Search results for: ordered logistic regression
3261 Short-Range and Long-Range Ferrimagnetic Order in Fe(Te₁.₅Se₀.₅)O₅Cl
Authors: E. S. Kozlyakova, A. A. Eliseev, A. V. Moskin, A. Y. Akhrorov, P. S. Berdonosov, V. A. Dolgikh, K. N. Denisova, P. Lemmens, B. Rahaman, S. Das, T. Saha-Dasgupta, A. N. Vasiliev, O. S. Volkova
Abstract:
Considerable attention has been paid recently to FeTe₂O₅Cl due to reduced dimensionality and frustration in the magnetic subsystem, succession of phase transitions, and multiferroicity. The efforts to grow its selenite sibling resulted in mixed halide compound, Fe(Te₁.₅Se₀.₅)O₅Cl, which was found crystallizing in a new structural type and possessing properties drastically different from those of a parent system. Hereby we report the studies of magnetization M and specific heat Cₚ, combined with Raman spectroscopy and density functional theory calculations in Fe(Te₁.₅Se₀.₅)O₅Cl. Its magnetic subsystem features weakly coupled Fe³⁺ - Fe³⁺ dimers showing the regime of short-range correlations at TM ~ 70 K and long-range order at TN = 22 K. In a magnetically ordered state, sizable spin-orbital interactions lead to a small canting of Fe³⁺ moments. The density functional theory calculations of leading exchange interactions were found in agreement with measurements of thermodynamic properties and Raman spectroscopy. Besides, because of the relatively large magnetic moment of the Fe³⁺ ion, we found that magnetic dipole-dipole interactions contribute significantly to experimentally observed orientation of magnetization easy axis in ac-plane. As a conclusion, we suggest a model of magnetic subsystem in magnetically ordered state of Fe(Te₁.₅Se₀.₅)O₅Cl based on a model of interacting dimers.Keywords: dipole-dipole interactions, low dimensional magnetism, selenite, spin canting
Procedia PDF Downloads 1673260 Modeling Standpipe Pressure Using Multivariable Regression Analysis by Combining Drilling Parameters and a Herschel-Bulkley Model
Authors: Seydou Sinde
Abstract:
The aims of this paper are to formulate mathematical expressions that can be used to estimate the standpipe pressure (SPP). The developed formulas take into account the main factors that, directly or indirectly, affect the behavior of SPP values. Fluid rheology and well hydraulics are some of these essential factors. Mud Plastic viscosity, yield point, flow power, consistency index, flow rate, drillstring, and annular geometries are represented by the frictional pressure (Pf), which is one of the input independent parameters and is calculated, in this paper, using Herschel-Bulkley rheological model. Other input independent parameters include the rate of penetration (ROP), applied load or weight on the bit (WOB), bit revolutions per minute (RPM), bit torque (TRQ), and hole inclination and direction coupled in the hole curvature or dogleg (DL). The technique of repeating parameters and Buckingham PI theorem are used to reduce the number of the input independent parameters into the dimensionless revolutions per minute (RPMd), the dimensionless torque (TRQd), and the dogleg, which is already in the dimensionless form of radians. Multivariable linear and polynomial regression technique using PTC Mathcad Prime 4.0 is used to analyze and determine the exact relationships between the dependent parameter, which is SPP, and the remaining three dimensionless groups. Three models proved sufficiently satisfactory to estimate the standpipe pressure: multivariable linear regression model 1 containing three regression coefficients for vertical wells; multivariable linear regression model 2 containing four regression coefficients for deviated wells; and multivariable polynomial quadratic regression model containing six regression coefficients for both vertical and deviated wells. Although that the linear regression model 2 (with four coefficients) is relatively more complex and contains an additional term over the linear regression model 1 (with three coefficients), the former did not really add significant improvements to the later except for some minor values. Thus, the effect of the hole curvature or dogleg is insignificant and can be omitted from the input independent parameters without significant losses of accuracy. The polynomial quadratic regression model is considered the most accurate model due to its relatively higher accuracy for most of the cases. Data of nine wells from the Middle East were used to run the developed models with satisfactory results provided by all of them, even if the multivariable polynomial quadratic regression model gave the best and most accurate results. Development of these models is useful not only to monitor and predict, with accuracy, the values of SPP but also to early control and check for the integrity of the well hydraulics as well as to take the corrective actions should any unexpected problems appear, such as pipe washouts, jet plugging, excessive mud losses, fluid gains, kicks, etc.Keywords: standpipe, pressure, hydraulics, nondimensionalization, parameters, regression
Procedia PDF Downloads 843259 Hepatitis B Vaccination Status and Its Determinants among Primary Health Care Workers in Northwest Pakistan
Authors: Mohammad Tahir Yousafzai, Rubina Qasim
Abstract:
We assessed Hepatitis B vaccination and its determinants among health care workers (HCW) in Northwest Pakistan. HCWs from both public and private clinics were interviewed about hepatitis B vaccination, socio-demographic, hepatitis B virus transmission modes, disease threat and benefits of vaccination. Logistic regression was performed. Hepatitis B vaccination was 40% (Qualified Physicians: 86% and non-qualified Dispensers:16%). Being Qualified Physician (Adj. OR 26.6; 95%CI 9.3-73.2), Non-qualified Physician (Adj.OR 1.9; 95%CI 0.8-4.6), qualified Dispensers (Adj. OR 3.6; 95%CI 1.3-9.5) compared to non-qualified Dispensers, working in public clinics (Adj. OR 2.5; 95%CI 1.1-5.7) compared to private, perceived disease threat after exposure to blood and body fluids (Adj. OR 1.1; 95%CI 1.1-1.2) and perceived benefits of vaccination (Adj. OR 1.1; 95%CI 1.1-1.2) were significant predictors of hepatitis B vaccination. Improved perception of disease threat and benefits of vaccination and qualification of HCWs are associated with hepatitis B vaccination.Keywords: Hepatitis B vaccine, immunization, healthcare workers, primary health
