Search results for: diurnal temperature cycle model
19794 Stress-Strain Relation for Human Trabecular Bone Based on Nanoindentation Measurements
Authors: Marek Pawlikowski, Krzysztof Jankowski, Konstanty Skalski, Anna Makuch
Abstract:
Nanoindentation or depth-sensing indentation (DSI) technique has proven to be very useful to measure mechanical properties of various tissues at a micro-scale. Bone tissue, both trabecular and cortical one, is one of the most commonly tested tissues by means of DSI. Most often such tests on bone samples are carried out to compare the mechanical properties of lamellar and interlamellar bone, osteonal bone as well as compact and cancellous bone. In the paper, a relation between stress and strain for human trabecular bone is presented. The relation is based on the results of nanoindentation tests. The formulation of a constitutive model for human trabecular bone is based on nanoindentation tests. In the study, the approach proposed by Olivier-Pharr is adapted. The tests were carried out on samples of trabecular tissue extracted from human femoral heads. The heads were harvested during surgeries of artificial hip joint implantation. Before samples preparation, the heads were kept in 95% alcohol in temperature 4 Celsius degrees. The cubic samples cut out of the heads were stored in the same conditions. The dimensions of the specimens were 25 mm x 25 mm x 20 mm. The number of 20 samples have been tested. The age range of donors was between 56 and 83 years old. The tests were conducted with the indenter spherical tip of the diameter 0.200 mm. The maximum load was P = 500 mN and the loading rate 500 mN/min. The data obtained from the DSI tests allows one only to determine bone behoviour in terms of nanoindentation force vs. nanoindentation depth. However, it is more interesting and useful to know the characteristics of trabecular bone in the stress-strain domain. This allows one to simulate trabecular bone behaviour in a more realistic way. The stress-strain curves obtained in the study show relation between the age and the mechanical behaviour of trabecular bone. It was also observed that the bone matrix of trabecular tissue indicates an ability of energy absorption.Keywords: constitutive model, mechanical behaviour, nanoindentation, trabecular bone
Procedia PDF Downloads 22119793 Voltage Stabilization of Hybrid PV and Battery Systems by Considering Temperature and Irradiance Changes in Standalone Operation
Authors: S. Jalilzadeh, S. M. Mohseni Bonab
Abstract:
Solar and battery energy storage systems are very useful for consumers who live in deprived areas and do not have access to electricity distribution networks. Nowadays one of the problems that photo voltaic systems (PV) have changing of output power in temperature and irradiance variations, which directly affects the load that is connected to photo voltaic systems. In this paper, with considering the fact that the solar array varies with change in temperature and solar power radiation, a voltage stabilizer system of a load connected to photo voltaic array is designed to stabilize the load voltage and to transfer surplus power of the battery. Also, in proposed hybrid system, the needed load power amount is supplemented considering the voltage stabilization in standalone operation for supplying unbalanced AC load. Electrical energy storage system for voltage control and improvement of the performance of PV by a DC/DC converter is connected to the DC bus. The load is also feed by an AC/DC converter. In this paper, when the voltage increases in its reference limit, the battery gets charged by the photo voltaic array and when it decreases in its defined limit, the power gets injected to the DC bus by this battery. The constant of DC bus Voltage is the cause for the reduced harmonics generated by the inverter. In addition, a series of filters are provided in the inverter output in to reduced harmonics. The inverter control circuit is designed that the voltage and frequency of the load remain almost constant at different load conditions. This paper has focused on controlling strategies of converters to improve their performance.Keywords: photovoltaic array (PV), DC/DC Boost converter, battery converter, inverters control
Procedia PDF Downloads 48519792 Development of a CFD Model for PCM Based Energy Storage in a Vertical Triplex Tube Heat Exchanger
Authors: Pratibha Biswal, Suyash Morchhale, Anshuman Singh Yadav, Shubham Sanjay Chobe
Abstract:
Energy demands are increasing whereas energy sources, especially non-renewable sources are limited. Due to the intermittent nature of renewable energy sources, it has become the need of the hour to find new ways to store energy. Out of various energy storage methods, latent heat thermal storage devices are becoming popular due to their high energy density per unit mass and volume at nearly constant temperature. This work presents a computational fluid dynamics (CFD) model using ANSYS FLUENT 19.0 for energy storage characteristics of a phase change material (PCM) filled in a vertical triplex tube thermal energy storage system. A vertical triplex tube heat exchanger, just like its name consists of three concentric tubes (pipe sections) for parting the device into three fluid domains. The PCM is filled in the middle domain with heat transfer fluids flowing in the outer and innermost domains. To enhance the heat transfer inside the PCM, eight fins have been incorporated between the internal and external tubes. These fins run radially outwards from the outer-wall of innermost tube to the inner-wall of the middle tube dividing the middle domain (between innermost and middle tube) into eight sections. These eight sections are then filled with a PCM. The validation is carried with earlier work and a grid independence test is also presented. Further studies on freezing and melting process were carried out. The results are presented in terms of pictorial representation of isotherms and liquid fractionKeywords: heat exchanger, thermal energy storage, phase change material, CFD, latent heat
