Search results for: hysteretic energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8199

Search results for: hysteretic energy

4329 Participatory Approach for Urban Sustainability through Ostrom’s Principles

Authors: Kuladeep Kumar Sadevi

Abstract:

The shift towards raising global urban population has intense implications on the sustainability of the urban livelihoods. Rapid urbanization has made governments, companies and civil societies recognize that they are barely equipped to deal with growing urban demands, especially water, waste and energy management. Effective management of land, water, energy and waste at a community level should be addressed well to attain greener cities. In pursuit of Green livelihoods; various norms, codes, and green rating programmes have been followed by stakeholders at various levels. While the sustainability is being adapted at smaller scale developments, greening the urban environment at community/city level is still finding its path to reality. This is due to lack of the sense of ownership in the citizens for their immediate neighborhoods and city as a whole. This phenomenon can be well connected to the theory of 'tragedy of commons' with respect to the community engagement to manage the common pool resources. The common pool resource management has been well addressed by Elinor Ostrom, who shared the Nobel Prize in Economics in 2009 for her lifetime of scholarly work investigating how communities succeed or fail at managing common pool (finite) resources. This paper examines the applicability of Elinor Ostrom's 8 Principles for Managing a Commons, to meet urban sustainability. The key objective of this paper is to come up with a model for effective urban common pool resource management, which ultimately leads to sustainability as a whole. The paper brings out a methodology to understand various parameters involved in urban sustainability, examine the synergies of all such parameters, and application of Ostrom’s principles to correlate these parameters in order to attain effective urban resource management.

Keywords: common pool resources, green cities, green communities, participatory management, sustainable development, urban resource management, urban sustainability

Procedia PDF Downloads 337
4328 A Computational Study of the Electron Transport in HgCdTe Bulk Semiconductor

Authors: N. Dahbi, M. Daoudi

Abstract:

This paper deals with the use of computational method based on Monte Carlo simulation in order to investigate the transport phenomena of the electron in HgCdTe narrow band gap semiconductor. Via this method we can evaluate the time dependence of the transport parameters: velocity, energy and mobility of electrons through matter (HgCdTe).

Keywords: Monte Carlo, transport parameters, HgCdTe, computational mechanics

Procedia PDF Downloads 457
4327 Crosslinked PVA/Bentonite Clay Nanocomposite Membranes: An Effective Membrane for the Separation of Azeotropic Composition of Isopropanol and Water

Authors: Soney C. George, Thomasukutty Jose, Sabu Thomas

Abstract:

Membrane based separation is the most important energy –efficient separation processes. There are wide ranges of membrane based separation process such as Micro-filtration, ultra filtration, reverse osmosis, electro-dialysis etc. Among these pervaporation is one of the most promising techniques. The promising technique is in the sense that it needs an ease of process design, low energy consumption, environmentally clean, economically cost effective and easily separate azeotropic composition without losing any components, unlike distillation in a short period of time. In the present work, we developed a new bentonite clay reinforced cross-linked PVA nano-composite membranes by solution casting method. The membranes were used for the pervaporation separation of azeotropic composition of isopropanol and water mixtures. The azeotropic composition of water and isopropanol is difficult to separate and we can’t get a better separation by normal separation processes. But the better separation was achieved here using cross-linked PVA/Clay nano-composite membranes. The 2wt% bentonite clay reinforced 5vol% GA cross-linked nano-composite membranes showed better separation efficiency. The selectivity of the cross-linked membranes increases 65% upon filler loading. The water permeance is showed tremendous enhancement upon filler loading. The permeance value changes from 4100 to 8200, due to the incorporation hydrophilic bentonite clay to the cross-linked PVA membranes. The clay reinforced membranes shows better thermal stability upon filler loading was confirmed from TGA and DSC analysis. The dispersion of nanoclay in the polymeric matrix was clearly evident from the TEM analysis. The better dispersed membranes showed better separation performance. Thus the developed cross-linked PVA/Clay membranes can be effectively used for the separation of azeotropic composition of water and isopropanol.

Keywords: poly(vinyl alcohol), membrane, gluraldehyde, permeance

Procedia PDF Downloads 289
4326 Design of Nano-Reinforced Carbon Fiber Reinforced Plastic Wheel for Lightweight Vehicles with Integrated Electrical Hub Motor

Authors: Davide Cocchi, Andrea Zucchelli, Luca Raimondi, Maria Brugo Tommaso

Abstract:

The increasing attention is given to the issues of environmental pollution and climate change is exponentially stimulating the development of electrically propelled vehicles powered by renewable energy, in particular, the solar one. Given the small amount of solar energy that can be stored and subsequently transformed into propulsive energy, it is necessary to develop vehicles with high mechanical, electrical and aerodynamic efficiencies along with reduced masses. The reduction of the masses is of fundamental relevance especially for the unsprung masses, that is the assembly of those elements that do not undergo a variation of their distance from the ground (wheel, suspension system, hub, upright, braking system). Therefore, the reduction of unsprung masses is fundamental in decreasing the rolling inertia and improving the drivability, comfort, and performance of the vehicle. This principle applies even more in solar propelled vehicles, equipped with an electric motor that is connected directly to the wheel hub. In this solution, the electric motor is integrated inside the wheel. Since the electric motor is part of the unsprung masses, the development of compact and lightweight solutions is of fundamental importance. The purpose of this research is the design development and optimization of a CFRP 16 wheel hub motor for solar propulsion vehicles that can carry up to four people. In addition to trying to maximize aspects of primary importance such as mass, strength, and stiffness, other innovative constructive aspects were explored. One of the main objectives has been to achieve a high geometric packing in order to ensure a reduced lateral dimension, without reducing the power exerted by the electric motor. In the final solution, it was possible to realize a wheel hub motor assembly completely comprised inside the rim width, for a total lateral overall dimension of less than 100 mm. This result was achieved by developing an innovative connection system between the wheel and the rotor with a double purpose: centering and transmission of the driving torque. This solution with appropriate interlocking noses allows the transfer of high torques and at the same time guarantees both the centering and the necessary stiffness of the transmission system. Moreover, to avoid delamination in critical areas, evaluated by means of FEM analysis using 3D Hashin damage criteria, electrospun nanofibrous mats have been interleaved between CFRP critical layers. In order to reduce rolling resistance, the rim has been designed to withstand high inflation pressure. Laboratory tests have been performed on the rim using the Digital Image Correlation technique (DIC). The wheel has been tested for fatigue bending according to E/ECE/324 R124e.

