Search results for: natural features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9299

Search results for: natural features

8939 Natural Interaction Game-Based Learning of Elasticity with Kinect

Authors: Maryam Savari, Mohamad Nizam Ayub, Ainuddin Wahid Abdul Wahab

Abstract:

Game-based Learning (GBL) is an alternative that provides learners with an opportunity to experience a volatile environment in a safe and secure place. A volatile environment requires a different technique to facilitate learning and prevent injury and other hazards. Subjects involving elasticity are always considered hazardous and can cause injuries,for instance a bouncing ball. Elasticity is a topic that necessitates hands-on practicality for learners to experience the effects of elastic objects. In this paper the scope is to investigate the natural interaction between learners and elastic objects in a safe environment using GBL. During interaction, the potentials of natural contact in the process of learning were explored and gestures exhibited during the learning process were identified. GBL was developed using Kinect technology to teach elasticity to primary school children aged 7 to 12. The system detects body gestures and defines the meanings of motions exhibited during the learning process. The qualitative approach was deployed to constantly monitor the interaction between the student and the system. Based on the results, it was found that Natural Interaction GBL (Ni-GBL) is engaging for students to learn, making their learning experience more active and joyful.

Keywords: elasticity, Game-Based Learning (GBL), kinect technology, natural interaction

Procedia PDF Downloads 483
8938 Collaborative Early Warning System: An Integrated Framework for Mitigating Impacts of Natural Hazards in the UAE

Authors: Abdulla Al Hmoudi

Abstract:

The impacts and costs of natural disasters on people, properties and the environment is often severe when they occur on a large scale or when not prepared for. Factors such as impacts of climate change, urban growth, poor planning to mention a few, have continued to significantly increase the frequencies and aggravate the impacts of natural hazards across the world; the United Arab Emirates (UAE) inclusive. The lack of deployment of an early warning system, low risk and hazard knowledge and impact of natural hazard experienced in some communities in the UAE have emphasised the need for more effective early warning systems. This paper focuses on the collaborative approach taken to instituting and implementing an early warning system. Using mixed methods 888 people completed the questionnaire and eight people were interviewed in Abu Dhabi. The results indicate that the collaborative approach to early warning system is UAE is needed, but lacks essential principles of the early warning system and currently underutilised. It is recommended that the collaborative early warning system is applied at every stage of the early warning system with the specific responsibility of each stakeholder and actor.

Keywords: community, early warning system, emergency management, UAE

Procedia PDF Downloads 144
8937 Numerical Solution of Transient Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates

Authors: Djalal Hamed

Abstract:

The aim of this paper is to perform, by mean of the finite volume method, a numerical solution of the transient natural convection in a narrow rectangular channel between two vertical parallel Material Testing Reactor (MTR)-type fuel plates, imposed under a heat flux with a cosine shape to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not reach a specific safety limits (90 °C). For this purpose, a computer program is developed to determine the principal parameters related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor core power. Throughout the obtained results, we noticed that the core power should not reach 400 kW, to ensure a safe passive residual heat removing from the nuclear core by the upward natural convection cooling mode.

Keywords: buoyancy force, friction force, finite volume method, transient natural convection

Procedia PDF Downloads 196
8936 Reforming of CO₂-Containing Natural Gas by Using an AC Gliding Arc Discharge Plasma System

Authors: Krittiya Pornmai, Sumaeth Chavadej

Abstract:

The increasing in global energy demand has affected the climate change caused by the generation of greenhouse gases. Therefore, the objective of this work was to investigate a direct production of synthesis gas from a CO₂-containing natural gas by using gliding arc discharge plasma technology. In this research, the effects of steam reforming, combined steam reforming and partial oxidation, and using multistage gliding arc discharge system on the process performance have been discussed. The simulated natural gas used in this study contains 70% methane, 5% ethane, 5% propane, and 20% carbon dioxide. In comparison with different plasma reforming processes (under their optimum conditions), the steam reforming provides the highest H₂ selectivity resulting from the cracking reaction of steam. In addition, the combined steam reforming and partial oxidation process gives a very high CO production implying that the addition of both oxygen and steam can offer the acceptably highest synthesis gas production. The stage number of plasma reactor plays an important role in the improvement of CO₂ conversion. Moreover, 3 stage number of plasma reactor is considered as an optimum stage number for the reforming of CO₂-containing natural gas with steam and partial oxidation in term of providing low energy consumption as compared with other plasma reforming processes.

