waste generation in most supply chains. This study uses a dynamic approach to the life cycle assessment (LCA) of pallets. It demonstrates that what ultimately defines the environmental burden of pallets in the supply chain is how often the length of its lifespan, which depends on the durability of the material and on how pallets are utilized. This study proposes a life cycle assessment (LCA) of pallets in supply chains supported by an algorithm that estimates pallet durability in function of material resilience and of logistics. The LCA runs from cradle-to-grave, including raw material provision, manufacture, transport and end of life. The scope is representative of timber and plastic pallets in the Australian and South-East Asia markets. The materials included in this analysis are: -tropical mixed hardwood, unsustainably harvested in SE Asia; -certified softwood, sustainably harvested; -conventional plastic, a mix of virgin and scrap plastic; -recycled plastic pallets, 100% mixed plastic scrap, which are being pioneered by Re > Pal. The logistical model purports that more complex supply chains and rougher handling subject pallets to higher stress loads. More stress shortens the lifespan of pallets in function of their composition. Timber pallets can be repaired, extending their lifespan, while plastic pallets cannot. At the factory gate, softwood pallets have the lowest carbon footprint. Re > pal follows closely due to its burden-free feedstock. Tropical mixed hardwood and plastic pallets have the highest footprints. Harvesting tropical mixed hardwood in SE Asia often leads to deforestation, leading to emissions from land use change. The higher footprint of plastic pallets is due to the production of virgin plastic. Our findings show that manufacture alone does not determine the sustainability of pallets. Even though certified softwood pallets have lower carbon footprint and their lifespan can be extended by repair, the need for re-supply of materials and disposal of waste timber offsets this advantage. It also leads to most waste being generated among all pallets. In a supply chain context, Re > Pal pallets have the lowest footprint due to lower replacement and disposal needs. In addition, Re > Pal are nearly ‘waste neutral’, because the waste that is generated throughout their life cycle is almost totally offset by the scrap uptake for production. The absolute results of this study can be confirmed by progressing the logistics model, improving data quality, expanding the range of materials and utilization practices. Still, this LCA demonstrates that considering logistics, raw materials and material durability is central for sustainable decision-making on pallet purchasing, management and disposal.Keywords: carbon footprint, life cycle assessment, recycled plastic, waste
Procedia PDF Downloads 225154 Electromagnetic Modeling of a MESFET Transistor Using the Moments Method Combined with Generalised Equivalent Circuit Method
Authors: Takoua Soltani, Imen Soltani, Taoufik Aguili
Abstract:
The communications' and radar systems' demands give rise to new developments in the domain of active integrated antennas (AIA) and arrays. The main advantages of AIA arrays are the simplicity of fabrication, low cost of manufacturing, and the combination between free space power and the scanner without a phase shifter. The integrated active antenna modeling is the coupling between the electromagnetic model and the transport model that will be affected in the high frequencies. Global modeling of active circuits is important for simulating EM coupling, interaction between active devices and the EM waves, and the effects of EM radiation on active and passive components. The current review focuses on the modeling of the active element which is a MESFET transistor immersed in a rectangular waveguide. The proposed EM analysis is based on the Method of Moments combined with the Generalised Equivalent Circuit method (MOM-GEC). The Method of Moments which is the most common and powerful software as numerical techniques have been used in resolving the electromagnetic problems. In the class of numerical techniques, MOM is the dominant technique in solving of Maxwell and Transport’s integral equations for an active integrated antenna. In this situation, the equivalent circuit is introduced to the development of an integral method formulation based on the transposition of field problems in a Generalised equivalent circuit that is simpler to treat. The method of Generalised Equivalent Circuit (MGEC) was suggested in order to represent integral equations circuits that describe the unknown electromagnetic boundary conditions. The equivalent circuit presents a true electric image of the studied structures for describing the discontinuity and its environment. The aim of our developed method is to investigate the antenna parameters such as the input impedance and the current density distribution and the electric field distribution. In this work, we propose a global EM modeling of the MESFET AsGa transistor using an integral method. We will begin by describing the modeling structure that allows defining an equivalent EM scheme translating the electromagnetic equations considered. Secondly, the projection of these equations on common-type test functions leads to a linear matrix equation where the unknown variable represents the amplitudes of the current density. Solving this equation resulted in providing the input impedance, the distribution of the current density and the electric field distribution. From electromagnetic calculations, we were able to present the convergence of input impedance for different test function number as a function of the guide mode numbers. This paper presents a pilot study to find the answer to map out the variation of the existing current evaluated by the MOM-GEC. The essential improvement of our method is reducing computing time and memory requirements in order to provide a sufficient global model of the MESFET transistor.Keywords: active integrated antenna, current density, input impedance, MESFET transistor, MOM-GEC method
Procedia PDF Downloads 198