Keywords: composite laminate, delamination, DIC, lightweight vehicle, motor hub wheel, nanofiber

Procedia PDF Downloads 194
4325 Photoemission Momentum Microscopy of Graphene on Ir (111)

Authors: Anna V. Zaporozhchenko, Dmytro Kutnyakhov, Katherina Medjanik, Christian Tusche, Hans-Joachim Elmers, Olena Fedchenko, Sergey Chernov, Martin Ellguth, Sergej A. Nepijko, Gerd Schoenhense

Abstract:

Graphene reveals a unique electronic structure that predetermines many intriguing properties such as massless charge carriers, optical transparency and high velocity of fermions at the Fermi level, opening a wide horizon of future applications. Hence, a detailed investigation of the electronic structure of graphene is crucial. The method of choice is angular resolved photoelectron spectroscopy ARPES. Here we present experiments using time-of-flight (ToF) momentum microscopy, being an alternative way of ARPES using full-field imaging of the whole Brillouin zone (BZ) and simultaneous acquisition of up to several 100 energy slices. Unlike conventional ARPES, k-microscopy is not limited in simultaneous k-space access. We have recorded the whole first BZ of graphene on Ir(111) including all six Dirac cones. As excitation source we used synchrotron radiation from BESSY II (Berlin) at the U125-2 NIM, providing linearly polarized (both polarizations p- and s-) VUV radiation. The instrument uses a delay-line detector for single-particle detection up the 5 Mcps range and parallel energy detection via ToF recording. In this way, we gather a 3D data stack I(E,kx,ky) of the full valence electronic structure in approx. 20 mins. Band dispersion stacks were measured in the energy range of 14 eV up to 23 eV with steps of 1 eV. The linearly-dispersing graphene bands for all six K and K’ points were simultaneously recorded. We find clear features of hybridization with the substrate, in particular in the linear dichroism in the angular distribution (LDAD). Recording of the whole Brillouin zone of graphene/Ir(111) revealed new features. First, the intensity differences (i.e. the LDAD) are very sensitive to the interaction of graphene bands with substrate bands. Second, the dark corridors are investigated in detail for both, p- and s- polarized radiation. They appear as local distortions of photoelectron current distribution and are induced by quantum mechanical interference of graphene sublattices. The dark corridors are located in different areas of the 6 Dirac cones and show chirality behaviour with a mirror plane along vertical axis. Moreover, two out of six show an oval shape while the rest are more circular. It clearly indicates orientation dependence with respect to E vector of incident light. Third, a pattern of faint but very sharp lines is visible at energies around 22eV that strongly remind on Kikuchi lines in diffraction. In conclusion, the simultaneous study of all six Dirac cones is crucial for a complete understanding of dichroism phenomena and the dark corridor.

Keywords: band structure, graphene, momentum microscopy, LDAD

Procedia PDF Downloads 323
4324 Underground Coal Gasification Technology in Türkiye: A Techno-Economic Assessment

Authors: Fatma Ünal, Hasancan Okutan

Abstract:

Increasing worldwide population and technological requirements lead to an increase in energy demand every year. The demand has been mainly supplied from fossil fuels such as coal and petroleum due to insufficient natural gas resources. In recent years, the amount of coal reserves has reached almost 21 billion tons in Türkiye. These are mostly lignite (%92,7), that contains high levels of moisture and sulfur components. Underground coal gasification technology is one of the most suitable methods in comparison with direct combustion techniques for the evaluation of such coal types. In this study, the applicability of the underground coal gasification process is investigated in the Eskişehir-Alpu lignite reserve as a pilot region, both technologically and economically. It is assumed that the electricity is produced from the obtained synthesis gas in an integrated gasification combined cycle (IGCC). Firstly, an equilibrium model has been developed by using the thermodynamic properties of the gasification reactions. The effect of the type of oxidizing gas, the sulfur content of coal, the rate of water vapor/air, and the pressure of the system have been investigated to find optimum process conditions. Secondly, the parallel and linear controlled recreation and injection point (CRIP) models were implemented as drilling methods, and costs were calculated under the different oxidizing agents (air and high-purity O2). In Parallel CRIP (P-CRIP), drilling cost is found to be lower than the linear CRIP (L-CRIP) since two coal beds simultaneously are gasified. It is seen that CO2 Capture and Storage (CCS) technology was the most effective unit on the total cost in both models. The cost of the synthesis gas produced varies between 0,02 $/Mcal and 0,09 $/Mcal. This is the promising result when considering the selling price of Türkiye natural gas for Q1-2023 (0.103 $ /Mcal).

Keywords: energy, lignite reserve, techno-economic analysis, underground coal gasification.

Procedia PDF Downloads 49
4323 A Technical-Economical Study of a New Solar Tray Distillator

Authors: Abderrahmane Diaf, Assia Cherfa, Lamia Karadaniz

Abstract:

Multiple tray solar distillation offers an interesting alternative for small-scale desalination and production high quality distilled water at a competitive cost using solar energy. In this work, we present indoor/outdoor trial performance data of our multiple tray solar distillation as well as the results of cost estimation analysis.

Keywords: solar desalination, tray distillation, multi-étages solaire, solar distillation

Procedia PDF Downloads 405
4322 In-Cylinder Exhaust Heat Recovery of an I. C. Engine Using Water Injection

Authors: Jayakrishnan U.

Abstract:

A concept of adding two strokes to a four stroke Otto or Diesel engine cycle presented here for the waste heat recovery in a four stroke internal combustion engine. Four stroke Diesel cycle and Otto cycle engines have very low thermal efficiency due to high amount of energy loss in exhaust and also on the cooling of the engine. It is estimated about 35 percent of fuel energy is lost in exhaust of engine and 30 percent in cooling of engine. So by modifying a four-stroke Otto or Diesel engine by adding two-stroke heat recovery steam cycle is presented here. Water injection is used to get an additional power stroke by partial compression of the exhaust gases at the end of third stroke in a four stroke I.C.Engine. It is the conversion of a four-stroke cycle to a six-stroke cycle. By taking a four stroke petrol engine of known dimensions, an ideal thermodynamic model is used to analyse and calculate the events of exhaust gas compression and following two strokes of water injection. By changing the exhaust valve closing timing during exhaust stroke and analysing it on various points, an optimum amount of exhaust gas re-compression and amount of water injection can be found for maximizing efficiency and fuel economy. It is achieved by changing the exhaust valve timing and finding an optimum amount of exhaust re-compression, maximizing the net mean effective pressure of the steam expansion stroke (MEPsteam). Specific fuel consumption of the engine also decreases increasing the fuel economy. The valve closing timings for maximum MEPsteam is limited by either 1 bar or dew point temperature of expansion gas or moisture mixture to avoid moisture formation. By modifying the four-stroke Otto or Diesel cycle by adding two water injection stroke has the potential to significantly increase the engine efficiency and fuel economy.