Procedia PDF Downloads 3183258 Estimation of Functional Response Model by Supervised Functional Principal Component Analysis
Authors: Hyon I. Paek, Sang Rim Kim, Hyon A. Ryu
Abstract:
In functional linear regression, one typical problem is to reduce dimension. Compared with multivariate linear regression, functional linear regression is regarded as an infinite-dimensional case, and the main task is to reduce dimensions of functional response and functional predictors. One common approach is to adapt functional principal component analysis (FPCA) on functional predictors and then use a few leading functional principal components (FPC) to predict the functional model. The leading FPCs estimated by the typical FPCA explain a major variation of the functional predictor, but these leading FPCs may not be mostly correlated with the functional response, so they may not be significant in the prediction for response. In this paper, we propose a supervised functional principal component analysis method for a functional response model with FPCs obtained by considering the correlation of the functional response. Our method would have a better prediction accuracy than the typical FPCA method.Keywords: supervised, functional principal component analysis, functional response, functional linear regression
Procedia PDF Downloads 773257 Determinants of Stone Free Status After a Single Session of Flexible Ureteroscopy with Laser Lithotripsy for Renal Calculi
Authors: Mohamed Elkoushy, Sameer Munshi, Waseem Tayeb
Abstract:
Background: Flexible ureteroscopy (fURS) has dramatically improved the minimally invasive management of complex nephrolithiasis. fUR is increasingly being used as the first-line treatment for patients with renal stones. Stone-free status (SFS) is the primary goal in the management of patients with urolithiasis. However, substantial variations exist in the reported SFS following fURS. Objectives: This study determines the predictors of SFS after a single session of fURS with holmium laser lithotripsy (HLL) for renal calculi. Methods: A retrospective review of prospectively collected data was performed for all consecutive patients undergoing fURS and HLL for renal calculi at a tertiary care center. Patients with previous ipsilateral URS for the same stones were excluded. All patients underwent JJ ureteral stent insertion at the end of the procedure. SFS was defined as the presence of no residuals or ≤4-mm non-obstructing stone and was assessed by CT/KUB imaging after 3-4 weeks post-operatively. Multivariate logistic regression was used to detect possible predictors of SFS. Results: A total of 212 patients were included with a mean age of 52.3±8.3 years and a stone burden <20 mm (49.1%), 20-30 mm (41.0%) and >30 mm (9.9%). Overall SFS after a single session of fURS was 71.7%, 92% and 52% for stones less and larger than 20 mm, respectively. Patients with stones> 20 mm need retreatment with a mean number of 1.8 (1.3-2.7) fURS. SFS was significantly associated with male gender, stone bulk <20 mm (95.7% vs. 56.2%), non-lower pole stones, hydronephrotic kidney, low stone intensity, ureteral access sheath, and preoperative stenting. SFS was associated with a lower readmission rate (5.9% vs. 38.9%) and urinary tract infections (3.8% vs. 25.9%). In multivariate regression analysis, SFS maintains its significant association with low stone burden of <20 mm (OR: 5.21), stone intensity <600 HFU (OR: 2.87), and non-lower caliceal stones (OR: 3.84). Conclusion: Best results after a single-session fURS for renal stone were obtained for the stone burden of less than 20 mm and low stone attenuation. Lower calyceal stones may influence stone clearance and need a different approach than fURS, especially for higher stone burden.Keywords: ureteroscopy, kidney stone, lithotripsy, stone-free, predictors
Procedia PDF Downloads 193256 Illustrative Effects of Social Capital on Perceived Health Status and Quality of Life among Older Adult in India: Evidence from WHO-Study on Global AGEing and Adults Health India
Authors: Himansu, Bedanga Talukdar
Abstract:
The aim of present study is to investigate the prevalence of various health outcomes and quality of life and analyzes the moderating role of social capital on health outcomes (i.e., self-rated good health (SRH), depression, functional health and quality of life) among elderly in India. Using WHO Study on Global AGEing and adults health (SAGE) data, with sample of 6559 elderly between 50 and above (Mage=61.81, SD=9.00) age were selected for analysis. Multivariate analysis accessed the prevalence of SRH, depression, functional limitation and quality of life among older adults. Logistic regression evaluates the effect of social capital along with other co-founders on SRH, depression, and functional limitation, whereas linear regression evaluates the effect of social capital with other co-founders on quality of life (QoL) among elderly. Empirical results reveal that (74%) of respondents were married, (70%) having low social action, (46%) medium sociability, (45%) low trust-solidarity, (58%) high safety, (65%) medium civic engagement and 37% reported medium psychological resources. The multivariate analysis, explains (SRH) is associated with age, female, having education, higher social action great trust, safety and greater psychological resources. Depression among elderly is greatly related to age, sex, education and higher wealth, higher sociability, having psychological resources. QoL is negatively associated with age, sex, being Muslim, whereas positive associated with higher education, currently married, civic engagement, having wealth, social action, trust and solidarity, safeness, and strong psychological resources.Keywords: depressive symptom, functional limitation, older adults, quality of life, self rated health, social capital
Procedia PDF Downloads 2253255 The Effect of Artificial Intelligence on Construction Development
Authors: Shady Gamal Aziz Shehata
Abstract:
Difficulty in defining construction quality arises due to perception based on the nature and requirements of the market, the different partners themselves and the results they want. Quantitative research was used in this constructivist research. A case-based study was conducted to assess the structures of positive attitudes and expectations in the context of quality improvement. A survey based on expert opinions was analyzed among construction organizations/companies operating in the construction industry in Pakistan. The financial strength, management structure and construction experience of the construction companies formed the basis of their selection. A good concept is visible at the project level and is seen as the most valuable part of the construction project. Each quality improvement technique was expected to increase the user's profits by improving the efficiency of the construction project. The Survey is useful for construction professionals to evaluate current construction concepts and expectations for the application of quality improvement techniques in construction projects.Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety construction quality, expectation, improvement, perception
Procedia PDF Downloads 613254 Analyzing the Influence of Hydrometeorlogical Extremes, Geological Setting, and Social Demographic on Public Health
Authors: Irfan Ahmad Afip
Abstract:
This main research objective is to accurately identify the possibility for a Leptospirosis outbreak severity of a certain area based on its input features into a multivariate regression model. The research question is the possibility of an outbreak in a specific area being influenced by this feature, such as social demographics and hydrometeorological extremes. If the occurrence of an outbreak is being subjected to these features, then the epidemic severity for an area will be different depending on its environmental setting because the features will influence the possibility and severity of an outbreak. Specifically, this research objective was three-fold, namely: (a) to identify the relevant multivariate features and visualize the patterns data, (b) to develop a multivariate regression model based from the selected features and determine the possibility for Leptospirosis outbreak in an area, and (c) to compare the predictive ability of multivariate regression model and machine learning algorithms. Several secondary data features were collected locations in the state of Negeri Sembilan, Malaysia, based on the possibility it would be relevant to determine the outbreak severity in the area. The relevant features then will become an input in a multivariate regression model; a linear regression model is a simple and quick solution for creating prognostic capabilities. A multivariate regression model has proven more precise prognostic capabilities than univariate models. The expected outcome from this research is to establish a correlation between the features of social demographic and hydrometeorological with Leptospirosis bacteria; it will also become a contributor for understanding the underlying relationship between the pathogen and the ecosystem. The relationship established can be beneficial for the health department or urban planner to inspect and prepare for future outcomes in event detection and system health monitoring.Keywords: geographical information system, hydrometeorological, leptospirosis, multivariate regression
Procedia PDF Downloads 1173253 Detecting Cyberbullying, Spam and Bot Behavior and Fake News in Social Media Accounts Using Machine Learning
Authors: M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, Kavinga Yapa Abeywardena, Deemantha Siriwardana
Abstract:
Due to the growing popularity of social media platforms at present, there are various concerns, mostly cyberbullying, spam, bot accounts, and the spread of incorrect information. To develop a risk score calculation system as a thorough method for deciphering and exposing unethical social media profiles, this research explores the most suitable algorithms to our best knowledge in detecting the mentioned concerns. Various multiple models, such as Naïve Bayes, CNN, KNN, Stochastic Gradient Descent, Gradient Boosting Classifier, etc., were examined, and the best results were taken into the development of the risk score system. For cyberbullying, the Logistic Regression algorithm achieved an accuracy of 84.9%, while the spam-detecting MLP model gained 98.02% accuracy. The bot accounts identifying the Random Forest algorithm obtained 91.06% accuracy, and 84% accuracy was acquired for fake news detection using SVM.Keywords: cyberbullying, spam behavior, bot accounts, fake news, machine learning
Procedia PDF Downloads 403252 Ordered Mesoporous Carbons of Different Morphology for Loading and Controlled Release of Active Pharmaceutical Ingredients
Authors: Aleksander Ejsmont, Aleksandra Galarda, Joanna Goscianska
Abstract:
Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, chemical, and thermal stability, mesoporous carbons can be considered as modern carriers for active pharmaceutical ingredients (APIs) whose effectiveness needs frequent dosing algorithms. Such an API-carrier system, if programmed precisely, may stabilize the pharmaceutical and increase its dissolution leading to enhanced bioavailability. The substance conjugated with the material, through its prior adsorption, can later be successfully applied internally to the organism, as well as externally if the API release is feasible under these conditions. In the present study, ordered mesoporous carbons of different morphologies and structures, prepared by hard template method, were applied as carriers in the adsorption and controlled release of active pharmaceutical ingredients. In the first stage, the carbon materials were synthesized and functionalized with carboxylic groups by chemical oxidation using ammonium persulfate solution and then with amine groups. Materials obtained were thoroughly characterized with respect to morphology (scanning electron microscopy), structure (X-ray diffraction, transmission electron microscopy), characteristic functional groups (FT-IR spectroscopy), acid-base nature of surface groups (Boehm titration), parameters of the porous structure (low-temperature nitrogen adsorption) and thermal stability (TG analysis). This was followed by a series of tests of adsorption and release of paracetamol, benzocaine, and losartan potassium. Drug release experiments were performed in the simulated gastric fluid of pH 1.2 and phosphate buffer of pH 7.2 or 6.8 at 37.0 °C. The XRD patterns in the small-angle range and TEM images revealed that functionalization of mesoporous carbons with carboxylic or amine groups leads to the decreased ordering of their structure. Moreover, the