Procedia PDF Downloads 15319791 DSC2 Promotes the Proliferation, Metastasis and Drug Resistance of Lung Cancer by Activating the PI3K/AKT Pathway
Authors: Qi LI, Xu Lin, Nengming Lin
Abstract:
Objective: The aim of this study was to investigate the role of desmocollin 2 (DSC2) protein in the proliferation, migration and drug resistance of lung cancer cells. Method: CCK-8 assays and colony formation assays were used to evaluate the effect of dsc2 regulation on cancer cell viability and colony formation. Transwell assays and wound healing assays were also performed. Cell flow double staining was used to detect the apoptosis rate of cells with DSC2, which was added cisplatin. Western blot assay was used to detect cell cycle, PI3k/Akt and apoptosis-related proteins. Results: Our data showed that dsc2 is upregulated in clinical lung cancer tissues compared with pericarcinomatous tissues, and it is differentially expressed in lung cancer cell lines. The down-regulation of dsc2 in A549 and H358 lung cancer cells significantly suppressed the cell proliferation, metastasis, and motility. In contrast, the opposite effects were observed in overexpression of dsc2 both in H23 and PC9 cell lines. In addition to lung adenocarcinoma cell lines, we also examined its expression in lung squamous cell lines, such as H226. Western blotting showed that dsc2 could reduce the level of phosphorylated Akt (Ser 473) and p-mTOR. Thus, it is speculated that dsc2 up-regulation promotes proliferation and invasiveness through activation of the PI3K/AKT pathway. Also, knockdown of dsc2 in A549 and H226 could significantly decreased in the levels of cyclinB and wee1 protein. Additionally, flow cytometry showed that dsc2 knockdown combined with cisplatin could significantly enhance cell apoptosis rate. Conclusion: These data suggest that dsc2 promotes the proliferation and migration of lung cancer cells in vitro. Also, the results suggested that dsc2 could affect the cell cycle and apoptosis of lung cells. Furthermore, knockdown of dsc2 could sensitize cisplatin in both lung adenocarcinoma and lung squamous cell lines. Thus we suggested that dsc2 can be used as a therapeutic target for lung cancer.Keywords: desmocollin 2, cisplatin, lung cancer, PI3K/AKT, lung squamous cell
Procedia PDF Downloads 7619790 Numerical Simulation of Kangimi Reservoir Sedimentation, Kaduna State, Nigeria
Authors: Abdurrasheed Sa'id, Abubakar Isma'il, Waheed Alayande
Abstract:
This study focused on carrying out numerical simulations of Kangimi reservoir sedimentation by reviewing different numerical sediment transport models, and GSTARS3 was selected. The model was developed using the 1977 data. It was calibrated by simulating the 2012 profile and sediment deposition and compared with 2012 hydrographic survey results of NWRI. The model was validated by simulating the 2016 deposition and compared the results with NWRI estimates. Also, the performance of the proposed model was tested using statistical parameters such as MSE (Mean Square Error), MAPE (Mean Average Percentage Error) and R2 (Coefficient of determination) with values of 1.32m, 0.17% and 0.914 respectively which shows strong agreement. After the calibration, validation and performance testing the model was used to simulate the 2032 and 2062 profiles and deposition. The results showed that by 2032 the reservoir will be silted by 25.34MCM or 43.3% of the design capacity and 60.7% of the capacity by the year 2062. A number of sedimentation mitigation measures were recommended.Keywords: NWRI- national water resources institute, sedimentation, GSTARS3, model
Procedia PDF Downloads 22019789 Miller’s Model for Developing Critical Thinking Skill of Pre-Service Teachers at Suan Sunandha Rajabhat University
Authors: Suttipong Boonphadung, Thassanant Unnanantn
Abstract:
The research study aimed to (1) compare the critical thinking of the teacher students of Suan Sunandha Rajabhat University before and after applying Miller’s Model learning activities and (2) investigate the students’ opinions towards Miller’s Model learning activities for improving the critical thinking. The participants of this study were purposively selected. They were 3 groups of teacher students: (1) fourth year 33 student teachers majoring in Early Childhood Education and enrolling in semester 1 of academic year 2013 (2) third year 28 student teachers majoring in English and enrolling in semester 2 of academic year 2013 and (3) third year 22 student teachers majoring in Thai and enrolling in semester 2 of academic year 2013. The research instruments were (1) lesson plans where the learning activities were settled based on Miller’s Model (2) critical thinking assessment criteria and (3) a questionnaire on opinions towards Miller’s Model based learning activities. The statistical treatment was mean, deviation, different scores and T-test. The result unfolded that (1) the critical thinking of the students after the assigned activities was better than before and (2) the students’ opinions towards the critical thinking improvement activities based on Miller’s Model ranged from the level of high to highest.Keywords: critical thinking, Miller’s model, opinions, pre-service teachers
Procedia PDF Downloads 47719788 Bottom-up Quantification of Mega Inter-Basin Water Transfer Vulnerability to Climate Change
Authors: Enze Zhang
Abstract:
