Search results for: water irrigation rationing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8557

Search results for: water irrigation rationing

8197 Ecological-Economics Evaluation of Water Treatment Systems

Authors: Hwasuk Jung, Seoi Lee, Dongchoon Ryou, Pyungjong Yoo, Seokmo Lee

Abstract:

The Nakdong River being used as drinking water sources for Pusan metropolitan city has the vulnerability of water management due to the fact that industrial areas are located in the upper Nakdong River. Most citizens of Busan think that the water quality of Nakdong River is not good, so they boil or use home filter to drink tap water, which causes unnecessary individual costs to Busan citizens. We need to diversify water intake to reduce the cost and to change the weak water source. Under this background, this study was carried out for the environmental accounting of Namgang dam water treatment system compared to Nakdong River water treatment system by using emergy analysis method to help making reasonable decision. Emergy analysis method evaluates quantitatively both natural environment and human economic activities as an equal unit of measure. The emergy transformity of Namgang dam’s water was 1.16 times larger than that of Nakdong River’s water. Namgang Dam’s water shows larger emergy transformity than that of Nakdong River’s water due to its good water quality. The emergy used in making 1 m3 tap water from Namgang dam water treatment system was 1.26 times larger than that of Nakdong River water treatment system. Namgang dam water treatment system shows larger emergy input than that of Nakdong river water treatment system due to its construction cost of new pipeline for intaking Namgang daw water. If the Won used in making 1 m3 tap water from Nakdong river water treatment system is 1, Namgang dam water treatment system used 1.66. If the Em-won used in making 1 m3 tap water from Nakdong river water treatment system is 1, Namgang dam water treatment system used 1.26. The cost-benefit ratio of Em-won was smaller than that of Won. When we use emergy analysis, which considers the benefit of a natural environment such as good water quality of Namgang dam, Namgang dam water treatment system could be a good alternative for diversifying intake source.

Keywords: emergy, emergy transformity, Em-won, water treatment system

Procedia PDF Downloads 281
8196 Impact of Agriculture on the Groundwater Quality: Case of the Alluvial Plain of Nil River (North-Eastern Algerian)

Authors: S. Benessam, T. H. Debieche, A. Drouiche, F. Zahi, S. Mahdid

Abstract:

The intensive use of the chemical fertilizers and the pesticides in agriculture often produces a contamination of the groundwater by organic pollutants. The irrigation and/or rainwater transport the pollutants towards groundwater or water surface. Among these pollutants, one finds the nitrogen, often observed in the agricultural zones in the nitrate form. In order to understand the form and chemical mobility of nitrogen in groundwater, this study was conducted. A two-monthly monitoring of the parameters physicochemical and chemistry of water of the alluvial plain of Nil river (North-eastern Algerian) were carried out during the period from November 2013 to January 2015 as well as an in-situ investigation of the various chemical products used by the farmers. The results show a raise concentration of nitrates in the wells (depth < 20 m) of the plain, which the concentrations arrive at 50 mg/L (standard of potable water). On the other hand in drillings (depth > 20 m), one observes two behaviors. The first in the upstream part, where the aquifer is unconfined and the medium is oxidizing, one observes the weak nitrate concentrations, indicating its absorption by the ground during the infiltration of water towards the groundwater. The second in the central and downstream parts, where the groundwater is locally confined and the reducing medium, one observes an absence of nitrates and the appearance of nitrites and ammonium, indicating the reduction of nitrates. The projection of the analyses on diagrams Eh-pH of nitrogen has enabled to us to determine the intervals of variation of the nitrogen forms. This study also highlighted the effect of the rains, the pumping and the nature of the geological formations in the form and the mobility of nitrogen in the plain.

Keywords: groundwater, nitrogen, mobility, speciation

Procedia PDF Downloads 223
8195 Investigation of Genetic Variation for Agronomic Traits among the Recombinant Inbred Lines of Wheat from the Norstar × Zagross Cross under Water Stress Condition

Authors: Mohammad Reza Farzami Pour

Abstract:

Determination of genetic variation is useful for plant breeding and hence production of more efficient plant species under different conditions, like drought stress. In this study, a sample of 28 recombinant inbred lines (RILs) of wheat developed from the cross of Norstar and Zagross varieties, together with their parents, were evaluated for two years (2010-2012) under normal and water stress conditions using split plot design with three replications. Main plots included two irrigation treatments of 70 and 140 mm evaporation from Class A pan and sub-plots consisted of 30 genotypes. The effect of genotypes and interaction of genotypes with years and water regimes were significant for all characters. Significant genotypic effect implies the existence of genetic variation among the lines under study. Heritability estimates were high for 1000 grain weight (0.87). Biomass and grain yield showed the lowest heritability values (0.42 and 0.50, respectively). Highest genotypic and phenotypic coefficients of variation (GCV and PCV) belonged to harvest index. Moderate genetic advance for most of the traits suggested the feasibility of selection among the RILs under investigation. Some RILs were higher yielding than either parent at both environments.