modification caused a considerable reduction of the carbon-specific surface area and pore volume, but it simultaneously resulted in changing their acid-base properties. Mesoporous carbon materials exhibit different morphologies, which affect the host-guest interactions during the adsorption process of active pharmaceutical ingredients. All mesoporous carbons show high adsorption capacity towards drugs. The sorption capacity of materials is mainly affected by BET surface area and the structure/size matching between adsorbent and adsorbate. Selected APIs are linked to the surface of carbon materials mainly by hydrogen bonds, van der Waals forces, and electrostatic interactions. The release behavior of API is highly dependent on the physicochemical properties of mesoporous carbons. The release rate of APIs could be regulated by the introduction of functional groups and by changing the pH of the receptor medium. Acknowledgments—This research was supported by the National Science Centre, Poland (project SONATA-12 no: 2016/23/D/NZ7/01347).Keywords: ordered mesoporous carbons, sorption capacity, drug delivery, carbon nanocarriers
Procedia PDF Downloads 1773251 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates
Authors: S. Dey, T. Mukhopadhyay, S. Adhikari
Abstract:
This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification
Procedia PDF Downloads 5143250 Efficient Model Selection in Linear and Non-Linear Quantile Regression by Cross-Validation
Authors: Yoonsuh Jung, Steven N. MacEachern
Abstract:
Check loss function is used to define quantile regression. In the prospect of cross validation, it is also employed as a validation function when underlying truth is unknown. However, our empirical study indicates that the validation with check loss often leads to choosing an over estimated fits. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. It has a large effect of guarding against over fitted model in some extent. Through various simulation settings of linear and non-linear regressions, the improvement of check loss by L2 adjustment is empirically examined. This adjustment is devised to shrink to zero as sample size grows.Keywords: cross-validation, model selection, quantile regression, tuning parameter selection
Procedia PDF Downloads 4383249 Personalty Traits as Predictors of Emotional Distress among Awaiting-trials Inmates in Some Selected Correctional Centers in Nigeria
Authors: Fasanmi Samuel Sunday
Abstract:
This study investigated the influence of gender and personality traits on emotional distress among awaiting trial inmates in Nigeria. Participants were three hundred and twenty (320) awaiting trial inmates, drawn from three main correctional centres in Northeast Nigeria, namely: Gashua Correctional Centre, Postiskum Correctional Centre, and Bauchi Correctional Centre. Expo facto research design was adopted. Questionnaires such as the Big Five Inventory and the Perceived Emotional Distress Inventory (PEDI) were used to measure the variables of the study. Three hypotheses were tested. Logistic regression was used for data analysis. Results of the analysis indicated that conscientiousness significantly predicted emotional distress among awaiting trial inmates. However, most of the identified personality traits did not significantly predict emotional distress among awaiting trial inmates. There was no significant gender difference in emotional distress among awaiting-trial inmates. The implications of the study were discussed.Keywords: personality traits, emotional distress, awaiting-trial inmates, gender
Procedia PDF Downloads 1003248 Machine Learning Automatic Detection on Twitter Cyberbullying
Authors: Raghad A. Altowairgi
Abstract:
With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost
Procedia PDF Downloads 1323247 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes
Authors: L. S. Chathurika
Abstract:
Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.Keywords: algorithm, classification, evaluation, features, testing, training
Procedia PDF Downloads 1193246 A Predictive Machine Learning Model of the Survival of Female-led and Co-Led Small and Medium Enterprises in the UK
Authors: Mais Khader, Xingjie Wei
Abstract:
This research sheds light on female entrepreneurs by providing new insights on the survival predictions of companies led by females in the UK. This study aims to build a predictive machine learning model of the survival of female-led & co-led small & medium enterprises (SMEs) in the UK over the period 2000-2020. The predictive model built utilised a combination of financial and non-financial features related to both companies and their directors to predict SMEs' survival. These features were studied in terms of their contribution to the resultant predictive model. Five machine learning models are used in the modelling: Decision tree, AdaBoost, Naïve Bayes, Logistic regression and SVM. The AdaBoost model had the highest performance of the five models, with an accuracy of 73% and an AUC of 80%. The results show high feature importance in predicting companies' survival for company size, management experience, financial performance, industry, region, and females' percentage in management.Keywords: company survival, entrepreneurship, females, machine learning, SMEs
Procedia PDF Downloads 1013245 Wealth-Based Inequalities in Child Health: A Micro-Level Analysis of Maharashtra State in India
Abstract:
The study examines the degree and magnitude of wealth-based inequalities in child health and its determinants in India. Despite making strides in economic growth, India has failed to secure a better nutritional status for all the children. The country currently faces the double burden of malnutrition as well as the problems of overweight and obesity. Child malnutrition, obesity, unsafe water, sanitation among others are identified as the risk factors for Non-Communicable Diseases (NCDs). Eliminating malnutrition in all its forms will catalyse improved health and economic outcomes. The assessment of the distributive dimension of child health across various segments of the population is essential for effective policy intervention. The study utilises the fourth round of District Level Health Survey for 2012-13 to analyse the inequalities among children in the age group 0-14 years in Maharashtra, a state in the western region of India with a population of 11.24 crores