Large numbers of inter-basin water transfer (IBWT) projects are constructed or proposed all around the world as solutions to water distribution and supply problems. Nowadays, as climate change warms the atmosphere, alters the hydrologic cycle, and perturbs water availability, large scale IBWTs which are sensitive to these water-related changes may carry significant risk. Given this reality, IBWTs have elicited great controversy and assessments of vulnerability to climate change are urgently needed worldwide. In this paper, we consider the South-to-North Water Transfer Project (SNWTP) in China as a case study, and introduce a bottom-up vulnerability assessment framework. Key hazards and risks related to climate change that threaten future water availability for the SNWTP are firstly identified. Then a performance indicator is presented to quantify the vulnerability of IBWT by taking three main elements (i.e., sensitivity, adaptive capacity, and exposure degree) into account. A probabilistic Budyko model is adapted to estimate water availability responses to a wide range of possibilities for future climate conditions in each region of the study area. After bottom-up quantifying the vulnerability based on the estimated water availability, our findings confirm that SNWTP would greatly alleviate geographical imbalances in water availability under some moderate climate change scenarios but raises questions about whether it is a long-term solution because the donor basin has a high level of vulnerability due to extreme climate change.Keywords: vulnerability, climate change, inter-basin water transfer, bottom-up
Procedia PDF Downloads 40019787 Study Employed a Computer Model and Satellite Remote Sensing to Evaluate the Temporal and Spatial Distribution of Snow in the Western Hindu Kush Region of Afghanistan
Authors: Noori Shafiqullah
Abstract:
Millions of people reside downstream of river basins that heavily rely on snowmelt originating from the Hindu Kush (HK) region. Snowmelt plays a critical role as a primary water source in these areas. This study aimed to evaluate snowfall and snowmelt characteristics in the HK region across altitudes ranging from 2019m to 4533m. To achieve this, the study employed a combination of remote sensing techniques and the Snow Model (SM) to analyze the spatial and temporal distribution of Snow Water Equivalent (SWE). By integrating the simulated Snow-cover Area (SCA) with data from the Moderate Resolution Imaging Spectroradiometer (MODIS), the study optimized the Precipitation Gradient (PG), snowfall assessment, and the degree-day factor (DDF) for snowmelt distribution. Ground observed data from various elevations were used to calculate a temperature lapse rate of -7.0 (°C km-1). Consequently, the DDF value was determined as 3 (mm °C-1 d-1) for altitudes below 3000m and 3 to 4 (mm °C-1 d-1) for higher altitudes above 3000m. Moreover, the distribution of precipitation varies with elevation, with the PG being 0.001 (m-1) at lower elevations below 4000m and 0 (m-1) at higher elevations above 4000m. This study successfully utilized the SM to assess SCA and SWE by incorporating the two optimized parameters. The analysis of simulated SCA and MODIS data yielded coefficient determinations of R2, resulting in values of 0.95 and 0.97 for the years 2014-2015, 2015-2016, and 2016-2017, respectively. These results demonstrate that the SM is a valuable tool for managing water resources in mountainous watersheds such as the HK, where data scarcity poses a challenge."Keywords: improved MODIS, experiment, snow water equivalent, snowmelt
Procedia PDF Downloads 6919786 Assessing the Resilience to Economic Shocks of the Households in Bistekville 2, Quezon City, Philippines
Authors: Maria Elisa B. Manuel
Abstract:
The Philippine housing sector is bracing challenges with the massive housing backlog and the adamant cycle of relocation, resettlement and returns to the cities of informal settler families due to the vast inaccessibility of necessities and opportunities in the past off-city housing projects. Bistekville 2 has been established as a model socialized housing project by utilizing government partnerships with private developers and individuals in the first in-city and onsite resettlement effort in the country. The study looked into the resilience of the residents to idiosyncratic economic shocks by analyzing their vulnerabilities, assets and coping strategies. The study formulated an economic resilience framework to identify how these factors that interact to build the household’s capacity to positively adapt to sudden expenses in their households. The framework is supplemented with a scale that presents the proximity of the household to resilience by identifying through its indicators whether the households are in the level of subsistence, coping, adaptive or transformative. Survey interviews were conducted with 91 households from Bistekville 2 on the components that have been identified by the framework that was processed with qualitative and quantitative processes. The study has found that the households are highly vulnerable due to their family composition and other conditions such as unhealthy loans, inconsistent amortization payment. Along with their high vulnerability, the households have inadequate strategies to anticipate shocks and primarily react to the shock. This has led to the conclusion that the households do not reflect resilience to idiosyncratic economic shocks and are still at the level of coping.Keywords: idiosyncratic economic shocks, socialized housing, economic resilience, economic vulnerability, adaptive capacity
Procedia PDF Downloads 15119785 Estimation of Consolidating Settlement Based on a Time-Dependent Skin Friction Model Considering Column Surface Roughness
Authors: Jiang Zhenbo, Ishikura Ryohei, Yasufuku Noriyuki
Abstract:
Improvement of soft clay deposits by the combination of surface stabilization and floating type cement-treated columns is one of the most popular techniques worldwide. On the basis of one dimensional consolidation model, a time-dependent skin friction model for the column-soil interaction is proposed. The nonlinear relationship between column shaft shear stresses and effective vertical pressure of the surrounding soil can be described in this model. The influence of column-soil surface roughness can be represented using a roughness coefficient R, which plays an important role in the design of column length. Based on the homogenization method, a part of floating type improved ground will be treated as an unimproved portion, which with a length of αH1 is defined as a time-dependent equivalent skin friction length. The compression settlement of this unimproved portion can be predicted only using the soft clay parameters. Apart from calculating the settlement of this composited ground, the load transfer mechanism is discussed utilizing model tests. The proposed model is validated by comparing with calculations and laboratory results of model and ring shear tests, which indicate the suitability and accuracy of the solutions in this paper.Keywords: floating type improved foundation, time-dependent skin friction, roughness, consolidation
Procedia PDF Downloads 46819784 BiFeO3-CoFe2O4-PbTiO3 Composites: Structural, Multiferroic and Optical Characteristics
Authors: Nidhi Adhlakha, K. L. Yadav
Abstract:
Three phase magnetoelectric (ME) composites (1-x)(0.7BiFeO3-0.3CoFe2O4)-xPbTiO3 (or equivalently written as (1-x)(0.7BFO-0.3CFO)-xPT) with x variations 0, 0.30, 0.35, 0.40, 0.45 and 1.0 were synthesized using hybrid processing route. The effects of PT addition on structural, multiferroic and optical properties have been subsequently investigated. A detailed Rietveld refinement analysis of X-ray diffraction patterns has been performed, which confirms the presence of structural phases of individual constituents in the composites. Field emission scanning electron microscopy (FESEM) images are taken for microstructural analysis and grain size determination. Transmission electron microscopy (TEM) analysis of 0.3CFO-0.7BFO reveals the average particle size to be lying in the window of 8-10 nm. The temperature dependent dielectric constant at various frequencies (1 kHz, 10 kHz, 50 kHz, 100 kHz and 500 kHz) has been studied and the dielectric study reveals that the increase of dielectric constant and decrease of average dielectric loss of composites with incorporation of PT content. The room temperature ferromagnetic behavior of composites is confirmed through the observation of Magnetization vs. Magnetic field (M-H) hysteresis loops. The variation of magnetization with temperature indicates the presence of spin glass behavior in composites. Magnetoelectric coupling is evidenced in the composites through the observation of the dependence of the dielectric constant on the magnetic field, and magnetodielectric response of 2.05 % is observed for 45 mol% addition of PT content. The fractional change of magnetic field induced dielectric constant can also be expressed as ∆ε_r~γM^2 and the value of γ is found to be ~1.08×10-2 (emu/g)-2 for composite with x=0.40. Fourier transformed infrared (FTIR) spectroscopy of samples is carried out to analyze various bonds formation in the composites.Keywords: composite, X-ray diffraction, dielectric properties, optical properties
Procedia PDF Downloads 30819783 Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser
Authors: K. Anas, M. Selvakumar, Samson David, R. R. Babu, S. Chattopadhyay
Abstract:
The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature.Keywords: damping ratio, natural frequency, crosslinking density, segmental motion, surface activity, dissipative, polymeric chain friction
Procedia PDF Downloads 29519782 Economic Loss due to Ganoderma Disease in Oil Palm
Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho
Abstract:
Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.Keywords: ganoderma, oil palm, regression model, yield loss, economic loss
Procedia PDF Downloads 38919781 Enhancements to the Coupled Hydro-Mechanical Hypoplastic Model for Unsaturated Soils
Authors: Shanujah Mathuranayagam, William Fuentes, Samanthika Liyanapathirana
Abstract:
This paper introduces an enhanced version of the coupled hydro-mechanical hypoplastic model. The model is able to simulate volumetric collapse upon wetting and incorporates suction effects on stiffness and strength. Its mechanical constitutive equation links Bishop’s effective stress with strain and suction, featuring a normal consolidation line (NCL) with a compression index (λ) presenting a non-linear dependency with the degree of saturation. The Bulk modulus has been modified to ensure that under rapid volumetric collapse, the stress state remains at the NCL. The coupled model comprises eighteen parameters, with nine for the hydraulic component and nine for the mechanical component. Hydraulic parameters are calibrated with the use of water retention curves (IWRC) across varied soil densities, while mechanical parameters undergo calibration using isotropic and triaxial tests on both unsaturated and saturated samples. The model's performance is analyzed through the back-calculation of two experimental studies: (i) wetting under different vertical stresses for Lower Cromer Till and (ii) isotropic loading and triaxial loading for undisturbed loess. The results confirm that the proposed model is able to predict the hydro-mechanical behavior of unsaturated soils.Keywords: hypoplastic model, volumetric collapse, normal consolidation line, compression index (λ), degree of saturation, soil suction
Procedia PDF Downloads 6419780 Evaluating Radiative Feedback Mechanisms in Coastal West Africa Using Regional Climate Models
