Search results for: printed heat circuits
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3652

Search results for: printed heat circuits

3292 An Experimental Investigation of the Variation of Evaporator Efficiency According to Load Amount and Textile Type in Hybrid Heat Pump Dryers

Authors: Gokhan Sir, Muhammed Ergun, Onder Balioglu

Abstract:

Nowadays, laundry dryers containing heaters and heat pumps are used to provide fast and efficient drying. In this system, as the drying capacity changes, the sensible and latent heat transfer rate in the evaporator changes. Therefore, the drying time measured for the unit capacity increases as the drying capacity decreases. The objective of this study is to investigate the evaporator efficiency according to load amount and textile type in hybrid heat pump dryers. Air side flow rate and system temperatures (air side and refrigeration side) were monitored instantly, and the specific moisture extraction rate (SMER), evaporator efficiency, and heat transfer mechanism between the textile and hybrid heat pump system were examined. Evaporator efficiency of heat pump dryers for cotton and synthetic based textile types in load amounts of 2, 5, 8 and 10 kg were investigated experimentally. As a result, the maximum evaporator efficiency (%72) was obtained in drying cotton and synthetic based textiles with a capacity of 5 kg; the minimum evaporator efficiency (%40) was obtained in drying cotton and synthetic based textiles with a capacity of 2 kg. The experimental study also reveals that capacity-dependent flow rate changes are the major factor for evaporator efficiency.

Keywords: evaporator, heat pump, hybrid, laundry dryer, textile

Procedia PDF Downloads 139
3291 Investigation of Heat Transfer Mechanism Inside Shell and Tube Latent Heat Thermal Energy Storage Systems

Authors: Saeid Seddegh, Xiaolin Wang, Alan D. Henderson, Dong Chen, Oliver Oims

Abstract:

The main objective of this research is to study the heat transfer processes and phase change behaviour of a phase change material (PCM) in shell and tube latent heat thermal energy storage (LHTES) systems. The thermal behaviour in a vertical and horizontal shell-and-tube heat energy storage system using a pure thermal conduction model and a combined conduction-convection heat transfer model is compared in this paper. The model is first validated using published experimental data available in literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during melting and solidification processes of PCMs. The simulated results show that the combined convection and conduction model can better describe the energy transfer in PCMs during melting process. In contrast, heat transfer by conduction is more significant during the solidification process since the two models show little difference. Also, it was concluded that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the solidification process, the thermal behavior does not show any difference between horizontal and vertical systems.

Keywords: latent heat thermal energy storage, phase change material, natural convection, melting, shell and tube heat exchanger, melting, solidification

Procedia PDF Downloads 554
3290 Theoretical Analysis and Design Consideration of Screened Heat Pipes for Low-Medium Concentration Solar Receivers

Authors: Davoud Jafari, Paolo Di Marco, Alessandro Franco, Sauro Filippeschi

Abstract:

This paper summarizes the results of an investigation into the heat pipe heat transfer for solar collector applications. The study aims to show the feasibility of a concentrating solar collector, which is coupled with a heat pipe. Particular emphasis is placed on the capillary and boiling limits in capillary porous structures, with different mesh numbers and wick thicknesses. A mathematical model of a cylindrical heat pipe is applied to study its behaviour when it is exposed to higher heat input at the evaporator. The steady state analytical model includes two-dimensional heat conduction in the HP’s wall, the liquid flow in the wick and vapor hydrodynamics. A sensitivity analysis was conducted by considering different design criteria and working conditions. Different wicks (mesh 50, 100, 150, 200, 250, and, 300), different porosities (0.5, 0.6, 0.7, 0.8, and 0.9) with different wick thicknesses (0.25, 0.5, 1, 1.5, and 2 mm) are analyzed with water as a working fluid. Results show that it is possible to improve heat transfer capability (HTC) of a HP by selecting the appropriate wick thickness, the effective pore radius, and lengths for a given HP configuration, and there exist optimal design criteria (optimal thick, evaporator adiabatic and condenser sections). It is shown that the boiling and wicking limits are connected and occurs in dependence on each other. As different parts of the HP external surface collect different fractions of the total incoming insolation, the analysis of non-uniform heat flux distribution indicates that peak heat flux is not affecting parameter. The parametric investigations are aimed to determine working limits and thermal performance of HP for medium temperature SC application.