which constitutes 9.3 percent of the total population of India. The study considers the extent of health inequality by state, districts, sector, age-groups, and gender. The z-scores of four child health outcome variables are computed to assess the nutritional status of pre-school and school children using WHO reference. The descriptive statistics, concentration curves, concentration indices, correlation matrix, logistic regression have been used to analyse the data. The results indicate that magnitude of inequality is higher in Maharashtra and child health inequalities manifest primarily among the weaker sections of society. The concentration curves show that there exists a pro-poor inequality in child malnutrition measured by stunting, wasting, underweight, anaemia and a pro-rich overweight inequality. The inequalities in anaemia are observably lower due to the widespread prevalence. Rural areas exhibit a higher incidence of malnutrition, but greater inequality is observed in the urban areas. Overall, the wealth-based inequalities do not vary significantly between age groups. It appears that there is no gender discrimination at the state level. Further, rural-urban differentials in gender show that boys from the rural area and girls living in the urban region experience higher disparities in health. The relative distribution of undernutrition across districts in Maharashtra reveals that malnutrition is rampant and considerable heterogeneity also exists. A negative correlation is established between malnutrition prevalence and human development indicators. The findings of logistic regression analysis reveal that lower economic status of the household is associated with a higher probability of being malnourished. The study recognises household wealth, education of the parent, child gender, and household size as factors significantly related to malnutrition. The results suggest that among the supply-side variables, child-oriented government programmes might be beneficial in tackling nutrition deficit. In order to bridge the health inequality gap, the government needs to target the schemes better and should expand the coverage of services.Keywords: child health, inequality, malnutrition, obesity
Procedia PDF Downloads 1483244 The Relationship between Class Attendance and Performance of Industrial Engineering Students Enrolled for a Statistics Subject at the University of Technology
Authors: Tshaudi Motsima
Abstract:
Class attendance is key at all levels of education. At tertiary level many students develop a tendency of not attending all classes without being aware of the repercussions of not attending all classes. It is important for all students to attend all classes as they can receive first-hand information and they can benefit more. The student who attends classes is likely to perform better academically than the student who does not. The aim of this paper is to assess the relationship between class attendance and academic performance of industrial engineering students. The data for this study were collected through the attendance register of students and the other data were accessed from the Integrated Tertiary Software and the Higher Education Data Analyzer Portal. Data analysis was conducted on a sample of 93 students. The results revealed that students with medium predicate scores (OR = 3.8; p = 0.027) and students with low predicate scores (OR = 21.4, p < 0.001) were significantly likely to attend less than 80% of the classes as compared to students with high predicate scores. Students with examination performance of less than 50% were likely to attend less than 80% of classes than students with examination performance of 50% and above, but the differences were not statistically significant (OR = 1.3; p = 0.750).Keywords: class attendance, examination performance, final outcome, logistic regression
Procedia PDF Downloads 1343243 Regret-Regression for Multi-Armed Bandit Problem
Authors: Deyadeen Ali Alshibani
Abstract:
In the literature, the multi-armed bandit problem as a statistical decision model of an agent trying to optimize his decisions while improving his information at the same time. There are several different algorithms models and their applications on this problem. In this paper, we evaluate the Regret-regression through comparing with Q-learning method. A simulation on determination of optimal treatment regime is presented in detail.Keywords: optimal, bandit problem, optimization, dynamic programming
Procedia PDF Downloads 4533242 The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models
Authors: Jihye Jeon
Abstract:
This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.Keywords: multiple regression, path analysis, structural equation models, statistical modeling, social and psychological phenomenon
Procedia PDF Downloads 6583241 QSRR Analysis of 17-Picolyl and 17-Picolinylidene Androstane Derivatives Based on Partial Least Squares and Principal Component Regression
Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković
Abstract:
There are several methods for determination of the lipophilicity of biologically active compounds, however chromatography has been shown as a very suitable method for this purpose. Chromatographic (C18-RP-HPLC) analysis of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives was carried out. The obtained retention indices (logk, methanol (90%) / water (10%)) were correlated with calculated physicochemical and lipophilicity descriptors. The QSRR analysis was carried out applying principal component regression (PCR) and partial least squares regression (PLS). The PCR and PLS model were selected on the basis of the highest variance and the lowest root mean square error of cross-validation. The obtained PCR and PLS model successfully correlate the calculated molecular descriptors with logk parameter indicating the significance of the lipophilicity of compounds in chromatographic process. On the basis of the obtained results it can be concluded that the obtained logk parameters of the analyzed androstane derivatives can be considered as their chromatographic lipophilicity. These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1105.Keywords: androstane derivatives, chromatography, molecular structure, principal component regression, partial least squares regression
Procedia PDF Downloads 2773240 Detecting Earnings Management via Statistical and Neural Networks Techniques