Authors: Akinnubi Rufus Temidayo
Abstract:
Coastal West Africa is highly sensitive to climate variability, driven by complex ocean-atmosphere interactions that shape temperature, precipitation, and extreme weather. Radiative feedback mechanisms—such as water vapor feedback, cloud-radiation interactions, and surface albedo—play a critical role in modulating these patterns. Yet, limited research addresses these feedbacks in climate models specific to West Africa’s coastal zones, creating challenges for accurate climate projections and adaptive planning. This study aims to evaluate the influence of radiative feedbacks on the coastal climate of West Africa by quantifying the effects of water vapor, cloud cover, and sea surface temperature (SST) on the region’s radiative balance. The study uses a regional climate model (RCM) to simulate feedbacks over a 20-year period (2005-2025) with high-resolution data from CORDEX and satellite observations. Key mechanisms investigated include (1) Water Vapor Feedback—the amplifying effect of humidity on warming, (2) Cloud-Radiation Interactions—the impact of cloud cover on radiation balance, especially during the West African Monsoon, and (3) Surface Albedo and Land-Use Changes—effects of urbanization and vegetation on the radiation budget. Preliminary results indicate that radiative feedbacks strongly influence seasonal climate variability in coastal West Africa. Water vapor feedback amplifies dry-season warming, cloud-radiation interactions moderate surface temperatures during monsoon seasons, and SST variations in the Atlantic affect the frequency and intensity of extreme rainfall events. The findings suggest that incorporating these feedbacks into climate planning can strengthen resilience to climate impacts in West African coastal communities. Further research should refine regional models to capture anthropogenic influences like greenhouse gas emissions, guiding sustainable urban and resource planning to mitigate climate risks.Keywords: west africa, radiative, climate, resilence, anthropogenic
Procedia PDF Downloads 1019779 Cognitive Footprints: Analytical and Predictive Paradigm for Digital Learning
Authors: Marina Vicario, Amadeo Argüelles, Pilar Gómez, Carlos Hernández
Abstract:
In this paper, the Computer Research Network of the National Polytechnic Institute of Mexico proposes a paradigmatic model for the inference of cognitive patterns in digital learning systems. This model leads to metadata architecture useful for analysis and prediction in online learning systems; especially on MOOc's architectures. The model is in the design phase and expects to be tested through an institutional of courses project which is going to develop for the MOOc.Keywords: cognitive footprints, learning analytics, predictive learning, digital learning, educational computing, educational informatics
Procedia PDF Downloads 47719778 Planckian Dissipation in Bi₂Sr₂Ca₂Cu₃O₁₀₋δ
Authors: Lalita, Niladri Sarkar, Subhasis Ghosh
Abstract:
Since the discovery of high temperature superconductivity (HTSC) in cuprates, several aspects of this phenomena have fascinated physics community. The most debated one is the linear temperature dependence of normal state resistivity over wide range of temperature in violation of with Fermi liquid theory. The linear-in-T resistivity (LITR) is the indication of strongly correlated metallic, known as “strange metal”, attributed to non Fermi liquid theory (NFL). The proximity of superconductivity to LITR suggests that there may be underlying common origin. The LITR has been shown to be due to unknown dissipative phenomena, restricted by quantum mechanics and commonly known as ‘‘Planckian dissipation” , the term first coined by Zaanen and the associated inelastic scattering time τ and given by 1/τ=αkBT/ℏ, where ℏ, kB and α are reduced Planck’s constant, Boltzmann constant and a dimensionless constant of order of unity, respectively. Since the first report, experimental support for α ~ 1 is appearing in literature. There are several striking issues which remain to be resolved if we desire to find out or at least get a clue towards microscopic origin of maximal dissipation in cuprates. (i) Universality of α ~ 1, recently some doubts have been raised in some cases. (ii) So far, Planckian dissipation has been demonstrated in overdoped Cuprates, but if the proximity to quantum criticality is important, then Planckian dissipation should be observed in optimally doped and marginally underdoped cuprates. The link between Planckian dissipation and quantum criticality still remains an open problem. (iii) Validity of Planckian dissipation in all cuprates is an important issue. Here, we report reversible change in the superconducting behavior of high temperature superconductor Bi2Sr2Ca2Cu3O10+δ (Bi-2223) under dynamic doping induced by photo-excitation. Two doped Bi-223 samples, which are x = 0.16 (optimal-doped), x = 0.145 (marginal-doped) have been used for this investigation. It is realized that steady state photo-excitation converts magnetic Cu2+ ions to nonmagnetic Cu1+ ions which reduces superconducting transition temperature (Tc) by killing superfluid density. In Bi-2223, one would expect the maximum of suppression of Tc should be at charge transfer gap. We have observed suppression of Tc starts at 2eV, which is the charge transfer gap in Bi-2223. We attribute this transition due to Cu-3d9(Cu2+) to Cu-3d10(Cu+), known as d9 − d10 L transition, photoexcitation makes some Cu ions in CuO2 planes as spinless non-magnetic potential perturbation as Zn2+ does in CuO2 plane in case Zn-doped cuprates. The resistivity varies linearly with temperature with or without photo-excitation. Tc can be varied by almost by 40K be photoexcitation. Superconductivity can be destroyed completely by introducing ≈ 2% of Cu1+ ions for this range of doping. With this controlled variation of Tc and resistivity, detailed investigation has been carried out to reveal Planckian dissipation underdoped to optimally doped Bi-2223. The most important aspect of this investigation is that we could vary Tc dynamically and reversibly, so that LITR and associated Planckian dissipation can be studied over wide ranges of Tc without changing the doping chemically.Keywords: linear resistivity, HTSC, Planckian dissipation, strange metal