Keywords: screened heat pipes, analytical model, boiling and capillary limits, concentrating collector

Procedia PDF Downloads 560
3289 Heat Source Temperature for Centered Heat Source on Isotropic Plate with Lower Surface Forced Cooling Using Neural Network and Three Different Materials

Authors: Fadwa Haraka, Ahmad Elouatouati, Mourad Taha Janan

Abstract:

In this study, we propose a neural network based method in order to calculate the heat source temperature of isotropic plate with lower surface forced cooling. To validate the proposed model, the heat source temperatures values will be compared to the analytical method -variables separation- and finite element model. The mathematical simulation is done through 3D numerical simulation by COMSOL software considering three different materials: Aluminum, Copper, and Graphite. The proposed method will lead to a formulation of the heat source temperature based on the thermal and geometric properties of the base plate.

Keywords: thermal model, thermal resistance, finite element simulation, neural network

Procedia PDF Downloads 356
3288 Experimental Investigation of Air Gap Membrane Distillation System with Heat Recovery

Authors: Yasser Elhenaw, A. Farag, Mohamed El-Ghandour, M. Shatat, G. H. Moustafa

Abstract:

This study investigates the performance of two spiral-wound Air Gap Membrane Distillation (AGMD) units. These units are connected in two different configurations in order to be tested and compared experimentally. In AGMD, the coolant water is used to condensate water vapor leaving membrane via condensing plate. The rejected cooling water has a relativity high temperature which can be used, depending on operation parameters, to increase the thermal efficiency and water productivity. In the first configuration, the seawater feed flows parallel and equally through both units then rejected. The coolant water is divided into the two units, and the heat source is divided into the two heat exchangers. In the second one, only the feed of the first unit is heated while the cooling rejected from the unit is used in heating the feed to the second. The performance of the system, estimated by the water productivity as well as the Gain Output Ratio (GOR), is measured for the two configurations at different feed flow rates, temperatures and salinities. The results show that at steady state condition, the heat recovery configurations lead to an increase in water productivity by 25%.

Keywords: membrane distillation, heat transfer, heat recovery, desalination

Procedia PDF Downloads 265
3287 Unconfined Laminar Nanofluid Flow and Heat Transfer around a Square Cylinder with an Angle of Incidence

Authors: Rafik Bouakkaz

Abstract:

A finite-volume method simulation is used to investigate two dimensional unsteady flow of nanofluids and heat transfer characteristics past a square cylinder inclined with respect to the main flow in the laminar regime. The computations are carried out of nanoparticle volume fractions varying from 0 ≤ ∅ ≤ 5% for an inclination angle in the range 0° ≤ δ ≤ 45° at a Reynolds number of 100. The variation of stream line and isotherm patterns are presented for the above range of conditions. Also, it is noticed that the addition of nanoparticles enhances the heat transfer. Hence, the local Nusselt number is found to increase with increasing value of the concentration of nanoparticles for the fixed value of the inclination angle.

Keywords: copper nanoparticles, heat transfer, square cylinder, inclination angle

Procedia PDF Downloads 190
3286 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip

Authors: Rama Bhargava, Mania Goyal

Abstract:

The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.

Keywords: viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM

Procedia PDF Downloads 313
3285 Effect of Heat Treatment on Columnar Grain Growth and Goss Texture on Surface in Grain-Oriented Electrical Steels

Authors: Jungkyun Na, Jaesang Lee, Yang Mo Koo

Abstract:

In this study to find a replacement for expensive secondary recrystallization in GO electrical steel production, effect of heat treatment on the formation of columnar grain and Goss texture is investigated. The composition of the sample is Fe-2.0Si-0.2C. This process involves repeating of cold rolling and decarburization as a replacement for secondary recrystallization. By cold-rolling shear band is made and Goss grain grows from shear band by decarburization. By doing another cold rolling, some Goss texture is newly formed from the shear band, and some Goss texture is retained in microbands. To determine whether additional heat treatment with H2 atmosphere is needed on decarburization process for growth of Goss texture, comparing between decarburization and heat treatment with H2 atmosphere is performed. Also, to find optimum condition for heat treatment, heat treatment with various time and temperature is performed. It was found that increase in the number of cold rolling and heat treatment increases Goss texture. Both high Goss texture and good columnar structure is achieved at 900℃, and this temperature is within a+r phase region. Heat treatment at a temperature higher than a+r phase region caused carbon diffusion and this made layer with Goss grain decrease.

Keywords: electrical steel, Goss texture, columnar structure, normal grain growth

Procedia PDF Downloads 218
3284 Thermodynamics Analysis of Transcritical HTHP Cycles Using Eco-Friendly Refrigerant and low-Grade Waste Heat Recovery: A Theoretical Evaluation

Authors: Adam Y. Sulaiman, Donal F. Cotter, Ming J. Huang, Neil J. Hewitt

Abstract:

Decarbonization of the industrial sector in developed countries has become indispensable for addressing climate change. Industrial processes including drying, distillation, and injection molding require a process heat exceeding 180°C, rendering the subcriticalHigh-Temperature heat pump(HTHP) technique unsuitable. A transcritical HTHP utilizing ecologically friendly working fluids is a highly recommended system that incorporates the features of high-energy efficiency, extended operational range, and decarbonizing the industrial sector. This paper delves into the possibility and feasibility of leveraging the HTTP system to provide up to 200°C of heat using R1233zd(E) as a working fluid. Using a steady-state model, various transcritical HTHP cycle configurations aretheoretically compared,analyzed, and evaluatedin this study. The heat transfer characteristics for the evaporator and gas cooler are investigated, as well as the cycle's energy, exergetic, and environmental performance. Using the LMTD method, the gas cooler's heat transfer coefficient, overall length, and heat transfer area were calculated. The findings indicate that the heat sink pressure level, as well as the waste heat temperature provided to the evaporator, have a significant impact on overall cycle performance. The investigation revealed the potential challenges and barriers, including the length of the gas cooler and the lubrication of the compression process. The basic transcritical HTTP cycle with additional IHX was demonstrated to be the most efficient cycle across a variety of heat source temperatures ranging from 70 to 90 °C based on theoretical energetic and exergetic performance.

Keywords: high-temperature heat pump, transcritical cycle, refrigerants, gas cooler, energy, exergy

Procedia PDF Downloads 163
3283 Constructing a Two-Tier Test about Source Current to Diagnose Pre-Service Elementary School Teacher’ Misconceptions

Authors: Abdeljalil Metioui

Abstract:

The purpose of this article is to present the results of two-stage qualitative research. The first involved the identification of the alternative conceptions of 80 elementary pre-service teachers from Quebec in Canada about the operation of simple electrical circuits. To do this, they completed a two-choice questionnaire (true or false) with justification. Data analysis identifies many conceptual difficulties. For example, for their majority, whatever the electrical device that composes an electrical circuit, the current source (power supply), and the generated electrical power is constant. The second step was to develop a double multiple-choice questionnaire based on the identified designs. It allows teachers to quickly diagnose their students' conceptions and take them into account in their teaching.

Keywords: development, electrical circuits, two-tier diagnostic test, secondary and high school

Procedia PDF Downloads 112
3282 Investigation of a Natural Convection Heat Sink for LEDs Based on Micro Heat Pipe Array-Rectangular Channel

Authors: Wei Wang, Yaohua Zhao, Yanhua Diao

Abstract:

The exponential growth of the lighting industry has rendered traditional thermal technologies inadequate for addressing the thermal management challenges inherent to high-power light-emitting diode (LED) technology. To enhance the thermal management of LEDs, this study proposes a heat sink configuration that integrates a miniature heat pipe array based on phase change technology with rectangular channels. The thermal performance of the heat sink was evaluated through experimental testing, and the results demonstrated that when the input power was 100W, 150W, and 200W, the temperatures of the LED substrate were 47.64℃, 56.78℃, and 69.06℃, respectively. Additionally, the maximum temperature difference of the MHPA in the vertical direction was observed to be 0.32℃, 0.30℃, and 0.30℃, respectively. The results demonstrate that the heat sink not only effectively dissipates the heat generated by the LEDs, but also exhibits excellent temperature uniformity. In consideration of the experimental measurement outcomes, a corresponding numerical model was developed as part of this study. Following the model validation, the effect of the structural parameters of the heat sink on its heat dissipation efficacy was examined through the use of response surface methodology (RSM) analysis. The rectangular channel width, channel height, channel length, number of channel cross-sections, and channel cross-section spacing were selected as the input parameters, while the LED substrate temperature and the total mass of the heat sink were regarded as the response variables. Subsequently, the response was subjected to an analysis of variance (ANOVA), which yielded a regression model that predicted the response based on the input variables. This offers some direction for the design of the radiator.

Keywords: light-emitting diodes, heat transfer, heat pipe, natural convection, response surface methodology

Procedia PDF Downloads 34
3281 A Boundary Backstepping Control Design for 2-D, 3-D and N-D Heat Equation

Authors: Aziz Sezgin

Abstract:

We consider the problem of stabilization of an unstable heat equation in a 2-D, 3-D and generally n-D domain by deriving a generalized backstepping boundary control design methodology. To stabilize the systems, we design boundary backstepping controllers inspired by the 1-D unstable heat equation stabilization procedure. We assume that one side of the boundary is hinged and the other side is controlled for each direction of the domain. Thus, controllers act on two boundaries for 2-D domain, three boundaries for 3-D domain and ”n” boundaries for n-D domain. The main idea of the design is to derive ”n” controllers for each of the dimensions by using ”n” kernel functions. Thus, we obtain ”n” controllers for the ”n” dimensional case. We use a transformation to change the system into an exponentially stable ”n” dimensional heat equation. The transformation used in this paper is a generalized Volterra/Fredholm type with ”n” kernel functions for n-D domain instead of the one kernel function of 1-D design.

Keywords: backstepping, boundary control, 2-D, 3-D, n-D heat equation, distributed parameter systems

Procedia PDF Downloads 404
3280 Complex Cooling Approach in Microchannel Heat Exchangers Using Solid and Hollow Fins

Authors: Nahum Yustus Godi

Abstract:

A three-dimensional numerical optimisation of combined microchannels with constructal solid, half hollow, and hollow circular fins is documented in this paper. The technique seeks to minimize peak temperature in the entire volume of the microchannel heat sink. The volume and axial length were all fixed, while the width of the microchannel could morph. High-density heat flux was applied at the bottom wall of the microchannel. The coolant employed to remove the heat deposited at the bottom surface of the microchannel was a single-phase fluid (water) in a forced convection laminar condition, and heat transfer was a conjugate problem. The unit cell symmetrical computation domain was discretised, and governing equations were solved using computational fluid dynamic (CFD) code. The results reveal that the combined microchannel with hollow circular fins and solid fins performed better at different Reynolds numbers. The numerical study was validated for the single microchannel without fins and found to be in good agreement with previous studies.

Keywords: constructal fins, complex heat exchangers, cooling technique, numerical optimisation

Procedia PDF Downloads 225
3279 Finite Element Modeling of Heat and Moisture Transfer in Porous Material

Authors: V. D. Thi, M. Li, M. Khelifa, M. El Ganaoui, Y. Rogaume

Abstract:

This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.