Keywords: internal combustion engine, engine efficiency, six-stroke cycle, water injection, specific fuel consumption

Procedia PDF Downloads 283
4321 Numerical response of Coaxial HPGe Detector for Skull and Knee measurement

Authors: Pabitra Sahu, M. Manohari, S. Priyadharshini, R. Santhanam, S. Chandrasekaran, B. Venkatraman

Abstract:

Radiation workers of reprocessing plants have a potential for internal exposure due to actinides and fission products. Radionuclides like Americium, lead, Polonium and Europium are bone seekers and get accumulated in the skeletal part. As the major skeletal content is in the skull (13%) and knee (22%), measurements of old intake have to be carried out in the skull and knee. At the Indira Gandhi Centre for Atomic Research, a twin HPGe-based actinide monitor is used for the measurement of actinides present in bone. Efficiency estimation, which is one of the prerequisites for the quantification of radionuclides, requires anthropomorphic phantoms. Such phantoms are very limited. Hence, in this study, efficiency curves for a Twin HPGe-based actinide monitoring system are established theoretically using the FLUKA Monte Carlo method and ICRP adult male voxel phantom. In the case of skull measurement, the detector is placed over the forehead, and for knee measurement, one detector is placed over each knee. The efficiency values of radionuclides present in the knee and skull vary from 3.72E-04 to 4.19E-04 CPS/photon and 5.22E-04 to 7.07E-04 CPS/photon, respectively, for the energy range 17 to 3000keV. The efficiency curves for the measurement are established, and it is found that initially, the efficiency value increases up to 100 keV and then starts decreasing. It is found that the skull efficiency values are 4% to 63% higher than that of the knee, depending on the energy for all the energies except 17.74 keV. The reason is the closeness of the detector to the skull compared to the knee. But for 17.74 keV the efficiency of the knee is more than the skull due to the higher attenuation caused in the skull bones because of its greater thickness. The Minimum Detectable Activity (MDA) for 241Am present in the skull and knee is 9 Bq. 239Pu has a MDA of 950 Bq and 1270 Bq for knee and skull, respectively, for a counting time of 1800 sec. This paper discusses the simulation method and the results obtained in the study.

Keywords: FLUKA Monte Carlo Method, ICRP adult male voxel phantom, knee, Skull.

Procedia PDF Downloads 29
4320 The Elimination of Fossil Fuel Subsidies from the Road Transportation Sector and the Promotion of Electro Mobility: The Ecuadorian Case

Authors: Henry Gonzalo Acurio Flores, Alvaro Nicolas Corral Naveda, Juan Francisco Fonseca Palacios

Abstract:

In Ecuador, subventions on fossil fuels for the road transportation sector have always been part of its economy throughout time, mainly because of demagogy and populism from political leaders. It is clearly seen that the government cannot maintain the subsidies anymore due to its commercial balance and its general state budget; subsidies are a key barrier to implementing the use of cleaner technologies. However, during the last few months, the elimination of subsidies has been done gradually with the purpose of reaching international prices. It is expected that with this measure, the population will opt for other means of transportation, and in a certain way, it will promote the use of private electric vehicles and public, e.g., taxis and buses (urban transport). Considering the three main elements of sustainable development, an analysis of the social, economic, and environmental impacts of eliminating subsidies will be generated at the country level. To achieve this, four scenarios will be developed in order to determine how the subsidies will contribute to the promotion of electro-mobility. 1) A Business as Usual BAU scenario; 2) the introduction of 10 000 electric vehicles by 2025; 3) the introduction of 100 000 electric vehicles by 2030; 4) the introduction of 750 000 electric vehicles by 2040 (for all the scenarios buses, taxis, lightweight duty vehicles, and private vehicles will be introduced, as it is established in the National Electro Mobility Strategy for Ecuador). The Low Emissions Analysis Platform (LEAP) will be used, and it will be suitable to determine the cost for the government in terms of importing derivatives for fossil fuels and the cost of electricity to power the electric fleet that can be changed. The elimination of subventions generates fiscal resources for the state that can be used to develop other kinds of projects that will benefit Ecuadorian society. It will definitely change the energy matrix, and it will provide energy security for the country; it will be an opportunity for the government to incentivize a greater introduction of renewable energies, e.g., solar, wind, and geothermal. At the same time, it will also reduce greenhouse gas emissions (GHG) from the transportation sector, considering its mitigation potential, which as a result, will ameliorate the inhabitant quality of life by improving the quality of air, therefore reducing respiratory diseases associated with exhaust emissions, consequently, achieving sustainability, the Sustainable Development Goals (SDGs), and complying with the agreements established in the Paris Agreement COP 21 in 2015. Electro mobility in Latin America and the Caribbean can only be achieved by the implementation of the right policies at the central government, which need to be accompanied by a National Urban Mobility Policy (NUMP) and can encompass a greater vision to develop holistic, sustainable transport systems at local governments.

Keywords: electro mobility, energy, policy, sustainable transportation

Procedia PDF Downloads 60
4319 Synthesis of Belite Cements at Low Temperature from Silica Fume and Natural Commercial Zeolite

Authors: Tatiana L. Avalos-Rendon, Elias A. Pasten Chelala, Carlos J. Mendoza EScobedo, Ignacio A. Figueroa, Victor H. Lara, Luis M. Palacios-Romero

Abstract:

The cement industry is facing cost increments in energy supply, requirements for reduction of CO₂, and insufficient supply of raw materials of good quality. According to all these environmental issues, cement industry must change its consumption patterns and reduce CO₂ emissions to the atmosphere. This can be achieved by generating environmental consciousness, which encourages the use of industrial by-products and/or recycling for the production of cement, as well as alternate, environment-friendly methods of synthesis which reduce CO₂. Calcination is the conventional method for the obtainment of Portland cement clinker. This method consists of grinding and mixing of raw materials (limestone, clay, etc.) in an adequate dosage. Resulting mix has a clinkerization temperature of 1450 °C so that the formation of the main component occur: alite (Ca₃SiO₅, C₃S). Considering that the energy required to produce C₃S is 1810 kJ kg -1, calcination method for the obtainment of clinker represents two major disadvantages: long thermal treatment and elevated temperatures of synthesis, both of which cause high emissions of carbon dioxide (CO₂) to the atmosphere. Belite Portland clinker is characterized by having a low content of calcium oxide (CaO), causing the presence of alite to diminish and favoring the formation of belite (β-Ca₂SiO₄, C₂S), so production of clinker requires a reduced energy consumption (1350 kJ kg-1), releasing less CO₂ to the atmosphere. Conventionally, β-Ca₂SiO₄ is synthetized by the calcination of calcium carbonate (CaCO₃) and silicon dioxide (SiO₂) through the reaction in solid state at temperatures greater than 1300 °C. Resulting belite shows low hydraulic reactivity. Therefore, this study concerns a new simple modified combustion method for the synthesis of two belite cements at low temperatures (1000 °C). Silica fume, as subproduct of metallurgic industry and commercial natural zeolite were utilized as raw materials. These are considered low-cost materials and were utilized with no additional purification process. Belite cements properties were characterized by XRD, SEM, EDS and BET techniques. Hydration capacity of belite cements was calculated while the mechanical strength was determined in ordinary Portland cement specimens (PC) with a 10% partial replacement of the belite cements obtained. Results showed belite cements presented relatively high surface áreas, at early ages mechanical strengths similar to those of alite cement and comparable to strengths of belite cements obtained by different synthesis methods. Cements obtained in this work present good hydraulic reactivity properties.