Authors: Mohammad Namazi, Mohammad Sadeghzadeh Maharluie
Abstract:
Predicting earnings management is vital for the capital market participants, financial analysts and managers. The aim of this research is attempting to respond to this query: Is there a significant difference between the regression model and neural networks’ models in predicting earnings management, and which one leads to a superior prediction of it? In approaching this question, a Linear Regression (LR) model was compared with two neural networks including Multi-Layer Perceptron (MLP), and Generalized Regression Neural Network (GRNN). The population of this study includes 94 listed companies in Tehran Stock Exchange (TSE) market from 2003 to 2011. After the results of all models were acquired, ANOVA was exerted to test the hypotheses. In general, the summary of statistical results showed that the precision of GRNN did not exhibit a significant difference in comparison with MLP. In addition, the mean square error of the MLP and GRNN showed a significant difference with the multi variable LR model. These findings support the notion of nonlinear behavior of the earnings management. Therefore, it is more appropriate for capital market participants to analyze earnings management based upon neural networks techniques, and not to adopt linear regression models.Keywords: earnings management, generalized linear regression, neural networks multi-layer perceptron, Tehran stock exchange
Procedia PDF Downloads 4243239 Role of P53, KI67 and Cyclin a Immunohistochemical Assay in Predicting Wilms’ Tumor Mortality
Authors: Ahmed Atwa, Ashraf Hafez, Mohamed Abdelhameed, Adel Nabeeh, Mohamed Dawaba, Tamer Helmy
Abstract:
Introduction and Objective: Tumour staging and grading do not usually reflect the future behavior of Wilms' tumor (WT) regarding mortality. Therefore, in this study, P53, Ki67 and cyclin A immunohistochemistry were used in a trial to predict WT cancer-specific survival (CSS). Methods: In this nonconcurrent cohort study, patients' archived data, including age at presentation, gender, history, clinical examination and radiological investigations, were retrieved then the patients were reviewed at the outpatient clinic of a tertiary care center by history-taking, clinical examination and radiological investigations to detect the oncological outcome. Cases that received preoperative chemotherapy or died due to causes other than WT were excluded. Formalin-fixed, paraffin-embedded specimens obtained from the previously preserved blocks at the pathology laboratory were taken on positively charged slides for IHC with p53, Ki67 and cyclin A. All specimens were examined by an experienced histopathologist devoted to the urological practice and blinded to the patient's clinical findings. P53 and cyclin A staining were scored as 0 (no nuclear staining),1 (<10% nuclear staining), 2 (10-50% nuclear staining) and 3 (>50% nuclear staining). Ki67 proliferation index (PI) was graded as low, borderline and high. Results: Of the 75 cases, 40 (53.3%) were males and 35 (46.7%) were females, and the median age was 36 months (2-216). With a mean follow-up of 78.6±31 months, cancer-specific mortality (CSM) occurred in 15 (20%) and 11 (14.7%) patients, respectively. Kaplan-Meier curve was used for survival analysis, and groups were compared using the Log-rank test. Multivariate logistic regression and Cox regression were not used because only one variable (cyclin A) had shown statistical significance (P=.02), whereas the other significant factor (residual tumor) had few cases. Conclusions: Cyclin A IHC should be considered as a marker for the prediction of WT CSS. Prospective studies with a larger sample size are needed.Keywords: wilms’ tumour, nephroblastoma, urology, survival
Procedia PDF Downloads 673238 Time Fetching Water and Maternal Childcare Practices: Comparative Study of Women with Children Living in Ethiopia and Malawi
Authors: Davod Ahmadigheidari, Isabel Alvarez, Kate Sinclair, Marnie Davidson, Patrick Cortbaoui, Hugo Melgar-Quiñonez
Abstract:
The burden of collecting water tends to disproportionately fall on women and girls in low-income countries. Specifically, women spend between one to eight hours per day fetching water for domestic use in Sub-Saharan Africa. While there has been research done on the global time burden for collecting water, it has been mainly focused on water quality parameters; leaving the relationship between water fetching and health outcomes understudied. There is little available evidence regarding the relationship between water fetching and maternal child care practices. The main objective of this study was to help fill the aforementioned gap in the literature. Data from two surveys in Ethiopia and Malawi conducted by CARE Canada in 2016-2017 were used. Descriptive statistics indicate that women were predominantly responsible for collecting water in both Ethiopia (87%) and Malawi (99%) respectively, with the majority spending more than 30 minutes per day on water collection. With regards to child care practices, in both countries, breastfeeding was relatively high (77% and 82%, respectively); and treatment for malnutrition was low (15% and 8%, respectively). However, the same consistency was not found for weighing; in Ethiopia only 16% took their children for weighting in contrast to 94% in Malawi. These three practices were summed to create one variable for regressions analyses. Unadjusted logistic regression findings showed that only in Ethiopia was time fetching water significantly associated with child care practices. Once adjusted for covariates, this relationship was no longer found to be significant. Adjusted logistic regressions also showed that the factors that did influence child care practices differed slightly between the two countries. In Ethiopia, a lack of access to community water supply (OR= 0.668; P=0.010), poor attitudes towards gender equality (OR= 0.608; P=0.001), no access to land and (OR=0.603; P=0.000), significantly decreased a women’s odd of using positive childcare practices. Notably, being young women between 15-24 years (OR=2.308; P=0.017), and 25-29 (OR=2.065; P=0.028) increased probability of using positive childcare practices. Whereas in Malawi, higher maternal age, low decision-making power, significantly decreased a women’s odd of using positive childcare practices. In conclusion, this study found that even though amount of time spent by women fetching water makes a difference for childcare practices, it is not significantly related to women’s child care practices when controlling the covariates. Importantly, women’s age contributes to child care practices in Ethiopia and Malawi.Keywords: time fetching water, community water supply, women’s child care practices, Ethiopia, Malawi