Keywords: finite element method, heat transfer, moisture transfer, porous materials, wood

Procedia PDF Downloads 400
3278 Semi-Transparent Dye-Sensitized Solar Panels for Energy Autonomous Greenhouses

Authors: A. Mourtzikou, D. Sygkridou, T. Georgakopoulos, G. Katsagounos, E. Stathatos

Abstract:

Over 60% highly transparent quasi-solid-state dye-sensitized solar cells (DSSCs) with dimension of 50x50 cm2 were fabricated via inkjet printing process using nanocomposite inks as raw materials and tested under outdoor illumination conditions. The cells were electrically characterized, and their possible application to the shell of greenhouses was also examined. The panel design was in Z-interconnection, where the working electrode was inkjet printed on one conductive glass and the counter electrode on a second glass in a sandwich configuration. Silver current collective fingers were printed on the glasses to make the internal electrical connections. In that case, the adjacent cells were connected in series via silver fingers and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte.

Keywords: Dye-sensitized solar panels, inkjet printing, quasi-solid state electrolyte, semi-transparency, scale up

Procedia PDF Downloads 140
3277 An Integrated Visualization Tool for Heat Map and Gene Ontology Graph

Authors: Somyung Oh, Jeonghyeon Ha, Kyungwon Lee, Sejong Oh

Abstract:

Microarray is a general scheme to find differentially expressed genes for target concept. The output is expressed by heat map, and biologists analyze related terms of gene ontology to find some characteristics of differentially expressed genes. In this paper, we propose integrated visualization tool for heat map and gene ontology graph. Previous two methods are used by static manner and separated way. Proposed visualization tool integrates them and users can interactively manage it. Users may easily find and confirm related terms of gene ontology for given differentially expressed genes. Proposed tool also visualize connections between genes on heat map and gene ontology graph. We expect biologists to find new meaningful topics by proposed tool.

Keywords: heat map, gene ontology, microarray, differentially expressed gene

Procedia PDF Downloads 316
3276 Numerical Investigation of Thermal-Hydraulic Performance of a Flat Tube in Cross-Flow of Air

Authors: Hamidreza Bayat, Arash Mirabdolah Lavasani, Meysam Bolhasani, Sajad Moosavi

Abstract:

Heat transfer from flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube which is varied in range of 100 to 300. In these range of Reynolds number flow is considered to be laminar, unsteady, and incompressible. Equations are solved by using finite volume method. Results show that increasing l/D from 1 to 2 has insignificant effect on heat transfer and Nusselt number of flat tube is slightly lower than circular tube. However, thermal-hydraulic performance of flat tube is up to 2.7 times greater than circular tube.

Keywords: laminar flow, flat tube, convective heat transfer, heat exchanger

Procedia PDF Downloads 440
3275 Modelling of Solidification in a Latent Thermal Energy Storage with a Finned Tube Bundle Heat Exchanger Unit

Authors: Remo Waser, Simon Maranda, Anastasia Stamatiou, Ludger J. Fischer, Joerg Worlitschek

Abstract:

In latent heat storage, a phase change material (PCM) is used to store thermal energy. The heat transfer rate during solidification is limited and considered as a key challenge in the development of latent heat storages. Thus, finned heat exchangers (HEX) are often utilized to increase the heat transfer rate of the storage system. In this study, a new modeling approach to calculating the heat transfer rate in latent thermal energy storages with complex HEX geometries is presented. This model allows for an optimization of the HEX design in terms of costs and thermal performance of the system. Modeling solidification processes requires the calculation of time-dependent heat conduction with moving boundaries. Commonly used computational fluid dynamic (CFD) methods enable the analysis of the heat transfer in complex HEX geometries. If applied to the entire storage, the drawback of this approach is the high computational effort due to small time steps and fine computational grids required for accurate solutions. An alternative to describe the process of solidification is the so-called temperature-based approach. In order to minimize the computational effort, a quasi-stationary assumption can be applied. This approach provides highly accurate predictions for tube heat exchangers. However, it shows unsatisfactory results for more complex geometries such as finned tube heat exchangers. The presented simulation model uses a temporal and spatial discretization of heat exchanger tube. The spatial discretization is based on the smallest possible symmetric segment of the HEX. The heat flow in each segment is calculated using finite volume method. Since the heat transfer fluid temperature can be derived using energy conservation equations, the boundary conditions at the inner tube wall is dynamically updated for each time step and segment. The model allows a prediction of the thermal performance of latent thermal energy storage systems using complex HEX geometries with considerably low computational effort.