Keywords: belite, silica fume, zeolite, hydraulic reactivity

Procedia PDF Downloads 335
4318 Design and Implementation of 3kVA Grid-Tied Transformerless Power Inverter for Solar Photovoltaic Application

Authors: Daniel O. Johnson, Abiodun A. Ogunseye, Aaron Aransiola, Majors Samuel

Abstract:

Power Inverter is a very important device in renewable energy use particularly for solar photovoltaic power application because it is the effective interface between the DC power generator and the load or the grid. Transformerless inverter is getting more and more preferred to the power converter with galvanic isolation transformer and may eventually supplant it. Transformerless inverter offers advantages of improved DC to AC conversion and power delivery efficiency; and reduced system cost, weight and complexity. This work presents thorough analysis of the design and prototyping of 3KVA grid-tie transformerless inverter. The inverter employs electronic switching method with minimised heat generation in the system and operates based on the principle of pulse-width modulation (PWM). The design is such that it can take two inputs, one from PV arrays and the other from Battery Energy Storage BES and addresses the safety challenge of leakage current. The inverter system was designed around microcontroller system, modeled with Proteus® software for simulation and testing of the viability of the designed inverter circuit. The firmware governing the operation of the grid-tied inverter is written in C language and was developed using MicroC software by Mikroelectronica® for writing sine wave signal code for synchronization to the grid. The simulation results show that the designed inverter circuit performs excellently with very high efficiency, good quality sinusoidal output waveform, negligible harmonics and gives very stable performance under voltage variation from 36VDC to 60VDC input. The prototype confirmed the simulated results and was successfully synchronized with the utility supply. The comprehensive analyses of the circuit design, the prototype and explanation on overall performance will be presented.

Keywords: grid-tied inverter, leakage current, photovoltaic system, power electronic, transformerless inverter

Procedia PDF Downloads 269
4317 Dynamic Exergy Analysis for the Built Environment: Fixed or Variable Reference State

Authors: Valentina Bonetti

Abstract:

Exergy analysis successfully helps optimizing processes in various sectors. In the built environment, a second-law approach can enhance potential interactions between constructions and their surrounding environment and minimise fossil fuel requirements. Despite the research done in this field in the last decades, practical applications are hard to encounter, and few integrated exergy simulators are available for building designers. Undoubtedly, an obstacle for the diffusion of exergy methods is the strong dependency of results on the definition of its 'reference state', a highly controversial issue. Since exergy is the combination of energy and entropy by means of a reference state (also called "reference environment", or "dead state"), the reference choice is crucial. Compared to other classical applications, buildings present two challenging elements: They operate very near to the reference state, which means that small variations have relevant impacts, and their behaviour is dynamical in nature. Not surprisingly then, the reference state definition for the built environment is still debated, especially in the case of dynamic assessments. Among the several characteristics that need to be defined, a crucial decision for a dynamic analysis is between a fixed reference environment (constant in time) and a variable state, which fluctuations follow the local climate. Even if the latter selection is prevailing in research, and recommended by recent and widely-diffused guidelines, the fixed reference has been analytically demonstrated as the only choice which defines exergy as a proper function of the state in a fluctuating environment. This study investigates the impact of that crucial choice: Fixed or variable reference. The basic element of the building energy chain, the envelope, is chosen as the object of investigation as common to any building analysis. Exergy fluctuations in the building envelope of a case study (a typical house located in a Mediterranean climate) are confronted for each time-step of a significant summer day, when the building behaviour is highly dynamical. Exergy efficiencies and fluxes are not familiar numbers, and thus, the more easy-to-imagine concept of exergy storage is used to summarize the results. Trends obtained with a fixed and a variable reference (outside air) are compared, and their meaning is discussed under the light of the underpinning dynamical energy analysis. As a conclusion, a fixed reference state is considered the best choice for dynamic exergy analysis. Even if the fixed reference is generally only contemplated as a simpler selection, and the variable state is often stated as more accurate without explicit justifications, the analytical considerations supporting the adoption of a fixed reference are confirmed by the usefulness and clarity of interpretation of its results. Further discussion is needed to address the conflict between the evidence supporting a fixed reference state and the wide adoption of a fluctuating one. A more robust theoretical framework, including selection criteria of the reference state for dynamical simulations, could push the development of integrated dynamic tools and thus spread exergy analysis for the built environment across the common practice.

Keywords: exergy, reference state, dynamic, building

Procedia PDF Downloads 208
4316 Keynote Talk: The Role of Internet of Things in the Smart Cities Power System

Authors: Abdul-Rahman Al-Ali

Abstract:

As the number of mobile devices is growing exponentially, it is estimated to connect about 50 million devices to the Internet by the year 2020. At the end of this decade, it is expected that an average of eight connected devices per person worldwide. The 50 billion devices are not mobile phones and data browsing gadgets only, but machine-to-machine and man-to-machine devices. With such growing numbers of devices the Internet of Things (I.o.T) concept is one of the emerging technologies as of recently. Within the smart grid technologies, smart home appliances, Intelligent Electronic Devices (IED) and Distributed Energy Resources (DER) are major I.o.T objects that can be addressable using the IPV6. These objects are called the smart grid internet of things (SG-I.o.T). The SG-I.o.T generates big data that requires high-speed computing infrastructure, widespread computer networks, big data storage, software, and platforms services. A company’s utility control and data centers cannot handle such a large number of devices, high-speed processing, and massive data storage. Building large data center’s infrastructure takes a long time, it also requires widespread communication networks and huge capital investment. To maintain and upgrade control and data centers’ infrastructure and communication networks as well as updating and renewing software licenses which collectively, requires additional cost. This can be overcome by utilizing the emerging computing paradigms such as cloud computing. This can be used as a smart grid enabler to replace the legacy of utilities data centers. The talk will highlight the role of I.o.T, cloud computing services and their development models within the smart grid technologies.

Keywords: intelligent electronic devices (IED), distributed energy resources (DER), internet, smart home appliances

Procedia PDF Downloads 303
4315 Marine Fishing and Climate Change: A China’s Perspective on Fisheries Economic Development and Greenhouse Gas Emissions

Authors: Yidan Xu, Pim Martens, Thomas Krafft

Abstract:

Marine fishing, an energy-intensive activity, directly emits greenhouse gases through fuel combustion, making it a significant contributor to oceanic greenhouse gas (GHG) emissions and worsening climate change. China is the world’s second-largest economy and the top emitter of GHG emissions, and it carries a significant energy conservation and emission reduction burden. However, the increasing GHG emissions from marine fishing is an easily overlooked but essential issue in China. This study offers a diverse perspective by integrating the concepts of total carbon emissions, carbon intensity, and per capita carbon emissions as indicators into calculation and discussion. To better understand the GHG emissions-Gross marine fishery product (GFP) relationship and influencing factors in Chinese marine fishing, the relationship between GHG emissions and economic development in marine fishing, a comprehensive framework is developed by combining the environmental Kuznets curve, the Tapio elasticity index, and the decomposition model. Results indicated that (1) The GHG emissions increased from 16.479 to 18.601 million tons in 2001-2020, in which trawlers and gillnetter are the main source in fishing operation. (2) Total carbon emissions (TC) and CI presented the same decline as GHG emissions, while per capita carbon emissions (PC) displayed an uptrend. (32) GHG emissions and gross marine fishery product (GFP) presented an inverted U-shaped relationship in China; the turning point came in the 13th Five-year Plan period (2016-2020). (43) Most provinces strongly decoupled GFP and CI. Still, PC and TC need more effort to decouple. (54) GHG emissions promoted by an industry structure driven, though carbon intensity and industry scale aid in GHG emissions reduced. (5) Compare with TC and PC, CI has been relatively affected by COVID-19 in 2020. The rise in fish and seafood prices during COVID-19 has boosted the GFP.