Procedia PDF Downloads 2033237 Study of the Association between Salivary Microbiological Data, Oral Health Indicators, Behavioral Factors, and Social Determinants among Post-COVID Patients Aged 7 to 12 Years in Tbilisi City
Authors: Lia Mania, Ketevan Nanobashvili
Abstract:
Background: The coronavirus disease COVID-19 has become the cause of a global health crisis during the current pandemic. This study aims to fill the paucity of epidemiological studies on the impact of COVID-19 on the oral health of pediatric populations. Methods: It was conducted an observational, cross-sectional study in Georgia, in Tbilisi (capital of Georgia), among 7 to 12-year-old PCR or rapid test-confirmed post-Covid populations in all districts of Tbilisi (10 districts in total). 332 beneficiaries who were infected with Covid within one year were included in the study. The population was selected in schools of Tbilisi according to the principle of cluster selection. A simple random selection took place in the selected clusters. According to this principle, an equal number of beneficiaries were selected in all districts of Tbilisi. By July 1, 2022, according to National Center for Disease Control and Public Health data (NCDC.Ge), the number of test-confirmed cases in the population aged 0-18 in Tbilisi was 115137 children (17.7% of all confirmed cases). The number of patients to be examined was determined by the sample size. Oral screening, microbiological examination of saliva, and administration of oral health questionnaires to guardians were performed. Statistical processing of data was done with SPSS-23. Risk factors were estimated by odds ratio and logistic regression with 95% confidence interval. Results: Statistically reliable differences between the averages of oral health indicators in asymptomatic and symptomatic covid-infected groups are: for caries intensity (DMF+def) t=4.468 and p=0.000, for modified gingival index (MGI) t=3.048, p=0.002, for simplified oral hygiene index (S-OHI) t=4.853; p=0.000. Symptomatic covid-infection has a reliable effect on the oral microbiome (Staphylococcus aureus, Candida albicans, Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus epidermalis); (n=332; 77.3% vs n=332; 58.0%; OR=2.46, 95%CI: 1.318-4.617). According to the logistic regression, it was found that the severity of the covid infection has a significant effect on the frequency of pathogenic and conditionally pathogenic bacteria in the oral cavity B=0.903 AOR=2.467 (CL 1.318-4.617). Symptomatic covid-infection affects oral health indicators, regardless of the presence of other risk factors, such as parental employment status, tooth brushing behaviors, carbohydrate meal, fruit consumption. (p<0.05). Conclusion: Risk factors (parental employment status, tooth brushing behaviors, carbohydrate consumption) were associated with poorer oral health status in a post-Covid population of 7- to 12-year-old children. However, such a risk factor as symptomatic ongoing covid-infection affected the oral microbiome in terms of the abundant growth of pathogenic and conditionally pathogenic bacteria (Staphylococcus aureus, Candida albicans, Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus epidermalis) and further worsened oral health indicators. Thus, a close association was established between symptomatic covid-infection and microbiome changes in the post-covid period; also - between the variables of oral health indicators and the symptomatic course of covid-infection.Keywords: oral microbiome, COVID-19, population based research, oral health indicators
Procedia PDF Downloads 703236 Social Media Marketing Efforts and Hospital Brand Equity: An Empirical Investigation
Authors: Abrar R. Al-Hasan
Abstract:
Despite the widespread use of social media by consumers and marketers, empirical research investigating their economic value in the healthcare industry still lags. This study explores the impact of the use of social media marketing efforts on a hospital's brand equity and, ultimately, consumer response. Using social media data from Twitter and Facebook, along with an online and offline survey methodology, data is analyzed using logistic regression models. A random sample of (728) residents of the Kuwaiti population is used. The results of this study found that social media marketing efforts (SMME) in terms of use and validation lead to higher hospital brand equity and in turn, patient loyalty and patient visit. The study highlights the impact of SMME on hospital brand equity and patient response. Healthcare organizations should guide their marketing efforts to better manage this new way of marketing and communicating with patients to enhance their consumer loyalty and financial performance.Keywords: brand equity, healthcare marketing, patient visit, social media, SMME
Procedia PDF Downloads 1733235 Generalized Additive Model Approach for the Chilean Hake Population in a Bio-Economic Context
Authors: Selin Guney, Andres Riquelme
Abstract:
The traditional bio-economic method for fisheries modeling uses some estimate of the growth parameters and the system carrying capacity from a biological model for the population dynamics (usually a logistic population growth model) which is then analyzed as a traditional production function. The stock dynamic is transformed into a revenue function and then compared with the extraction costs to estimate the maximum economic yield. In this paper, the logistic population growth model for the population is combined with a forecast of the abundance and location of the stock by using a generalized additive model approach. The paper focuses on the Chilean hake population. This method allows for the incorporation of climatic variables and the interaction with other marine species, which in turn will increase the reliability of the estimates and generate better extraction paths for different conservation objectives, such as the maximum biological yield or the maximum economic yield.Keywords: bio-economic, fisheries, GAM, production