Keywords: modelling of solidification, finned tube heat exchanger, latent thermal energy storage

Procedia PDF Downloads 268
3274 Investigation of Heat Transfer by Natural Convection in an Open Channel

Authors: Mahmoud S. Ahmed, Hany A. Mohamed, Mohamed A. Omara, Mohamed F. Abdeen

Abstract:

Experimental study of natural convection heat transfer inside smooth and rough surfaces of vertical and inclined equilateral triangular channels of different inclination angles with a uniformly heated surface are performed. The inclination angle is changed from 15º to 90º. Smooth and rough surface of average roughness (0.02 mm) are used and their effect on the heat transfer characteristics are studied. The local and average heat transfer coefficients and Nusselt number are obtained for smooth and rough channels at different heat flux values, different inclination angles and different Rayleigh numbers (Ra) 6.48 × 105 ≤ Ra ≤ 4.78 × 106. The results show that the local Nusselt number decreases with increase of axial distance from the lower end of the triangular channel to a point near the upper end of channel, and then, it slightly increases. Higher values of local Nusselt number for rough channel along the axial distance compared with the smooth channel. The average Nusselt number of rough channel is higher than that of smooth channel by about 8.1% for inclined case at θ = 45o and 10% for vertical case. The results obtained are correlated using dimensionless groups for both rough and smooth surfaces of the inclined and vertical triangular channels.

Keywords: natural heat transfer convection, constant heat flux, open channels, heat transfer

Procedia PDF Downloads 393
3273 Comparative Study of Sub-Critical and Supercritical ORC Applications for Exhaust Waste Heat Recovery

Authors: Buket Boz, Alvaro Diez

Abstract:

Waste heat recovery by means of Organic Rankine Cycle is a promising technology for the recovery of engine exhaust heat. However, it is complex to find out the optimum cycle conditions with appropriate working fluids to match exhaust gas waste heat due to its high temperature. Hence, this paper focuses on comparing sub-critical and supercritical ORC conditions with eight working fluids on a combined diesel engine-ORC system. The model employs two ORC designs, Regenerative-ORC and Pre-Heating-Regenerative-ORC respectively. The thermodynamic calculations rely on the first and second law of thermodynamics, thermal efficiency and exergy destruction factors are the fundamental parameters evaluated. Additionally, in this study, environmental and safety, GWP (Global Warming Potential) and ODP (Ozone Depletion Potential), characteristic of the refrigerants are taken into consideration as evaluation criteria to define the optimal ORC configuration and conditions. Consequently, the studys outcomes reveal that supercritical ORCs with alkane and siloxane are more suitable for high temperature exhaust waste heat recovery in contrast to sub-critical conditions.

Keywords: internal combustion engine, organic Rankine cycle, waste heat recovery, working fluids

Procedia PDF Downloads 204
3272 Design and Study of a Low Power High Speed 8 Transistor Based Full Adder Using Multiplexer and XOR Gates

Authors: Biswarup Mukherjee, Aniruddha Ghoshal

Abstract:

In this paper, we propose a new technique for implementing a low power high speed full adder using 8 transistors. Full adder circuits are used comprehensively in Application Specific Integrated Circuits (ASICs). Thus it is desirable to have high speed operation for the sub components. The explored method of implementation achieves a high speed low power design for the full adder. Simulated results indicate the superior performance of the proposed technique over conventional 28 transistor CMOS full adder. Detailed comparison of simulated results for the conventional and present method of implementation is presented.