Keywords: marine fishing economy, greenhouse gas emission, fishery management, green development

Procedia PDF Downloads 46
4314 The Vulnerability of Farmers in Valencia Negros Oriental to Climate Change: El Niño Phenomenon and Malnutrition

Authors: J. K. Pis-An

Abstract:

Objective: The purpose of the study was to examine the vulnerability of farmers to the effects of climate change, specifically the El Niño phenomenon was felt in the Philippines in 2009-2010. Methods: KAP Survey determines behavioral response to vulnerability to the effects of El Niño. Body Mass Index: Dietary Assessment using 24-hour food recall. Results: 75% of the respondents claimed that crop significantly decreased during drought. Indications that households of farmers are large where 51.6% are composed of 6-10 family members with 68% annual incomes below Php 100,00. Anthropometric assessment showed that the prevalence of Chronic Energy Deficiency Grade 1 among females 17% and 28.57% for low normal. While male body mass index result for chronic energy deficiency grade 1 10%, low normal 18.33% and and obese grade 1, 31.67%. Dietary assessment of macronutrient intake of carbohydrates, protein, and fat 31.6 % among respondents are below recommended amounts. Micronutrient deficiency of calcium, iron, vit. A, thiamine, riboflavin, niacin, and Vit. C. Conclusion: Majority of the rural populations are engaged into farming livelihood that makes up the backbone of their economic growth. Placing the current nutritional status of the farmers in the context of food security, there are reasons to believe that the status will go for worse if the extreme climatic conditions will once again prevail in the region. Farmers rely primarily on home grown crops for their food supply, a reduction in farm production during drought is expected to adversely affect dietary intake. The local government therefore institute programs to increase food resiliency and to prioritize health of the population as the moving force for productivity and development.

Keywords: world health organization, united nation framework convention on climate change, anthropometric, macronutrient, micronutrient

Procedia PDF Downloads 428
4313 A Systemic Review and Comparison of Non-Isolated Bi-Directional Converters

Authors: Rahil Bahrami, Kaveh Ashenayi

Abstract:

This paper presents a systematic classification and comparative analysis of non-isolated bi-directional DC-DC converters. The increasing demand for efficient energy conversion in diverse applications has spurred the development of various converter topologies. In this study, we categorize bi-directional converters into three distinct classes: Inverting, Non-Inverting, and Interleaved. Each category is characterized by its unique operational characteristics and benefits. Furthermore, a practical comparison is conducted by evaluating the results of simulation of each bi-directional converter. BDCs can be classified into isolated and non-isolated topologies. Non-isolated converters share a common ground between input and output, making them suitable for applications with minimal voltage change. They are easy to integrate, lightweight, and cost-effective but have limitations like limited voltage gain, switching losses, and no protection against high voltages. Isolated converters use transformers to separate input and output, offering safety benefits, high voltage gain, and noise reduction. They are larger and more costly but are essential for automotive designs where safety is crucial. The paper focuses on non-isolated systems.The paper discusses the classification of non-isolated bidirectional converters based on several criteria. Common factors used for classification include topology, voltage conversion, control strategy, power capacity, voltage range, and application. These factors serve as a foundation for categorizing converters, although the specific scheme might vary depending on contextual, application, or system-specific requirements. The paper presents a three-category classification for non-isolated bi-directional DC-DC converters: inverting, non-inverting, and interleaved. In the inverting category, converters produce an output voltage with reversed polarity compared to the input voltage, achieved through specific circuit configurations and control strategies. This is valuable in applications such as motor control and grid-tied solar systems. The non-inverting category consists of converters maintaining the same voltage polarity, useful in scenarios like battery equalization. Lastly, the interleaved category employs parallel converter stages to enhance power delivery and reduce current ripple. This classification framework enhances comprehension and analysis of non-isolated bi-directional DC-DC converters. The findings contribute to a deeper understanding of the trade-offs and merits associated with different converter types. As a result, this work aids researchers, practitioners, and engineers in selecting appropriate bi-directional converter solutions for specific energy conversion requirements. The proposed classification framework and experimental assessment collectively enhance the comprehension of non-isolated bi-directional DC-DC converters, fostering advancements in efficient power management and utilization.The simulation process involves the utilization of PSIM to model and simulate non-isolated bi-directional converter from both inverted and non-inverted category. The aim is to conduct a comprehensive comparative analysis of these converters, considering key performance indicators such as rise time, efficiency, ripple factor, and maximum error. This systematic evaluation provides valuable insights into the dynamic response, energy efficiency, output stability, and overall precision of the converters. The results of this comparison facilitate informed decision-making and potential optimizations, ensuring that the chosen converter configuration aligns effectively with the designated operational criteria and performance goals.

Keywords: bi-directional, DC-DC converter, non-isolated, energy conversion

Procedia PDF Downloads 75
4312 Leaf Photosynthesis and Water-Use Efficiency of Diverse Legume Species Nodulated by Native Rhizobial Isolates in the Glasshouse

Authors: Lebogang Jane Msiza, Felix Dapare Dakora

Abstract:

Photosynthesis is a process by which plants convert light energy to chemical energy for metabolic processes. Plants are known for converting inorganic CO₂ in the atmosphere to organic C by photosynthesis. A decrease in stomatal conductance causes a decrease in the transpiration rate of leaves, thus increasing the water-use efficiency of plants. Water-use efficiency in plants is conditioned by soil moisture availability and is enhanced under conditions of water deficit. This study evaluated leaf photosynthesis and water-use efficiency in 12 legume species inoculated with 26 rhizobial isolates from soybean, 15 from common bean, 10 from cowpea, 15 from Bambara groundnut, 7 from lessertia and 10 from Kersting bean. Gas-exchange studies were used to measure photosynthesis and water-use efficiency. The results revealed a much higher photosynthetic rate (20.95µmol CO₂ m-2s-1) induced by isolated tutpres to a lower rate (7.06 µmol CO₂ m-2s-1) by isolate mgsa 88. Stomatal conductance ranged from to 0.01 mmol m-2.s-1 by mgsa 88 to 0.12 mmol m-2.s-1 by isolate da-pua 128. Transpiration rate also ranged from 0.09 mmol m-2.s-1 induced by da-pua B2 to 3.28 mmol m-2.s-1 by da-pua 3, while water-use efficiency ranged from 91.32 µmol CO₂ m-1 H₂O elicited by mgsa 106 to 4655.50 µmol CO₂ m-1 H₂O by isolate tutswz 13. The results revealed the highest photosynthetic rate in soybean and the lowest in common bean, and also with higher stomatal conductance and transpiration rates in jack bean and Bambara groundnut. Pigeonpea exhibited much higher water-use efficiency than all the tested legumes. The findings showed significant differences between and among the test legume/rhizobia combinations. Leaf photosynthetic rates are reported to be higher in legumes with high stomatal conductance, which suggests that legume productivity can be improved by manipulating leaf stomatal conductance.