Keywords: natural gas, reforming process, gliding arc discharge, plasma technology

Procedia PDF Downloads 174
8935 Dyeing of Wool and Silk with Soxhlet Water Extracted Natural Dye from Dacryodes macrophylla Fruits and Study of Antimicrobial Properties of Extract

Authors: Alvine Sandrine Ndinchout, D. P. Chattopadhyay, Moundipa Fewou Paul, Nyegue Maximilienne Ascension, Varinder Kaur, Sukhraj Kaur, B. H. Patel

Abstract:

Dacryodes macrophylla is a species of the Burseraceae family that is widespread in Cameroon, Equatorial Guinea, and Gabon. The only part of D. macrophylla known to use is the pulp contained in the fruit. This very juicy pulp is consumed directly and used in making juices. During consumption, these fruit leaves a dark blackish colour on fingers and garment. This observation means that D. macrophylla fruits must be a good source of natural dye with probably good fastness properties on textile materials. But D. macrophylla has not yet been investigated with reference as a potential source of natural dye to our best knowledge. Natural dye has been extracted using water as solvent by soxhlet extraction method. The extracted color was characterized by spectroscopic studies like UV/Visible and further tested for antimicrobial activity against gram-negative (Vibrio cholerae, Escherichia coli, Salmonella enterica serotype Typhi, Shigella flexneri) and gram-positive (Listeria monocytogenes, Staphylococcus aureus) bacteria. It was observed that the water extract of D. macrophylla showed antimicrobial activities against S. enterica. The results of fastness properties of the dyed fabrics were fair to good. Taken together, these results indicate that D. macrophylla can be used as natural dye not only in textile but also in other domains like food coloring.

Keywords: antimicrobial activity, natural dye, silk, wash fastness, wool

Procedia PDF Downloads 175
8934 Testing Capabilities and Limitations of EBM Technology to Guide Design with a Test Artifact Design including Unique Features

Authors: Kadir Akkuş, Burcu A. Hamat, Kaan Ciloglu

Abstract:

Additive Manufacturing (AM) is the respectable improvement of this century in the field of manufacturing and regarded as a breakthrough that represents the third industrial revolution by the leading authorities such as Wohlers Associates Inc., The Economist, and MIT Technology Review. Thanks to the stacking and unifying methodology of AM, design of lighter but stiffer parts with really more complex shapes and geometrical features, which were not possible by traditional subtractive manufacturing methods, became achievable. Through analysis of the AM process must be performed and mechanical properties of manufactured test parts must be studied to provide input for design. Furthermore, process capabilities, constraints, limitations and challenges regarding AM must be examined so that the design must be compatible with the process to be able to take all the advantages of the AM. In this paper, capabilities and limitations of AM will be investigated through a test part including unique features and manufactured from Ti-6Al-4V by employing Electron Beam Melting (EBM) technology by comparing to the test parts introduced in literature.

Keywords: additive manufacturing, DfAM, EBM, test artifact, Ti-6Al-4V

Procedia PDF Downloads 111
8933 Mechanical Properties of Class F Fly Ash Blended Concrete Incorporation with Natural Admixture

Authors: T. S. Ramesh Babu, D. Neeraja

Abstract:

This research work revealed that effect of Natural admixture (NAD) on Conventional Concrete (CC) and Class F Fly Ash(FA) blended concrete. Broiler hen egg white albumen and yellow yolk were used as Natural Admixture. Cement was replaced by Class F fly ash at various levels of 0%, 25%, 35%, 45% and 55% by its mass and NAD was added to concrete at different replacement dosages of 0%, 0.25%, 0.5%, 0.75% and 1.00% by its volume to water content and liquid to binder ratio was maintained at 0.5. For all replacement levels of FA and NAD, the mechanical properties viz unit weight, compressive strength, splitting tensile strength and modulus of elasticity of CC and Class F fly ash (FA) were studied at 7, 28, 56 and 112 days. From the results, it was concluded that 0.25% of NAD dosage was considered as optimum dosage for both CC and class F fly ash blended concrete. The studies revealed that 35% Class F fly ash blended concrete mix is concluded as optimum mix and 55% Class F fly ash blended concrete mix is concluded as economical mix with 0.25% NAD dosage.

Keywords: Class F fly ash, compressive strength, modulus of elasticity, natural admixture, splitting tensile strength, unit weight

Procedia PDF Downloads 289
8932 Musical Instruments Classification Using Machine Learning Techniques

Authors: Bhalke D. G., Bormane D. S., Kharate G. K.

Abstract:

This paper presents classification of musical instrument using machine learning techniques. The classification has been carried out using temporal, spectral, cepstral and wavelet features. Detail feature analysis is carried out using separate and combined features. Further, instrument model has been developed using K-Nearest Neighbor and Support Vector Machine (SVM). Benchmarked McGill university database has been used to test the performance of the system. Experimental result shows that SVM performs better as compared to KNN classifier.