Procedia PDF Downloads 6019777 Reliability Evaluation of a Payment Model in Mobile E-Commerce Using Colored Petri Net
Authors: Abdolghader Pourali, Mohammad V. Malakooti, Muhammad Hussein Yektaie
Abstract:
A mobile payment system in mobile e-commerce generally have high security so that the user can trust it for doing business deals, sales, paying financial transactions, etc. in the mobile payment system. Since an architecture or payment model in e-commerce only shows the way of interaction and collaboration among users and mortgagers and does not present any evaluation of effectiveness and confidence about financial transactions to stakeholders. In this paper, we try to present a detailed assessment of the reliability of a mobile payment model in the mobile e-commerce using formal models and colored Petri nets. Finally, we demonstrate that the reliability of this system has high value (case study: a secure payment model in mobile commerce.Keywords: reliability, colored Petri net, assessment, payment models, m-commerce
Procedia PDF Downloads 53719776 A New Categorization of Image Quality Metrics Based on a Model of Human Quality Perception
Authors: Maria Grazia Albanesi, Riccardo Amadeo
Abstract:
This study presents a new model of the human image quality assessment process: the aim is to highlight the foundations of the image quality metrics proposed in literature, by identifying the cognitive/physiological or mathematical principles of their development and the relation with the actual human quality assessment process. The model allows to create a novel categorization of objective and subjective image quality metrics. Our work includes an overview of the most used or effective objective metrics in literature, and, for each of them, we underline its main characteristics, with reference to the rationale of the proposed model and categorization. From the results of this operation, we underline a problem that affects all the presented metrics: the fact that many aspects of human biases are not taken in account at all. We then propose a possible methodology to address this issue.Keywords: eye-tracking, image quality assessment metric, MOS, quality of user experience, visual perception
Procedia PDF Downloads 41119775 Numeric Modeling of Condensation of Water Vapor from Humid Air in a Room
Authors: Nguyen Van Que, Nguyen Huy The
Abstract:
This paper presents combined natural and forced convection of humid air flow. The film condensation of water vapour on a cold floor was investigated using ANSYS Fluent software. User-defined Functions(UDFs) were developed and added to address the issue of film condensation at the surface of the floor. Those UDFs were validated by analytical results on a flat plate. The film condensation model based on mass transfer was used to solve phase change. On the floor, condensation rate was obtained by mass fraction change near the floor. The study investigated effects of inlet velocity, inlet relative humidity and cold floor temperature on the condensation rate. The simulations were done in both 2D and 3D models to show the difference and need for 3D modeling of condensation.Keywords: heat and mass transfer, convection, condensation, relative humidity, user-defined functions
Procedia PDF Downloads 33119774 Development of a Cathode-Type Ca1-xSrxMnO3
Authors: A. Guemache, M. Omari
Abstract:
Oxides with formula Ca1-xSrx MnO3 (0≤x≤0.2) were synthesized using co-precipitation method. The identification of the obtained phase was carried out using infrared spectroscopy and X-ray diffraction. Thermogravimetric and differential analysis was permitted to characterize different transformations of precursors which take place during one heating cycle. The study of electrochemical behavior was carried out by cyclic voltammetry and impedance spectroscopy. The obtained results show that apparent catalytic activity improved when increasing the concentration of strontium. Anodic current densities varies from 1.3 to 5.9 mA/cm2 at the rate scan of 20 mV.s-1 and a potential 0.8 V for oxides with composition x=0 to 0.2.Keywords: oxide, co-precipitation, electrochemical properties, cathode-type
Procedia PDF Downloads 29019773 Engineering of Filtration Systems in Egyptian Cement Plants: Industrial Case Study
Authors: Mohamed. A. Saad
Abstract:
The paper represents a case study regarding the conversion of Electro-Static Precipitators (ESP`s) into Fabric Filters (FF). Seven cement production companies were established in Egypt during the period 1927 to 1980 and 6 new companies were established to cope with the increasing cement demand in 1980's. The cement production market shares in Egypt indicate that there are six multinational companies in the local market, they are interested in the environmental conditions improving and so decided to achieve emission reduction project. The experimental work in the present study is divided into two main parts: (I) Measuring Efficiency of Filter Fabrics with detailed description of a designed apparatus. The paper also reveals the factors that should be optimized in order to assist problem diagnosis, solving and increasing the life of bag filters. (II) Methods to mitigate dust emissions in Egyptian cement plants with a special focus on converting the Electrostatic Precipitators (ESP`s) into Fabric Filters (FF) using the same ESP casing, bottom hoppers, dust transportation system, and ESP ductwork. Only the fan system for the higher pressure drop with the fabric filter was replaced. The proper selection of bag material was a prime factor with regard to gas composition, temperature and particle size. Fiberglass with PTFE membrane coated bags was selected. This fabric is rated for a continuous temperature of 250 C and a surge temperature of 280C. The dust emission recorded was less than 20 mg/m3 from the production line fitted with fabric filters which is super compared with the ESP`s working lines stack.Keywords: Engineering Electrostatic Precipitator, filtration, dust collectors, cement