Keywords: legumes, photosynthetic rate, stomatal conductance, water-use efficiency

Procedia PDF Downloads 205
4311 Irradion: Portable Small Animal Imaging and Irradiation Unit

Authors: Josef Uher, Jana Boháčová, Richard Kadeřábek

Abstract:

In this paper, we present a multi-robot imaging and irradiation research platform referred to as Irradion, with full capabilities of portable arbitrary path computed tomography (CT). Irradion is an imaging and irradiation unit entirely based on robotic arms for research on cancer treatment with ion beams on small animals (mice or rats). The platform comprises two subsystems that combine several imaging modalities, such as 2D X-ray imaging, CT, and particle tracking, with precise positioning of a small animal for imaging and irradiation. Computed Tomography: The CT subsystem of the Irradion platform is equipped with two 6-joint robotic arms that position a photon counting detector and an X-ray tube independently and freely around the scanned specimen and allow image acquisition utilizing computed tomography. Irradiation measures nearly all conventional 2D and 3D trajectories of X-ray imaging with precisely calibrated and repeatable geometrical accuracy leading to a spatial resolution of up to 50 µm. In addition, the photon counting detectors allow X-ray photon energy discrimination, which can suppress scattered radiation, thus improving image contrast. It can also measure absorption spectra and recognize different materials (tissue) types. X-ray video recording and real-time imaging options can be applied for studies of dynamic processes, including in vivo specimens. Moreover, Irradion opens the door to exploring new 2D and 3D X-ray imaging approaches. We demonstrate in this publication various novel scan trajectories and their benefits. Proton Imaging and Particle Tracking: The Irradion platform allows combining several imaging modules with any required number of robots. The proton tracking module comprises another two robots, each holding particle tracking detectors with position, energy, and time-sensitive sensors Timepix3. Timepix3 detectors can track particles entering and exiting the specimen and allow accurate guiding of photon/ion beams for irradiation. In addition, quantifying the energy losses before and after the specimen brings essential information for precise irradiation planning and verification. Work on the small animal research platform Irradion involved advanced software and hardware development that will offer researchers a novel way to investigate new approaches in (i) radiotherapy, (ii) spectral CT, (iii) arbitrary path CT, (iv) particle tracking. The robotic platform for imaging and radiation research developed for the project is an entirely new product on the market. Preclinical research systems with precision robotic irradiation with photon/ion beams combined with multimodality high-resolution imaging do not exist currently. The researched technology can potentially cause a significant leap forward compared to the current, first-generation primary devices.

Keywords: arbitrary path CT, robotic CT, modular, multi-robot, small animal imaging

Procedia PDF Downloads 72
4310 Vibro-Acoustic Modulation for Crack Detection in Windmill Blades

Authors: Abdullah Alnutayfat, Alexander Sutin

Abstract:

One of the most important types of renewable energy resources is wind energy which can be produced by wind turbines. The blades of the wind turbine are exposed to the pressure of the harsh environment, which causes a significant issue for the wind power industry in terms of the maintenance cost and failure of blades. One of the reliable methods for blade inspection is the vibroacoustic structural health monitoring (SHM) method which examines information obtained from the structural vibrations of the blade. However, all vibroacoustic SHM techniques are based on comparing the structural vibration of intact and damaged structures, which places a practical limit on their use. Methods for nonlinear vibroacoustic SHM are more sensitive to damage and cracking and do not need to be compared to data from the intact structure. This paper presents the Vibro-Acoustic Modulation (VAM) method based on the modulation of high-frequency (probe wave) by low-frequency loads (pump wave) produced by the blade rotation. The blade rotation alternates bending stress due to gravity, leading to crack size variations and variations in the blade resonance frequency. This method can be used with the classical SHM vibration method in which the blade is excited by piezoceramic actuator patches bonded to the blade and receives the vibration response from another piezoceramic sensor. The VAM modification of this method analyzes the spectra of the detected signal and their sideband components. We suggest the VAM model as the simple mechanical oscillator, where the parameters of the oscillator (resonance frequency and damping) are varied due to low-frequency blade rotation. This model uses the blade vibration parameters and crack influence on the blade resonance properties from previous research papers to predict the modulation index (MI).

Keywords: wind turbine blades, damaged detection, vibro-acoustic structural health monitoring, vibro-acoustic modulation

Procedia PDF Downloads 64
4309 Mechanical Properties of Lithium-Ion Battery at Different Packing Angles Under Impact Loading

Authors: Wei Zhao, Yuxuan Yao, Hao Chen

Abstract:

In order to find out the mechanical properties and failure behavior of lithium-ion batteries, drop hammer impact experiments and finite element simulations are carried out on batteries with different packed angles. Firstly, a drop hammer impact experiment system, which is based on the DHR-1808 drop hammer and oscilloscope, is established, and then a drop test of individual batteries and packed angles of 180 ° and 120 ° are carried out. The image of battery deformation, force-time curve and voltage-time curve are recorded. Secondly, finite element models of individual batteries and two packed angles are established, and the results of the test and simulation are compared. Finally, the mechanical characteristics and failure behavior of lithium-ion battery modules with the packed arrangement of 6 * 6 and packing angles of 180 °, 120 °, 90 ° and 60 ° are analyzed under the same velocity with different battery packing angles, and the same impact energy with different impact velocity and different packing angles. The result shows that the individual battery is destroyed completely in the drop hammer impact test with an initial impact velocity of 3m/s and drop height of 459mm, and the voltage drops to close to 0V when the test ends. The voltage drops to 12V when packed angle of 180°, and 3.6V when packed angle of 120°. It is found that the trend of the force-time curve between simulation and experiment is generally consistent. The difference in maximum peak value is 3.9kN for a packing angle of 180° and 1.3kN for a packing angle of 120°. Under the same impact velocity and impact energy, the strain rate of the battery module with a packing angle of 180° is the lowest, and the maximum stress can reach 26.7MPa with no battery short-circuited. The research under our experiment and simulation shows that the lithium-ion battery module with a packing angle of 180 ° is the least likely to be damaged, which can sustain the maximum stress under the same impact load.