Keywords: wheat, genetic gain, heritability, recombinant inbred lines

Procedia PDF Downloads 294
8194 Water Self Sufficient: Creating a Sustainable Water System Based on Urban Harvest Approach in La Serena, Chile

Authors: Zulfikar Dinar Wahidayat Putra

Abstract:

Water scarcity become a major challenge in an arid area. One of the arid areas is La Serena city in the Northern Chile which become a case study of this paper. Based on that, this paper tries to identify a sustainable water system by using urban harvest approach as a method to achieve water self-sufficiency for a neighborhood area in the La Serena city. By using the method, it is possible to create sustainable water system in the neighborhood area by reducing up to 38% of water demand and 94% of wastewater production even though water self-sufficient cannot be fully achieved, because of its dependency to the drinking water supply from water treatment plant of La Serena city.

Keywords: arid area, sustainable water system, urban harvest approach, self-sufficiency

Procedia PDF Downloads 246
8193 Technical and Economical Feasibility Analysis of Solar Water Pumping System - Case Study in Iran

Authors: A. Gharib, M. Moradi

Abstract:

The technical analysis of using solar energy and electricity for water pumping in the Khuzestan province in Iran is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The nature of groundwater in the region was examined in terms of depth, static and dynamic head, water pumping rate. Three configurations for solar water pumping system were studied in this thesis; AC solar water pumping with a storage battery, AC solar water pumping with a storage tank, and DC direct solar water pumping.

Keywords: technical and economic feasibility, solar energy, photovoltaic systems, solar water pumping system

Procedia PDF Downloads 543
8192 Pollution-Sources, Controls, and Impact Analysis

Authors: Aditi Acharya

Abstract:

Environmental pollution is threatening the environmental and human health in the most drastic way. This paper provides insight about the affects of environmental pollution in the perspective of water pollution. Sewage in drinking water, the increasing contamination of water bodies and water resources and the human beings are the major contributors, increasing the harsh activities of pollution. The research presents information about the sources of pollution, its impacts and control activities to be undertaken to make our environment free from water pollution.

Keywords: environmental pollution, water pollution, nanotechnology, nanomaterials

Procedia PDF Downloads 343
8191 Evaluation of the Potability Qualities of Pretreated Distilled Water Produced from Biomass Fuelled Water Distiller

Authors: E. I. Oluwasola, J. A. V. Famurewa, R. Aboloma, K. Adesina

Abstract:

Water samples with pretreatment and without pretreatment were obtained from locally constructed biomass fuelled stainless steel water distiller. The water samples were subjected to Microbial, Physicochemical and Minerals analyses for comparison with NAFDAC and WHO Standards for potable water. The results of the physicochemical and microbiological properties of the raw water(A), and the two distilled water samples (B; distill water without pretreatment) and (C; distill water with pretreatment) showed reduction in most of the quality parameters evaluated in the distilled water samples to the level that conforms to the W.H.O standards for drinking water however, lower values were obtained for the pretreated distilled water sample. The values of 0.0016mg/l, 0.0052mg/l and 0.0528mg/l for the arsenic, chromium and lead content respectively in the raw water were within the permissible limit specified by WHO however; the values of cadmium (0.067mg/l) and mercury (0.0287mg/l) are above the maximum tolerable for drinking water thus, making the raw water unsafe for human consumption. Similarly, the high total plate count (278cfu /ml) and coliform count (1100/100ml) indicate that the raw water is potentially harmful while the distilled water samples showed nil coliform count and low total plate count (35cfu/ml,18cfu/ml) for B and C respectively making the distilled water microbiologically safer for human consumption.

Keywords: biomass, distillation, mineral, potable, physicochemical

Procedia PDF Downloads 469
8190 Innovative Method for Treating Oil-Produced Water with Low Operating Cost

Authors: Maha Salman, Gada Al-Nuwaibit, Ahmed Al-Haji, Saleh Al-Haddad, Abbas Al-Mesri, Mansour Al-Rugeeb

Abstract:

The high salinity of oil-produced water and its complicated chemical composition, makes designing a suitable treatment system for oil-produced water is extremely difficult and costly. On the current study, a new innovative method was proposed to treat the complicated oil-produced water through a simple mixing with brine stream produced from waste water treatment plant. The proposal will investigate the scaling potential of oil-produce water, seawater and the selected brine water (BW) produced from Sulaibiya waste water treatment and reclamation plant (SWWTRP) before and after the mixing with oil-produced water, and will calculate the scaling potential of all expected precipitated salts using different conversion and different % of mixing to optimize the % of mixing between the oil-produced water and the selected stream. The result shows a great, feasible and economic solution to treat oil produced with a very low capital cost.