Procedia PDF Downloads 2523234 Scoring System for the Prognosis of Sepsis Patients in Intensive Care Units
Authors: Javier E. García-Gallo, Nelson J. Fonseca-Ruiz, John F. Duitama-Munoz
Abstract:
Sepsis is a syndrome that occurs with physiological and biochemical abnormalities induced by severe infection and carries a high mortality and morbidity, therefore the severity of its condition must be interpreted quickly. After patient admission in an intensive care unit (ICU), it is necessary to synthesize the large volume of information that is collected from patients in a value that represents the severity of their condition. Traditional severity of illness scores seeks to be applicable to all patient populations, and usually assess in-hospital mortality. However, the use of machine learning techniques and the data of a population that shares a common characteristic could lead to the development of customized mortality prediction scores with better performance. This study presents the development of a score for the one-year mortality prediction of the patients that are admitted to an ICU with a sepsis diagnosis. 5650 ICU admissions extracted from the MIMICIII database were evaluated, divided into two groups: 70% to develop the score and 30% to validate it. Comorbidities, demographics and clinical information of the first 24 hours after the ICU admission were used to develop a mortality prediction score. LASSO (least absolute shrinkage and selection operator) and SGB (Stochastic Gradient Boosting) variable importance methodologies were used to select the set of variables that make up the developed score; each of this variables was dichotomized and a cut-off point that divides the population into two groups with different mean mortalities was found; if the patient is in the group that presents a higher mortality a one is assigned to the particular variable, otherwise a zero is assigned. These binary variables are used in a logistic regression (LR) model, and its coefficients were rounded to the nearest integer. The resulting integers are the point values that make up the score when multiplied with each binary variables and summed. The one-year mortality probability was estimated using the score as the only variable in a LR model. Predictive power of the score, was evaluated using the 1695 admissions of the validation subset obtaining an area under the receiver operating characteristic curve of 0.7528, which outperforms the results obtained with Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS) and Simplified Acute Physiology Score II (SAPSII) scores on the same validation subset. Observed and predicted mortality rates within estimated probabilities deciles were compared graphically and found to be similar, indicating that the risk estimate obtained with the score is close to the observed mortality, it is also observed that the number of events (deaths) is indeed increasing as the outcome go from the decile with the lowest probabilities to the decile with the highest probabilities. Sepsis is a syndrome that carries a high mortality, 43.3% for the patients included in this study; therefore, tools that help clinicians to quickly and accurately predict a worse prognosis are needed. This work demonstrates the importance of customization of mortality prediction scores since the developed score provides better performance than traditional scoring systems.Keywords: intensive care, logistic regression model, mortality prediction, sepsis, severity of illness, stochastic gradient boosting
Procedia PDF Downloads 2233233 Antecedents of Spinouts: Technology Relatedness, Intellectual Property Rights, and Venture Capital
Authors: Sepideh Yeganegi, Andre Laplume, Parshotam Dass, Cam-Loi Huynh
Abstract:
This paper empirically examines organizational and institutional antecedents of entrepreneurial entry. We employ multi-level logistic regression modelling methods on a sub-sample of the Global Entrepreneurship Monitor’s 2011 survey covering 30 countries. The results reveal that employees who have experience with activities unrelated to the core technology of their organizations are more likely to spin out entrepreneurial ventures, whereas those with experiences related to the core technology are less likely to do so. In support of the recent theory, we find that the strength of intellectual property rights and the availability of venture capital have negative and positive effects, respectively, on the likelihood that employees turn into entrepreneurs. These institutional factors also moderate the effect of relatedness to core technology such that entrepreneurial entries by employees with experiences related to core technology are curbed more severely by stronger intellectual property rights protection regimes and lack of venture capital.Keywords: spinouts, intellectual property rights, venture capital, entrepreneurship, organizational experiences, core technology
Procedia PDF Downloads 3573232 A Study of User Awareness and Attitudes Towards Civil-ID Authentication in Oman’s Electronic Services
Authors: Raya Al Khayari, Rasha Al Jassim, Muna Al Balushi, Fatma Al Moqbali, Said El Hajjar
Abstract:
This study utilizes linear regression analysis to investigate the correlation between user account passwords and the probability of civil ID exposure, offering statistical insights into civil ID security. The study employs multiple linear regression (MLR) analysis to further investigate the elements that influence consumers’ views of civil ID security. This aims to increase awareness and improve preventive measures. The results obtained from the MLR analysis provide a thorough comprehension and can guide specific educational and awareness campaigns aimed at promoting improved security procedures. In summary, the study’s results offer significant insights for improving existing security measures and developing more efficient tactics to reduce risks related to civil ID security in Oman. By identifying key factors that impact consumers’ perceptions, organizations can tailor their strategies to address vulnerabilities effectively. Additionally, the findings can inform policymakers on potential regulatory changes to enhance civil ID security in the country.Keywords: civil-id disclosure, awareness, linear regression, multiple regression
Procedia PDF Downloads 60