Procedia PDF Downloads 25319772 Nano Liquid Thin Film Flow over an Unsteady Stretching Sheet
Authors: Prashant G. Metri
Abstract:
A numerical model is developed to study nano liquid film flow over an unsteady stretching sheet in the presence of hydromagnetic have been investigated. Similarity transformations are used to convert unsteady boundary layer equations to a system of non-linear ordinary differential equations. The resulting non-linear ordinary differential equations are solved numerically using Runge-Kutta-Fehlberg and Newton-Raphson schemes. A relationship between film thickness β and the unsteadiness parameter S is found, the effect of unsteadiness parameter S, and the hydromagnetic parameter S, on the velocity and temperature distributions are presented. The present analysis shows that the combined effect of magnetic field and viscous dissipation has a significant influence in controlling the dynamics of the considered problem. Comparison with known results for certain particular cases is in excellent agreement.Keywords: boundary layer flow, nanoliquid, thin film, unsteady stretching sheet
Procedia PDF Downloads 25719771 Controlling RPV Embrittlement through Wet Annealing in Support of Life Extension
Authors: E. A. Krasikov
Abstract:
As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of NPP safety. Therefore, present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. There are two approaches to annealing. The first one is so-called ‘dry’ high temperature (~475°C) annealing. It allows obtaining practically complete recovery, but requires the removal of the reactor core and internals. External heat source (furnace) is required to carry out RPV heat treatment. The alternative approach is to anneal RPV at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps while operating within the RPV design limits. This low temperature «wet» annealing, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible. The first RPV «wet» annealing was done using nuclear heat (US Army SM-1A reactor). The second one was done by means of primary pumps heat (Belgian BR-3 reactor). As a rule, there is no recovery effect up to annealing and irradiation temperature difference of 70°C. It is known, however, that along with radiation embrittlement neutron irradiation may mitigate the radiation damage in metals. Therefore, we have tried to test the possibility to use the effect of radiation-induced ductilization in ‘wet’ annealing technology by means of nuclear heat utilization as heat and neutron irradiation sources at once. In support of the above-mentioned conception the 3-year duration reactor experiment on 15Cr3NiMoV type steel with preliminary irradiation at operating PWR at 270°C and following extra irradiation (87 h at 330°C) at IR-8 test reactor was fulfilled. In fact, embrittlement was partly suppressed up to value equivalent to 1,5 fold neutron fluence decrease. The degree of recovery in case of radiation enhanced annealing is equal to 27% whereas furnace annealing results in zero effect under existing conditions. Mechanism of the radiation-induced damage mitigation is proposed. It is hoped that «wet » annealing technology will help provide a better management of the RPV degradation as a factor affecting the lifetime of nuclear power plants which, together with associated management methods, will help facilitate safe and economic long-term operation of PWRs.Keywords: controlling, embrittlement, radiation, steel, wet annealing
Procedia PDF Downloads 38019770 Generating Product Description with Generative Pre-Trained Transformer 2
Authors: Minh-Thuan Nguyen, Phuong-Thai Nguyen, Van-Vinh Nguyen, Quang-Minh Nguyen
Abstract:
Research on automatically generating descriptions for e-commerce products is gaining increasing attention in recent years. However, the generated descriptions of their systems are often less informative and attractive because of lacking training datasets or the limitation of these approaches, which often use templates or statistical methods. In this paper, we explore a method to generate production descriptions by using the GPT-2 model. In addition, we apply text paraphrasing and task-adaptive pretraining techniques to improve the qualify of descriptions generated from the GPT-2 model. Experiment results show that our models outperform the baseline model through automatic evaluation and human evaluation. Especially, our methods achieve a promising result not only on the seen test set but also in the unseen test set.Keywords: GPT-2, product description, transformer, task-adaptive, language model, pretraining
Procedia PDF Downloads 19719769 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea
Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim
Abstract:
Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: deep learning, algae concentration, remote sensing, satellite
Procedia PDF Downloads 18319768 Risks for Cyanobacteria Harmful Algal Blooms in Georgia Piedmont Waterbodies Due to Land Management and Climate Interactions