Keywords: brine water, oil-produced water, scaling potential, Sulaibiyah waste water and reclaminatin plant

Procedia PDF Downloads 421
8189 Risk Management of Water Derivatives: A New Commodity in The Market

Authors: Daniel Mokatsanyane, Johnny Jansen Van Rensburg

Abstract:

This paper is a concise introduction of the risk management on the water derivatives market. Water, a new commodity in the market, is one of the most important commodity on earth. As important to life and planet as crops, metals, and energy, none of them matters without water. This paper presents a brief overview of water as a tradable commodity via a new first of its kind futures contract on the Nasdaq Veles California Water Index (NQH2O) derivative instrument, TheGeneralised Autoregressive Conditional Heteroscedasticity (GARCH) statistical model will be the used to measure the water price volatility of the instrument and its performance since it’s been traded. describe the main products and illustrate their usage in risk management and also discuss key challenges with modeling and valuation of water as a traded commodity and finally discuss how water derivatives may be taken as an alternative asset investment class.

Keywords: water derivatives, commodity market, nasdaq veles california water Index (NQH2O, water price, risk management

Procedia PDF Downloads 108
8188 Field Scale Simulation Study of Miscible Water Alternating CO2 Injection Process in Fractured Reservoirs

Authors: Hooman Fallah

Abstract:

Vast amounts of world oil reservoirs are in natural fractured reservoirs. There are different methods for increasing recovery from fractured reservoirs. Miscible injection of water alternating CO2 is a good choice among this methods. In this method, water and CO2 slugs are injected alternatively in reservoir as miscible agent into reservoir. This paper studies water injection scenario and miscible injection of water and CO2 in a two dimensional, inhomogeneous fractured reservoir. The results show that miscible water alternating CO2¬ gas injection leads to 3.95% increase in final oil recovery and total water production decrease of 3.89% comparing to water injection scenario.

Keywords: simulation study, CO2, water alternating gas injection, fractured reservoirs

Procedia PDF Downloads 273
8187 Optimizing Groundwater Pumping for a Complex Groundwater/Surface Water System

Authors: Emery A. Coppola Jr., Suna Cinar, Ferenc Szidarovszky

Abstract:

Over-pumping of groundwater resources is a serious problem world-wide. In addition to depleting this valuable resource, hydraulically connected sensitive ecological resources like wetlands and surface water bodies are often impacted and even destroyed by over-pumping. Effectively managing groundwater in a way that satisfy human demand while preserving natural resources is a daunting challenge that will only worsen with growing human populations and climate change. As presented in this paper, a numerical flow model developed for a hypothetical but realistic groundwater/surface water system was combined with formal optimization. Response coefficients were used in an optimization management model to maximize groundwater pumping in a complex, multi-layered aquifer system while protecting against groundwater over-draft, streamflow depletion, and wetland impacts. Pumping optimization was performed for different constraint sets that reflect different resource protection preferences, yielding significantly different optimal pumping solutions. A sensitivity analysis on the optimal solutions was performed on select response coefficients to identify differences between wet and dry periods. Stochastic optimization was also performed, where uncertainty associated with changing irrigation demand due to changing weather conditions are accounted for. One of the strengths of this optimization approach is that it can efficiently and accurately identify superior management strategies that minimize risk and adverse environmental impacts associated with groundwater pumping under different hydrologic conditions.

Keywords: numerical groundwater flow modeling, water management optimization, groundwater overdraft, streamflow depletion

Procedia PDF Downloads 209
8186 Power Generation through Water Vapour: An Approach of Using Sea/River/Lake Water as Renewable Energy Source

Authors: Riad

Abstract:

As present world needs more and more energy in a low cost way, it needs to find out the optimal way of power generation. In the sense of low cost, renewable energy is one of the greatest sources of power generation. Water vapour of sea/river/lake can be used for power generation by using the greenhouse effect in a large flat type water chamber floating on the water surface. The water chamber will always be kept half filled. When water evaporates by sunlight, the high pressured gaseous water will be stored in the chamber. By passing through a pipe and by using aerodynamics it can be used for power generation. The water level of the chamber is controlled by some means. As a large amount of water evaporates, an estimation can be highlighted, approximately 3 to 4 thousand gallons of water evaporates from per acre of surface (this amount will be more by greenhouse effect). This large amount of gaseous water can be utilized for power generation by passing through a pipe. This method can be a source of power generation.