Keywords: battery module, finite element simulation, power battery, packing angle

Procedia PDF Downloads 46
4308 Theoretical Study of Substitutional Phosphorus and Nitrogen Pairs in Diamond

Authors: Tahani Amutairi, Paul May, Neil Allan

Abstract:

Many properties of semiconductor materials (mechanical, electronic, magnetic, and optical) can be significantly modified by introducing a point defect. Diamond offers extraordinary properties as a semiconductor, and doping seems to be a viable method of solving the problem associated with the fabrication of diamond-based electronic devices in order to exploit those properties. The dopants are believed to play a significant role in reducing the energy barrier to conduction and controlling the mobility of the carriers and the resistivity of the film. Although it has been proven that the n-type diamond semiconductor can be obtained with phosphorus doping, the resulting ionisation energy and mobility are still inadequate for practical application. Theoretical studies have revealed that this is partly because the effects of the many phosphorus atoms incorporated in the diamond lattice are compensated by acceptor states. Using spin-polarised hybrid density functional theory and a supercell approach, we explored the effects of bonding one N atom to a P in adjacent substitutional sites in diamond. A range of hybrid functional, including HSE06, B3LYP, PBE0, PBEsol0, and PBE0-13, were used to calculate the formation, binding, and ionisation energies, in order to explore the solubility and stability of the point defect. The equilibrium geometry and the magnetic and electronic structures were analysed and presented in detail. The defect introduces a unique reconstruction in a diamond where one of the C atoms coordinated with the N atom involved in the elongated C-N bond and creates a new bond with the P atom. The simulated infrared spectra of phosphorus-nitrogen defects were investigated with different supercell sizes and found to contain two sharp peaks at the edges of the spectrum, one at a high frequency 1,379 cm⁻¹ and the second appearing at the end range, 234 cm⁻¹, as obtained with the largest supercell (216).

Keywords: DFT, HSE06, B3LYP, PBE0, PBEsol0, PBE0-13

Procedia PDF Downloads 60
4307 Photon-Electron Interaction in the Different Medium

Authors: Vahid Borji

Abstract:

The interaction between photons and particles is a common phenomenon in nature that is discussed in order to obtain information about the environment and the conditions governing the phenomena. In the astrophysics, like others, we study these interactions to get useful knowledge and can be predict aftercoming events. One of the events is the transition of photon beam through medium with special conditions, like shocked medium. In our discussion, we have studied this situation and obtained results for different conditions that transition of photon depends on the energy of photon and distributions of electrons in medium.

Keywords: cross section, astrophysics, GRB, photon

Procedia PDF Downloads 69
4306 Dietary Intake and the Risk of Hypertriglyceridemia in Adults: Tehran Lipid and Glucose Study

Authors: Parvin Mirmiran, Zahra Bahadoran, Sahar Mirzae, Fereidoun Azizi

Abstract:

Background and aim: Lifestyle factors, especially dietary intakes play an important role in metabolism of lipids and lipoproteins. In this study, we assessed the association between dietary factors and 3-year changes of serum triglycerides (TG), HDL-C and the atherogenic index of plasma among Iranian adults. This longitudinal study was conducted on 1938 subjects, aged 19-70 years, who participated in the Tehran Lipid and Glucose Study. Demographics, anthropometrics and biochemical measurements including serum TG were assessed at baseline (2006-2008) and after a 3-year follow-up (2009-2011). Dietary data were collected by using a 168-food item, validated semi-quantitative food frequency questionnaire at baseline. The risk of hypertriglyceridemia in the quartiles of dietary factors was evaluated using logistic regression models with adjustment for age, gender, body mass index, smoking, physical activity and energy intakes. Results: Mean age of the participants at baseline was 41.0±13.0 y. Mean TG and HDL-C at baseline was 143±86 and 42.2±10.0 mg/dl, respectively. Three-year change of serum TG were inversely related energy intake from phytochemical rich foods, whole grains, and legumes (P<0.05). Higher intakes compared to lower ones of dietary fiber and phytochemical-rich foods had similar impact on decreased risk of hyper-triglyceridemia (OR=0.58, 95% CI=0.34-1.00). Higher- compared to lower-dietary sodium to potassium ratios (Na/K ratio) increased the risk of hypertriglyceridemia by 63% (OR=0.1.63, 95% CI= 0.34-1.00). Conclusion: Findings showed that higher intakes of fiber and phytochemical rich foods especially whole grain and legumes could have protective effects against lipid disorders; in contrast higher sodium to potassium ratio had undesirable effect on triglycerides.

Keywords: lipid disorders, hypertriglyceridemia, diet, food science

Procedia PDF Downloads 453
4305 Seismic Response of Viscoelastic Dampers for Steel Structures

Authors: Ali Khoshraftar, S. A. Hashemi

Abstract:

This paper is focused on the advantages of Viscoelastic Dampers (VED) to be used as energy-absorbing devices in buildings. The properties of VED are briefly described. The analytical studies of the model structures exhibiting the structural response reduction due to these viscoelastic devices are presented. Computer simulation of the damped response of a multi-storey steel frame structure shows significant reduction in floor displacement levels.

Keywords: dampers, seismic evaluation, steel frames, viscoelastic

Procedia PDF Downloads 460
4304 The Environmental Concerns in Coal Mining, and Utilization in Pakistan

Authors: S. R. H. Baqri, T. Shahina, M. T. Hasan

Abstract:

Pakistan is facing acute shortage of energy and looking for indigenous resources of the energy mix to meet the short fall. After the discovery of huge coal resources in Thar Desert of Sindh province, focus has shifted to coal power generation. The government of Pakistan has planned power generation of 20000 MW on coal by the year 2025. This target will be achieved by mining and power generation in Thar coal Field and on imported coal in different parts of Pakistan. Total indigenous coal production of around 3.0 million tons is being utilized in brick kilns, cement and sugar industry. Coal-based power generation is only limited to three units of 50 MW near Hyderabad from nearby Lakhra Coal field. The purpose of this presentation is to identify and redressal of issues of coal mining and utilization with reference to environmental hazards. Thar coal resource is estimated at 175 billion tons out of a total resource estimate of 184 billion tons in Pakistan. Coal of Pakistan is of Tertiary age (Palaeocene/Eocene) and classified from lignite to sub-bituminous category. Coal characterization has established three main pollutants such as Sulphur, Carbon dioxide and Methane besides some others associated with coal and rock types. The element Sulphur occurs in organic as well as inorganic forms associated with coals as free sulphur and as pyrite, gypsum, respectively. Carbon dioxide, methane and minerals are mostly associated with fractures, joints local faults, seatearth and roof rocks. The abandoned and working coal mines give kerosene odour due to escape of methane in the atmosphere. While the frozen methane/methane ices in organic matter rich sediments have also been reported from the Makran coastal and offshore areas. The Sulphur escapes into the atmosphere during mining and utilization of coal in industry. The natural erosional processes due to rivers, streams, lakes and coastal waves erode over lying sediments allowing pollutants to escape into air and water. Power plants emissions should be controlled through application of appropriate clean coal technology and need to be regularly monitored. Therefore, the systematic and scientific studies will be required to estimate the quantity of methane, carbon dioxide and sulphur at various sites such as abandoned and working coal mines, exploratory wells for coal, oil and gas. Pressure gauges on gas pipes connecting the coal-bearing horizons will be installed on surface to know the quantity of gas. The quality and quantity of gases will be examined according to the defined intervals of times. This will help to design and recommend the methods and procedures to stop the escape of gases into atmosphere. The element of Sulphur can be removed partially by gravity and chemical methods after grinding and before industrial utilization of coal.