Authors: Sam Weber, Deepak Mishra, Susan Wilde, Elizabeth Kramer
Abstract:
The frequency and severity of cyanobacteria harmful blooms (CyanoHABs) have been increasing over time, with point and non-point source eutrophication and shifting climate paradigms being blamed as the primary culprits. Excessive nutrients, warm temperatures, quiescent water, and heavy and less regular rainfall create more conducive environments for CyanoHABs. CyanoHABs have the potential to produce a spectrum of toxins that cause gastrointestinal stress, organ failure, and even death in humans and animals. To promote enhanced, proactive CyanoHAB management, risk modeling using geospatial tools can act as predictive mechanisms to supplement current CyanoHAB monitoring, management and mitigation efforts. The risk maps would empower water managers to focus their efforts on high risk water bodies in an attempt to prevent CyanoHABs before they occur, and/or more diligently observe those waterbodies. For this research, exploratory spatial data analysis techniques were used to identify the strongest predicators for CyanoHAB blooms based on remote sensing-derived cyanobacteria cell density values for 771 waterbodies in the Georgia Piedmont and landscape characteristics of their watersheds. In-situ datasets for cyanobacteria cell density, nutrients, temperature, and rainfall patterns are not widely available, so free gridded geospatial datasets were used as proxy variables for assessing CyanoHAB risk. For example, the percent of a watershed that is agriculture was used as a proxy for nutrient loading, and the summer precipitation within a watershed was used as a proxy for water quiescence. Cyanobacteria cell density values were calculated using atmospherically corrected images from the European Space Agency’s Sentinel-2A satellite and multispectral instrument sensor at a 10-meter ground resolution. Seventeen explanatory variables were calculated for each watershed utilizing the multi-petabyte geospatial catalogs available within the Google Earth Engine cloud computing interface. The seventeen variables were then used in a multiple linear regression model, and the strongest predictors of cyanobacteria cell density were selected for the final regression model. The seventeen explanatory variables included land cover composition, winter and summer temperature and precipitation data, topographic derivatives, vegetation index anomalies, and soil characteristics. Watershed maximum summer temperature, percent agriculture, percent forest, percent impervious, and waterbody area emerged as the strongest predictors of cyanobacteria cell density with an adjusted R-squared value of 0.31 and a p-value ~ 0. The final regression equation was used to make a normalized cyanobacteria cell density index, and a Jenks Natural Break classification was used to assign waterbodies designations of low, medium, or high risk. Of the 771 waterbodies, 24.38% were low risk, 37.35% were medium risk, and 38.26% were high risk. This study showed that there are significant relationships between free geospatial datasets representing summer maximum temperatures, nutrient loading associated with land use and land cover, and the area of a waterbody with cyanobacteria cell density. This data analytics approach to CyanoHAB risk assessment corroborated the literature-established environmental triggers for CyanoHABs, and presents a novel approach for CyanoHAB risk mapping in waterbodies across the greater southeastern United States.Keywords: cyanobacteria, land use/land cover, remote sensing, risk mapping
Procedia PDF Downloads 21119767 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite
Authors: Maciej Szeląg, Stanisław Fic
Abstract:
The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters
Procedia PDF Downloads 38819766 Predicting Depth of Penetration in Abrasive Waterjet Cutting of Polycrystalline Ceramics
Authors: S. Srinivas, N. Ramesh Babu
Abstract:
This paper presents a model to predict the depth of penetration in polycrystalline ceramic material cut by abrasive waterjet. The proposed model considered the interaction of cylindrical jet with target material in upper region and neglected the role of threshold velocity in lower region. The results predicted with the proposed model are validated with the experimental results obtained with Silicon Carbide (SiC) blocks.Keywords: abrasive waterjet cutting, analytical modeling, ceramics, micro-cutting and inter-grannular cracking
Procedia PDF Downloads 30519765 Simulation of the Performance of the Reforming of Methane in a Primary Reformer
Authors: A. Alkattib, M. Boumaza
Abstract:
Steam reforming is industrially important as it is incorporated in several major chemical processes including the production of ammonia, methanol, hydrogen and ox alcohols. Due to the strongly endothermic nature of the process, a large amount of heat is supplied by fuel burning (commonly natural gas) in the furnace chamber. Reaction conversions, tube catalyst life, energy consumption and CO2 emission represent the principal factors affecting the performance of this unit and are directly influenced by the high operating temperatures and pressures. This study presents a simulation of the performance of the reforming of methane in a primary reformer, through a developed empirical relation which enables to investigate the effects of operating parameters such as the pressure, temperature, steam to carbon ratio on the production of hydrogen, as well as the fraction of non-converted methane. It appears from this analysis that the exit temperature Te, the operating pressure as well the steam to carbon ratio has an important effect on the reforming of methane.Keywords: reforming, methane, performance, hydrogen, parameters
Procedia PDF Downloads 226