Keywords: renewable energy, greenhouse effect, water chamber, water vapour

Procedia PDF Downloads 338
8185 A Study on Water Quality Parameters of Pond Water for Better Management of Pond

Authors: Dona Grace Jeyaseeli

Abstract:

Water quality conditions in a pond are controlled by both natural processes and human influences. Natural factors such as the source of the pond water and the types of rock and soil in the pond watershed will influence some water quality characteristics. These factors are difficult to control but usually cause few problems. Instead, most serious water quality problems originate from land uses or other activities near or in the pond. The effects of these activities can often be minimized through proper management and early detection of problems through testing. In the present study a survey of three ponds in Coimbatore city, Tamilnadu, India were analyzed and found that water quality problems in their ponds, ranging from muddy water to fish kills. Unfortunately, most pond owners have never tested their ponds, and water quality problems are usually only detected after they cause a problem. Hence the present study discusses some common water quality parameters that may cause problems in ponds and how to detect through testing for better management of pond.

Keywords: water quality, pond, test, problem

Procedia PDF Downloads 462
8184 Optimizing Inanda Dam Using Water Resources Models

Authors: O. I. Nkwonta, B. Dzwairo, J. Adeyemo, A. Jaiyola, N. Sawyerr, F. Otieno

Abstract:

The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, Water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.

Keywords: complex, water resources, planning, cost effective and management

Procedia PDF Downloads 550
8183 The Use of Water Hyacinth for Bioenergy Electric Generation: For the case of Tana Water Hyacinth

Authors: Seada Hussen Adem, Frie Ayalew Yimam

Abstract:

Due to its high biomass output and potential to produce renewable energy, water hyacinth, a rapidly expanding aquatic weed, has gained recognition as a prospective bioenergy feedstock. Through a variety of conversion processes, such as anaerobic digestion, combustion, and gasification, this study suggests using water hyacinth to generate energy. The suggested strategy helps to reduce the annoyance brought on by the excessive growth of water hyacinth in Tana water bodies in addition to offering an alternate source of energy. The study emphasizes the value of environmentally friendly methods for managing Tana water resources as well as the potential of water hyacinth as a source of bioenergy.

Keywords: anaerobic digestion, bioenergy, combustion, gasification, water hyacinth

Procedia PDF Downloads 44
8182 Conserving Naubad Karez Cultural Landscape – a Multi-Criteria Approach to Urban Planning

Authors: Valliyil Govindankutty

Abstract:

Human civilizations across the globe stand testimony to water being one of the major interaction points with nature. The interactions with nature especially in drier areas revolve around water, be it harnessing, transporting, usage and management. Many ingenious ideas were born, nurtured and developed for harnessing, transporting, storing and distributing water through the areas in the drier parts of the world. Many methods of water extraction, collection and management could be found throughout the world, some of which are associated with efficient, sustained use of surface water, ground water and rain water. Karez is one such ingenious method of collection, transportation, storage and distribution of ground water. Most of the Karez systems in India were developed during reign of Muslim dynasties with ruling class descending from Persia or having influential connections and inviting expert engineers from there. Karez have strongly influenced the village socio-economic organisations due to multitude of uses they were brought into. These are masterpiece engineering structures to collect groundwater and direct it, through a subsurface gallery with a gradual slope, to surface canals that provide water to settlements and agricultural fields. This ingenious technology, karez was result of need for harnessing groundwater in arid areas like that of Bidar. The study views this traditional technology in historical perspective linked to sustainable utilization and management of groundwater and above all the immediate environment. The karez system is one of the best available demonstration of human ingenuity and adaptability to situations and locations of water scarcity. Bidar, capital of erstwhile Bahmani sultanate with a history of more than 700 years or more is one of the heritage cities of present Karnataka State. The unique water systems of Bidar along with other historic entities have been listed under World Heritage Watch List by World Monument Fund. The Historical or cultural landscape in Bidar is very closely associated to the natural resources of the region, Karez systems being one of the best examples. The Karez systems were the lifeline of Bidar’s historical period providing potable water, fulfilling domestic and irrigation needs, both within and outside the fort enclosures. These systems are still functional, but under great pressure and threat of rapid and unplanned urbanisation. The change in land use and fragmentation of land are already paving way for irreversible modification of the karez cultural and geographic landscape. The Paper discusses the significance of character defining elements of Naubad Karez Landscape, highlights the importance of conserving cultural heritage and presents a geographical approach to its revival.