Keywords: high speed low power full adder, 2-T MUX, 3-T XOR, 8-T FA, pass transistor logic, CMOS (complementary metal oxide semiconductor)

Procedia PDF Downloads 348
3271 A Study on Vulnerability of Alahsa Governorate to Generate Urban Heat Islands

Authors: Ilham S. M. Elsayed

Abstract:

The purpose of this study is to investigate Alahsa Governorate status and its vulnerability to generate urban heat islands. Alahsa Governorate is a famous oasis in the Arabic Peninsula including several oil centers. Extensive literature review was done to collect previous relative data on the urban heat island of Alahsa Governorate. Data used for the purpose of this research were collected from authorized bodies who control weather station networks over Alahsa Governorate, Eastern Province, Saudi Arabia. Although, the number of weather station networks within the region is very limited and the analysis using GIS software and its techniques is difficult and limited, the data analyzed confirm an increase in temperature for more than 2 °C from 2004 to 2014. Such increase is considerable whenever human health and comfort are the concern. The increase of temperature within one decade confirms the availability of urban heat islands. The study concludes that, Alahsa Governorate is vulnerable to create urban heat islands and more attention should be drawn to strategic planning of the governorate that is developing with a high pace and considerable increasing levels of urbanization.

Keywords: Alahsa Governorate, population density, Urban Heat Island, weather station

Procedia PDF Downloads 250
3270 A Study on the Reliability Evaluation of a Timer Card for Air Dryer of the Railway Vehicle

Authors: Chul Su Kim, Jun Ku Lee, Won Jun Lee

Abstract:

The EMU (electric multiple unit) vehicle timer card is a PCB (printed circuit board) for controlling the air-dryer to remove the moisture of the generated air from the air compressor of the braking device. This card is exposed to the lower part of the railway vehicle, so it is greatly affected by the external environment such as temperature and humidity. The main cause of the failure of this timer card is deterioration of soldering area of the PCB surface due to temperature and humidity. Therefore, in the viewpoint of preventive maintenance, it is important to evaluate the reliability of the timer card and predict the replacement cycle to secure the safety of the air braking device is one of the main devices for driving. In this study, the existing and the improved products were evaluated on the reliability through ALT (accelerated life test). In addition, the acceleration factor by the 'Coffin-Manson' equation was obtained, and the remaining lifetime was compared and examined.

Keywords: reliability evaluation, timer card, Printed Circuit Board, Accelerated Life Test

Procedia PDF Downloads 278
3269 Comparison on Electrode and Ground Arrangements Effect on Heat Transfer under Electric Force in a Channel and a Cavity Flow

Authors: Suwimon Saneewong Na Ayuttaya, Chainarong Chaktranond, Phadungsak Rattanadecho

Abstract:

This study numerically investigates the effects of Electrohydrodynamic on flow patterns and heat transfer enhancement within a cavity which is on the lower wall of channel. In this simulation, effects of using ground wire and ground plate on the flow patterns are compared. Moreover, the positions of electrode wire respecting with ground are tested in the range of angles θ = 0 - 180°. High electrical voltage exposes to air is 20 kV. Bulk mean velocity and temperature of inlet air are controlled at 0.1 m/s and 60°C, respectively. The result shows when electric field is applied, swirling flow is appeared in the channel. In addition, swirling flow patterns in the main flow of using ground plate are widely spreader than that of using ground wire. Moreover, direction of swirling flow also affects the flow pattern and heat transfer in a cavity. These cause the using ground wire to give the maximum temperature and heat transfer higher than using ground plate. Furthermore, when the angle is at θ = 60°, high shear flow effect is obtained. This results show high strength of swirling flow and effective heat transfer enhancement.

Keywords: swirling flow, heat transfer, electrohydrodynamic, numerical analysis

Procedia PDF Downloads 292
3268 Optimization of Double-Layered Microchannel Heat Sinks

Authors: Tu-Chieh Hung, Wei-Mon Yan, Xiao-Dong Wang, Yu-Xian Huang

Abstract:

This work employs a combined optimization procedure including a simplified conjugate-gradient method and a three-dimensional fluid flow and heat transfer model to study the optimal geometric parameter design of double-layered microchannel heat sinks. The overall thermal resistance RT is the objective function to be minimized with number of channels, N, the channel width ratio, β, the bottom channel aspect ratio, αb, and upper channel aspect ratio, αu, as the search variables. It is shown that, for the given bottom area (10 mm×10 mm) and heat flux (100 W cm-2), the optimal (minimum) thermal resistance of double-layered microchannel heat sinks is about RT=0.12 ℃/m2W with the corresponding optimal geometric parameters N=73, β=0.50, αb=3.52, and, αu= 7.21 under a constant pumping power of 0.05 W. The optimization process produces a maximum reduction by 52.8% in the overall thermal resistance compared with an initial guess (N=112, β=0.37, αb=10.32 and, αu=10.93). The results also show that the optimal thermal resistance decreases rapidly with the pumping power and tends to be a saturated value afterward. The corresponding optimal values of parameters N, αb, and αu increase while that of β decrease as the pumping power increases. However, further increasing pumping power is not always cost-effective for the application of heat sink designs.