Keywords: atmosphere, coal production, energy, pollutants

Procedia PDF Downloads 412
4303 Energy Efficient Autonomous Lower Limb Exoskeleton for Human Motion Enhancement

Authors: Nazim Mir-Nasiri, Hudyjaya Siswoyo Jo

Abstract:

The paper describes conceptual design, control strategies, and partial simulation for a new fully autonomous lower limb wearable exoskeleton system for human motion enhancement that can support its weight and increase strength and endurance. Various problems still remain to be solved where the most important is the creation of a power and cost efficient system that will allow an exoskeleton to operate for extended period without batteries being frequently recharged. The designed exoskeleton is enabling to decouple the weight/mass carrying function of the system from the forward motion function which reduces the power and size of propulsion motors and thus the overall weight, cost of the system. The decoupling takes place by blocking the motion at knee joint by placing passive air cylinder across the joint. The cylinder is actuated when the knee angle has reached the minimum allowed value to bend. The value of the minimum bending angle depends on usual walk style of the subject. The mechanism of the exoskeleton features a seat to rest the subject’s body weight at the moment of blocking the knee joint motion. The mechanical structure of each leg has six degrees of freedom: four at the hip, one at the knee, and one at the ankle. Exoskeleton legs are attached to subject legs by using flexible cuffs. The operation of all actuators depends on the amount of pressure felt by the feet pressure sensors and knee angle sensor. The sensor readings depend on actual posture of the subject and can be classified in three distinct cases: subject stands on one leg, subject stands still on both legs and subject stands on both legs but transit its weight from one leg to other. This exoskeleton is power efficient because electrical motors are smaller in size and did not participate in supporting the weight like in all other existing exoskeleton designs.

Keywords: energy efficient system, exoskeleton, motion enhancement, robotics

Procedia PDF Downloads 354
4302 An Atomistic Approach to Define Continuum Mechanical Quantities in One Dimensional Nanostructures at Finite Temperature

Authors: Smriti, Ajeet Kumar

Abstract:

We present a variant of the Irving-Kirkwood procedure to obtain the microscopic expressions of the cross-section averaged continuum fields such as internal force and moment in one-dimensional nanostructures in the non-equilibrium setting. In one-dimensional continuum theories for slender bodies, we deal with quantities such as mass, linear momentum, angular momentum, and strain energy densities, all defined per unit length. These quantities are obtained by integrating the corresponding pointwise (per unit volume) quantities over the cross-section of the slender body. However, no well-defined cross-section exists for these nanostructures at finite temperature. We thus define the cross-section of a nanorod to be an infinite plane which is fixed in space even when time progresses and defines the above continuum quantities by integrating the pointwise microscopic quantities over this infinite plane. The method yields explicit expressions of both the potential and kinetic parts of the above quantities. We further specialize in these expressions for helically repeating one-dimensional nanostructures in order to use them in molecular dynamics study of extension, torsion, and bending of such nanostructures. As, the Irving-Kirkwood procedure does not yield expressions of stiffnesses, we resort to a thermodynamic equilibrium approach to obtain the expressions of axial force, twisting moment, bending moment, and the associated stiffnesses by taking the first and second derivatives of the Helmholtz free energy with respect to conjugate strain measures. The equilibrium approach yields expressions independent of kinetic terms. We then establish the equivalence of the expressions obtained using the two approaches. The derived expressions are used to understand the extension, torsion, and bending of single-walled carbon nanotubes at non-zero temperatures.

Keywords: thermoelasticity, molecular dynamics, one dimensional nanostructures, nanotube buckling

Procedia PDF Downloads 111
4301 Study of Synergetic Effect by Combining Dielectric Barrier Discharge (DBD) Plasma and Photocatalysis for Abatement of Pollutants in Air Mixture System: Influence of Some Operating Conditions and Identification of Byproducts

Authors: Wala Abou Saoud, Aymen Amine Assadi, Monia Guiza, Abdelkrim Bouzaza, Wael Aboussaoud, Abdelmottaleb Ouederni, Dominique Wolbert

Abstract:

Volatile organic compounds (VOCs) constitute one of the most important families of chemicals involved in atmospheric pollution, causing damage to the environment and human health, and need, consequently, to be eliminated. Among the promising technologies, dielectric barrier discharge (DBD) plasma - photocatalysis coupling reveals very interesting prospects in terms of process synergy of compounds mineralization’s, with low energy consumption. In this study, the removal of organic compounds such butyraldehyde (BUTY) and dimethyl disulfide (DMDS) (exhaust gasses from animal quartering centers.) in air mixture using DBD plasma coupled with photocatalysis was tested, in order to determine whether or not synergy effect was present. The removal efficiency of these pollutants, a selectivity of CO₂ and CO, and byproducts formation such as ozone formation were investigated in order to evaluate the performance of the combined process. For this purpose, a series of experiments were carried out in a continuous reactor. Many operating parameters were also investigated such as the specific energy of discharge, the inlet concentration of pollutant and the flowrate. It appears from this study that, the performance of the process has enhanced and a synergetic effect is observed. In fact, we note an enhancement of 10 % on removal efficiency. It is interesting to note that the combined system leads to better CO₂ selectivity than for plasma. Consequently, intermediates by-products have been reduced due to various other species (O•, N, OH•, O₂•-, O₃, NO₂, NOx, etc.). Additionally, the behavior of combining DBD plasma and photocatalysis has shown that the ozone can be easily also decomposed in presence of photocatalyst.

Keywords: combined process, DBD plasma, photocatalysis, pilot scale, synergetic effect, VOCs

Procedia PDF Downloads 316
4300 Myosin-Driven Movement of Nanoparticles – An Approach to High-Speed Tracking

Authors: Sneha Kumari, Ravi Krishnan Elangovan

Abstract:

This abstract describes the development of a high-speed tracking method by modification in motor components for nanoparticle attachment. Myosin motors are nano-sized protein machines powering movement that defines life. These miniature molecular devices serve as engines utilizing chemical energy stored in ATP to produce useful mechanical energy in the form of a few nanometre displacement events leading to force generation that is required for cargo transport, cell division, cell locomotion, translated to macroscopic movements like running etc. With the advent of in vitro motility assay (IVMA), detailed functional studies of the actomyosin system could be performed. The major challenge with the currently available IVMA for tracking actin filaments is a resolution limitation of ± 50nm. To overcome this, we are trying to develop Single Molecule IVMA in which nanoparticle (GNP/QD) will be attached along or on the barbed end of actin filaments using CapZ protein and visualization by a compact TIRF module called ‘cTIRF’. The waveguide-based illumination by cTIRF offers a unique separation of excitation and collection optics, enabling imaging by scattering without emission filters. So, this technology is well equipped to perform tracking with high precision in temporal resolution of 2ms with significantly improved SNR by 100-fold as compared to conventional TIRF. Also, the nanoparticles (QD/GNP) attached to actin filament act as a point source of light coffering ease in filament tracking compared to conventional manual tracking. Moreover, the attachment of cargo (QD/GNP) to the thin filament paves the way for various nano-technological applications through their transportation to different predetermined locations on the chip

Keywords: actin, cargo, IVMA, myosin motors and single-molecule system

Procedia PDF Downloads 66