Keywords: Karez, groundwater, traditional water harvesting, cultural heritage landscape, urban planning

Procedia PDF Downloads 473
8181 Gas Flotation Unit in Kuwait Oil Company Operations

Authors: Homoud Bourisli, Haitham Safar

Abstract:

Oil is one of main resources of energy in the world. As conventional oil is drying out, oil recovery is crucial to maintain the same level of oil production. Since water injection is one of the commonly used methods to increase and maintain pressure in oil wells, oil-water separation processes of the water associated with oil production for water injection oil recovery is very essential. Therefore, Gas Flotation Units are used for oil-water separation to be able to re-inject the treated water back into the wells to increase pressure.

Keywords: Kuwait oil company, dissolved gas flotation unit, induced gas flotation unit, oil-water separation

Procedia PDF Downloads 556
8180 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management

Authors: Walter W. Loo

Abstract:

China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.

Keywords: greenhouses, no discharge, remediation of soil and water, wastewater

Procedia PDF Downloads 331
8179 Computational Fluid Dynamics Study on Water Soot Blower Direction in Tangentially Fired Pulverized-Coal Boiler

Authors: Teewin Plangsrinont, Wasawat Nakkiew

Abstract:

In this study, computational fluid dynamics (CFD) was utilized to simulate and predict the path of water from water soot blower through an ambient flow field in 300-megawatt tangentially burned pulverized coal boiler that utilizes a water soot blower as a cleaning device. To predict the position of the impact of water on the opposite side of the water soot blower under identical conditions, the nozzle size and water flow rate were fixed in this investigation. The simulation findings demonstrated a high degree of accuracy in predicting the direction of water flow to the boiler's water wall tube, which was validated by comparison to experimental data. Results show maximum deviation value of the water jet trajectory is 10.2 percent.

Keywords: computational fluid dynamics, tangentially fired boiler, thermal power plant, water soot blower

Procedia PDF Downloads 186
8178 Water Supply and Utility Management to Address Urban Sanitation Issues

Authors: Akshaya P., Priyanjali Prabhkaran

Abstract:

The paper examines the formulation of strategies to develop a comprehensive model of city level water utility management to addressing urban sanitation issues. The water is prime life sustaining natural resources and nature’s gifts to all living beings on the earth multiple urban sanitation issues are addressed in the supply of water in a city. Many of these urban sanitation issues are linked to population expansion and economic inequity. Increased usage of water and the development caused water scarcity. The lack of water supply results increases the chance of unhygienic situations in the cities. In this study, the urban sanitation issues are identified with respect to water supply and utility management. The study compared based on their best practices and initiatives. From this, best practices and initiatives identify suitable sustainable measures to address water supply issues in the city level. The paper concludes with the listed provision that should be considered suitable measures for water supply and utility management in city level to address the urban sanitation issues.

Keywords: water, benchmarking water supply, water supply networks, water supply management

Procedia PDF Downloads 83
8177 Calculation of Water Economy Balance for Water Management

Authors: Vakhtang Geladze, Nana Bolashvili, Tamazi Karalashvili, Nino Machavariani, Ana Karalashvili, George Geladze, Nana Kvirkvelia

Abstract:

Fresh water deficit is one of the most important global problems today. It must be taken into consideration that in the nearest future fresh water crisis will become even more acute owing to the global climate warming and fast desertification processes in the world. Georgia is rich in water resources, but there are disbalance between the eastern and western parts of the country. The goal of the study is to integrate the recent mechanisms compatible with European standards into Georgian water resources management system on the basis of GIS. Moreover, to draw up water economy balance for the purpose of proper determination of water consumption priorities that will be an exchange ratio of water resources and water consumption of the concrete territory. For study region was choose south-eastern part of country, Kvemo kartli Region. This is typical agrarian region, tends to the desertification. The water supply of the region was assessed on the basis of water economy balance, which was first time calculated for this region.

Keywords: desertification, GIS, sustainable management, water management

Procedia PDF Downloads 125
8176 The Effect of Alternative Organic Fertilizer and Chemical Fertilizer on Nitrogen and Yield of Peppermint (Mentha peperita)

Authors: Seyed Ali Mohammad, Modarres Sanavy, Hamed Keshavarz, Ali Mokhtassi-Bidgoli

Abstract:

One of the biggest challenges for the current and future generations is to produce sufficient food for the world population with the existing limited available water resources. Peppermint is a specialty crop used for food and medicinal purposes. Its main component is menthol. It is used predominantly for oral hygiene, pharmaceuticals, and foods. Although drought stress is considered as a negative factor in agriculture, being responsible for severe yield losses; medicinal plants grown under semi-arid conditions usually produce higher concentrations of active substances than same species grown under moderate climates. Nitrogen (N) fertilizer management is central to the profitability and sustainability of forage crop production. Sub-optimal N supply will result in poor yields, and excess N application can lead to nitrate leaching and environmental pollution. In order to determine the response of peppermint to drought stress and different fertilizer treatments, a field experiment with peppermint was conducted in a sandy loam soil at a site of the Tarbiat Modares University, Agriculture Faculty, Tehran, Iran. The experiment used a complete randomized block design, with six rates of fertilizer strategies (F1: control, F2: Urea, F3: 75% urea + 25% vermicompost, F4: 50% urea + 50% vermicompost, F5: 25% urea + 75% vermicompost and F6: vermicompost) and three irrigation regime (S1: 45%, S2: 60% and S3: 75% FC) with three replication. The traits such as nitrogen, chlorophyll, carotenoids, anthocyanin, flavonoid and fresh biomass were studied. The results showed that the treatments had a significant effect on the studied traits as drought stress reduced photosynthetic pigment concentration. Also, drought stress reduced fresh yield of peppermint. Non stress condition had the greater amount of chlorophyll and fresh yield more than other irrigation treatments. The highest concentration of chlorophyll and the fresh biomass was obtained in F2 fertilizing treatments. Sever water stress (S1) produced decreased photosynthetic pigment content fresh yield of peppermint. Supply of N could improve photosynthetic capacity by enhancing photosynthetic pigment content. Perhaps application of vermicompost significantly improved the organic carbon, available N, P and K content in soil over urea fertilization alone. To get sustainable production of peppermint, application of vermicompost along with N through synthetic fertilizer is recommended for light textured sandy loam soils.

Keywords: fresh yield, peppermint, synthetic nitrogen, vermicompost, water stress

Procedia PDF Downloads 199
8175 Optimising the Reservoir Operation Using Water Resources Yield and Planning Model at Inanda Dam, uMngeni Basin

Authors: O. Nkwonta, B. Dzwairo, F. Otieno, J. Adeyemo

Abstract:

The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.

Keywords: complex, water resources, planning, cost effective, management

Procedia PDF Downloads 427
8174 Technical Feasibility Analysis of PV Water Pumping System in Khuzestan Province-Iran

Authors: M.Goodarzi, M.Mohammadi, M. Rezaee

Abstract:

The technical analysis of using solar energy and electricity for water pumping in the Khuzestan province in Iran is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The nature of groundwater in the region was examined in terms of depth, static and dynamic head, water pumping rate.Three configurations for solar water pumping system were studied in this thesis; AC solar water pumping with storage battery, AC solar water pumping with storage tank and DC direct solar water pumping.

Keywords: technical feasibility, solar energy, photovoltaic systems, photovoltaic water pumping system

Procedia PDF Downloads 605
8173 Internet of Things based AquaSwach Water Purifier

Authors: Karthiyayini J., Arpita Chowdary Vantipalli, Darshana Sailu Tanti, Malvika Ravi Kudari, Krtin Kannan

Abstract:

This paper is propelled from the generally existing undertaking of the smart water quality management, which addresses an IoT (Internet of things) based brilliant water quality observing (SWQM) framework which we call it AquaSwach that guides in the ceaseless estimation of water conditions dependent on five actual boundaries i.e., temperature, pH, electric conductivity and turbidity properties and water virtue estimation each time you drink water. Six sensors relate to Arduino-Mega in a discrete way to detect the water parameters. Extracted data from the sensors are transmitted to a desktop application developed in the NET platform and compared with the WHO (World Health Organization) standard values.

Keywords: AquaSwach, IoT, WHO, water quality

Procedia PDF Downloads 196
8172 Optimal Uses of Rainwater to Maintain Water Level in Gomti Nagar, Uttar Pradesh, India

Authors: Alok Saini, Rajkumar Ghosh

Abstract:

Water is nature's important resource for survival of all living things, but freshwater scarcity exists in some parts of world. This study has predicted that Gomti Nagar area (49.2 sq. km.) will harvest about 91110 ML of rainwater till 2051 (assuming constant and present annual rainfall). But 17.71 ML of rainwater was harvested from only 53 buildings in Gomti Nagar area in the year 2021. Water level will be increased (rise) by 13 cm in Gomti Nagar from such groundwater recharge. The total annual groundwater abstraction from Gomti Nagar area was 35332 ML (in 2021). Due to hydrogeological constraints and lower annual rainfall, groundwater recharge is less than groundwater abstraction. The recent scenario is only 0.07% of rainwater recharges by RTRWHs in Gomti Nagar. But if RTRWHs would be installed in all buildings then 12.39% of rainwater could recharge groundwater table in Gomti Nagar area. But if RTRWHs would be installed in all buildings then 12.39% of rainwater could recharge groundwater table in Gomti Nagar area. Gomti Nagar is situated in 'Zone–A' (water distribution area) and groundwater is the primary source of freshwater supply. Current scenario indicates only 0.07% of rainwater recharges by RTRWHs in Gomti Nagar. In Gomti Nagar, the difference between groundwater abstraction and recharge will be 735570 ML in 30 yrs. Statistically, all buildings at Gomti Nagar (new and renovated) could harvest 3037 ML of rainwater through RTRWHs annually. The most recent monsoonal recharge in Gomti Nagar was 10813 ML/yr. Harvested rainwater collected from RTRWHs can be used for rooftop irrigation, and residential kitchen and gardens (home grown fruit and vegetables). According to bylaws, RTRWH installations are required in both newly constructed and existing buildings plot areas of 300 sq. m or above. Harvested rainwater is of higher quality than contaminated groundwater. Harvested rainwater from RTRWHs can be considered water self-sufficient. Rooftop Rainwater Harvesting Systems (RTRWHs) are least expensive, eco-friendly, most sustainable, and alternative water resource for artificial recharge. This study also predicts about 3.9 m of water level rise in Gomti Nagar area till 2051, only when all buildings will install RTRWHs and harvest for groundwater recharging. As a result, this current study responds to an impact assessment study of RTRWHs implementation for the water scarcity problem in the Gomti Nagar area (1.36 sq.km.). This study suggests that common storage tanks (recharge wells) should be built for a group of at least ten (10) households and optimal amount of harvested rainwater will be stored annually. Artificial recharge from alternative water sources will be required to improve the declining water level trend and balance the groundwater table in this area. This over-exploitation of groundwater may lead to land subsidence, and development of vertical cracks.

Keywords: aquifer, aquitard, artificial recharge, bylaws, groundwater, monsoon, rainfall, rooftop rainwater harvesting system, RTRWHs water table, water level

Procedia PDF Downloads 68
8171 Governance of Climate Adaptation Through Artificial Glacier Technology: Lessons Learnt from Leh (Ladakh, India) In North-West Himalaya

Authors: Ishita Singh

Abstract:

Social-dimension of Climate Change is no longer peripheral to Science, Technology and Innovation (STI). Indeed, STI is being mobilized to address small farmers’ vulnerability and adaptation to Climate Change. The experiences from the cold desert of Leh (Ladakh) in North-West Himalaya illustrate the potential of STI to address the challenges of Climate Change and the needs of small farmers through the use of Artificial Glacier Techniques. Small farmers have a unique technique of water harvesting to augment irrigation, called “Artificial Glaciers” - an intricate network of water channels and dams along the upper slope of a valley that are located closer to villages and at lower altitudes than natural glaciers. It starts to melt much earlier and supplements additional irrigation to small farmers’ improving their livelihoods. Therefore, the issue of vulnerability, adaptive capacity and adaptation strategy needs to be analyzed in a local context and the communities as well as regions where people live. Leh (Ladakh) in North-West Himalaya provides a Case Study for exploring the ways in which adaptation to Climate Change is taking place at a community scale using Artificial Glacier Technology. With the above backdrop, an attempt has been made to analyze the rural poor households' vulnerability and adaptation practices to Climate Change using this technology, thereby drawing lessons on vulnerability-livelihood interactions in the cold desert of Leh (Ladakh) in North-West Himalaya, India. The study is based on primary data and information collected from 675 households confined to 27 villages of Leh (Ladakh) in North-West Himalaya, India. It reveals that 61.18% of the population is driving livelihoods from agriculture and allied activities. With increased irrigation potential due to the use of Artificial Glaciers, food security has been assured to 77.56% of households and health vulnerability has been reduced in 31% of households. Seasonal migration as a livelihood diversification mechanism has declined in nearly two-thirds of households, thereby improving livelihood strategies. Use of tactical adaptations by small farmers in response to persistent droughts, such as selling livestock, expanding agriculture lands, and use of relief cash and foods, have declined to 20.44%, 24.74% and 63% of households. However, these measures are unsustainable on a long-term basis. The role of policymakers and societal stakeholders becomes important in this context. To address livelihood challenges, the role of technology is critical in a multidisciplinary approach involving multilateral collaboration among different stakeholders. The presence of social entrepreneurs and new actors on the adaptation scene is necessary to bring forth adaptation measures. Better linkage between Science and Technology policies, together with other policies, should be encouraged. Better health care, access to safe drinking water, better sanitary conditions, and improved standards of education and infrastructure are effective measures to enhance a community’s adaptive capacity. However, social transfers for supporting climate adaptive capacity require significant amounts of additional investment. Developing institutional mechanisms for specific adaptation interventions can be one of the most effective ways of implementing a plan to enhance adaptation and build resilience.