Keywords: optimization, double-layered microchannel heat sink, simplified conjugate-gradient method, thermal resistance

Procedia PDF Downloads 490
3267 Heat Transfer Studies for LNG Vaporization During Underwater LNG Releases

Authors: S. Naveen, V. Sivasubramanian

Abstract:

A modeling theory is proposed to consider the vaporization of LNG during its contact with water following its release from an underwater source. The spillage of LNG underwater can lead to a decrease in the surface temperature of water and subsequent freezing. This can in turn affect the heat flux distribution from the released LNG onto the water surrounding it. The available models predict the rate of vaporization considering the surface of contact as a solid wall, and considering the entire phenomena as a solid-liquid operation. This assumption greatly under-predicted the overall heat transfer on LNG water interface. The vaporization flux would first decrease during the film boiling, followed by an increase during the transition boiling and a steady decrease during the nucleate boiling. A superheat theory is introduced to enhance the accuracy in the prediction of the heat transfer between LNG and water. The work suggests that considering the superheat theory can greatly enhance the prediction of LNG vaporization on underwater releases and also help improve the study of overall thermodynamics.

Keywords: evaporation rate, heat transfer, LNG vaporization, underwater LNG release

Procedia PDF Downloads 439
3266 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation

Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang

Abstract:

Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method are found to be good.

Keywords: convective and radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate

Procedia PDF Downloads 330
3265 Investigation Bubble Growth and Nucleation Rates during the Pool Boiling Heat Transfer of Distilled Water Using Population Balance Model

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian

Abstract:

In this research, the changes in bubbles diameter and number that may occur due to the change in heat flux of pure water during pool boiling process. For this purpose, test equipment was designed and developed to collect test data. The bubbles were graded using Caliper Screen software. To calculate the growth and nucleation rates of bubbles under different fluxes, population balance model was employed. The results show that the increase in heat flux from q=20 kw/m2 to q=102 kw/m2 raised the growth and nucleation rates of bubbles.

Keywords: heat flux, bubble growth, bubble nucleation, population balance model

Procedia PDF Downloads 476
3264 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.

Keywords: reheating furnace, steel slab, radiative heat transfer, WSGGM, emissivity, residence time

Procedia PDF Downloads 287
3263 Power Circuit Schemes in AC Drive is Made by Condition of the Minimum Electric Losses

Authors: M. A. Grigoryev, A. N. Shishkov, D. A. Sychev

Abstract:

The article defines the necessity of choosing the optimal power circuits scheme of the electric drive with field regulated reluctance machine. The specific weighting factors are calculation, the linear regression dependence of specific losses in semiconductor frequency converters are presented depending on the values of the rated current. It is revealed that with increase of the carrier frequency PWM improves the output current waveform, but increases the loss, so you will need depending on the task in a certain way to choose from the carrier frequency. For task of optimization by criterion of the minimum electrical losses regression dependence of the electrical losses in the frequency converter circuit at a frequency of a PWM signal of 0 Hz. The surface optimization criterion is presented depending on the rated output torque of the motor and number of phases. In electric drives with field regulated reluctance machine with at low output power optimization criterion appears to be the worst for multiphase circuits. With increasing output power this trend hold true, but becomes insignificantly different optimal solutions for three-phase and multiphase circuits. This is explained to the linearity of the dependence of the electrical losses from the current.

Keywords: field regulated reluctance machine, the electrical losses, multiphase power circuit, the surface optimization criterion

Procedia PDF Downloads 294