Keywords: climate change, adaptation, livelihood, stakeholders

Procedia PDF Downloads 49
8170 Geophysical Approach in the Geological Characterization of a Dam Site: Case of the Chebabta-Dam, Meskiana, Oum El-Bouaghi

Authors: Benhammadi Hocine, Djamel Boubaya, Chaffai Hicham

Abstract:

Meskiana Area is characterized by a semi-arid climate where the water supply for irrigation and industry is not sufficient as the priority goes for domestic use. To meet the increasing population growth and development, the authorities have considered building a new water retaining structure on some major temporary water streams. For this purpose Chebabta site on Oued Meskiana was chosen as the future dam site. It is large enough to store the desired volume of water. This study comes to investigate the conditions of the site and the adequacy of the ground as a foundation for the projected dam. The conditions of the site include the geological structure and mainly the presence of discontinuities in the formation on which the dam will be built, the nature of the lithologies under the foundation and the future lake, and the presence of any hazard. This site characterization is usually carried out using different methods in order to highlight any underground buried problematic structure. In this context, the different geophysical technics remain the most used ones. Three geophysical methods were used in the case of the Chebabta dam site, namely, electric survey, seismic refraction, and tomography. The choice of the technics and the location of the scan line was made on the basis of the available geological data. In this sense, profiles have been established on both banks of Oued Meskiana. The obtained results have allowed a better characterization of the geological structure, defining the limit between the surface cover and the bedrock, which is, in other words, the limit between the weathered zone and the bedrock. Their respective thicknesses were also determined by seismic refraction and electrical resistivity sounding. However, the tomography imaging technic has succeeded in positioning a fault structure passing through the right bank of the wadi.

Keywords: dam site, fault, geophysic, investigation, Meskiana

Procedia PDF Downloads 65
8169 Interactions between Water-Stress and VA Mycorrhizal Inoculation on Plant Growth and Leaf-Water Potential in Tomato

Authors: Parisa Alizadeh Oskuie, Shahram Baghban Ciruse

Abstract:

The influence of arbuscular mycorrhizal (AM) fungus(Glomus mossea) on plant growth and leaf-water potential of tomato (lycopersicum esculentum L.cv.super star) were studied in potted culture water stress stress period of 3 months in greenhouse conditions with the soil matric potential maintained at Fc1, Fc2, Fc3, and Fc4 respectively (0.8,0.7,0.6,0.5 Fc). Seven-day-old seedlings of tomato were transferred to pots containing Glomus mossea or non-AMF. AM colonization significantly stimulated shoot dry matter and leaf-water potential but water stress significantly decreased leaf area, shoot dry matter colonization and leaf-water potential.

Keywords: leaf-water potential, plant growth, tomato, VA mycorrhiza, water-stress

Procedia PDF Downloads 405
8168 Design and Modeling of Light Duty Trencher

Authors: Yegetaneh T. Dejenu, Delesa Kejela, Abdulak Alemu

Abstract:

From the earliest time of humankind, the trenches were used for water to flow along and for soldiers to hide in during enemy attacks. Now a day due to civilization, the needs of the human being become endless, and the living condition becomes sophisticated. The unbalance between the needs and resource obligates them to find the way to manage this condition. The attempt to use the scares resource in very efficient and effective way makes the trench an endeavor practice in the world in all countries. A trencher is a construction equipment used to dig trenches, especially for laying pipes or cables, installing drainage, irrigation, installing fencing, and in preparation for trench warfare. It is a machine used to make a ditch by cutting the soil ground and effectively used in agricultural irrigation. The most common types of trencher are wheel trencher, chain trencher, micro trencher, portable trencher. In Ethiopia people have been trenching the ditch for many purposes and the tools they are using are Pickaxe, Shovel and some are using Micro Excavators. The adverse effect of using traditional equipment is, time and energy consuming, less productive, difficult and more man power is required. Hence it is necessary to design and produce low price, and simple machine to narrow this gap. Our objective is to design and model a light duty trencher that is used for trenching the ground or soil for making ditch and used for agricultural, ground cabling, ground piping, and drainage system. The designed machine trenches, maximum of 1-meter depth, 30 cm width, and the required length. The working mechanism is fully hydraulic, and the engine with 12.7 hp will provide suitable power for the pump that delivers 23 l/min at 1500 rpm to drive hydraulic motors and actuators.

Keywords: hydraulics, modelling, trenching, ditch

Procedia PDF Downloads 196