Keywords: feature extraction, SVM, KNN, musical instruments

Procedia PDF Downloads 480
8931 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)

Procedia PDF Downloads 367
8930 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique

Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: earthquake prediction, ANN, seismic bumps

Procedia PDF Downloads 126
8929 Utilization of Complete Feed Based on Ammoniated Corn Waste on Bali Cattle Peformance

Authors: Elihasridas, Rusmana Wijaya Setia Ninggrat

Abstract:

This research aims to study the utilization of ammoniated corn waste complete ration for substitution basal ration of natural grass in Bali cattle. Four treatments (complete feed ration consisted of: R1=40% natural grass + 60% concentrate (control), R2= 50% natural grass+50% concentrate, R3=60% natural grass+40% concentrate and R4=40% ammoniated corn waste+60% concentrate) were employed in this experiment. This experiment was arranged in a latin square design. Observed variables included dry matter intake (DMI), average daily gain and feed conversion. Data were analyzed by using the Analysis of Variance following a 4 x 4 Latin Square Design. The DMI for R1was 7,15kg/day which was significantly (P < 0,05) higher than R2 (6,32 kg/day) and R3(6,07 kg/day), but was not significantly different (P < 0,05) from R4 (7,01 kg/day). Average daily gain for R1(0,75 kg/day) which was significantly (P < 0,05) higher than R2(0,66 kg/day) and R3 (0,61 kg/day),but was not significantly different (P > 0,05) from R4(0,74 kg/day). Feed conversion was not significantly affected (P > 0,05) by ration. It was concluded that ammoniated corn waste complete ration (40% ammoniated corn waste + 60% concentrate) could be utilized for substitution natural grass basal ration.

Keywords: ammoniated corn waste, bali cattle, complete feed, daily gain

Procedia PDF Downloads 205
8928 Study of Skid-Mounted Natural Gas Treatment Process

Authors: Di Han, Lingfeng Li

Abstract:

Selection of low-temperature separation dehydration and dehydrochlorination process applicable to skid design, using Hysys software to simulate the low-temperature separation dehydration and dehydrochlorination process under different refrigeration modes, focusing on comparing the refrigeration effect of different refrigeration modes, the condensation amount of hydrocarbon liquids and alcoholic wastewater, as well as the adaptability of the process, and determining the low-temperature separation process applicable to the natural gas dehydration and dehydrochlorination skid into the design of skid; and finally, to carry out the CNG recycling process calculations of the processed qualified natural gas and to determine the dehydration scheme and the key parameters of the compression process.

Keywords: skidding, dehydration and dehydrochlorination, cryogenic separation process, CNG recovery process calculations

Procedia PDF Downloads 141
8927 Circular Economy-Relationship of Natural Water Collection System, Afforestation and Country Park Towards Environmental Sustainability

Authors: Kwok Tak Kit

Abstract:

The government and community have raised their awareness of the benefits of water reuse. Deforestation has a significant effect to climate change as it causes the drying out of the tropical rainforest and hence increases the chance of natural hazards. The loss of forests due to natural fire or human factors would be threatening the storage and supply of clean water. In this paper, we will focus on the discussion of the relationship of the natural water collection system, afforestation and country parks towards environmental sustainability and circular economy with a case study of water conservation policy and strategy in Hong Kong and Singapore for further research. The UN General Assembly launched the Water Action Decade in 2018 to mobilize action that will help to tackle the growing challenge of water scarcity through water conservation and protect and restore water-related ecosystems, including forests, wetlands, rivers, aquifers and lakes.

Keywords: afforestation, environmental sustainability, water conservation, circular economy, climate change, sustainable development goal

Procedia PDF Downloads 129
8926 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture

Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko

Abstract:

Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.

Keywords: classification, feature selection, texture analysis, tree algorithms

Procedia PDF Downloads 177
8925 AI Features in Netflix

Authors: Dona Abdulwassi, Dhaee Dahlawi, Yara Zainy, Leen Joharji

Abstract:

The relationship between Netflix and artificial intelligence is discussed in this paper. Netflix uses the most effective and efficient approaches to apply artificial intelligence, machine learning, and data science. Netflix employs the personalization tool for their users, recommending or suggesting shows based on what those users have already watched. The researchers conducted an experiment to learn more about how Netflix is used and how AI affects the user experience. The main conclusions of this study are that Netflix has a wide range of AI features, most users are happy with their Netflix subscriptions, and the majority prefer Netflix to alternative apps.

Keywords: easy accessibility, recommends, accuracy, privacy

Procedia PDF Downloads 63
8924 Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates

Authors: Djalal Hamed

Abstract:

The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study.

Keywords: buoyancy force, friction force, natural convection, thermal hydraulic analysis, vertical heated rectangular channel

Procedia PDF Downloads 316
8923 Dyeing Properties of Natural Dyes on Silk Treated with ß-Cyclodextrin

Authors: Samera Salimpour Abkenar

Abstract:

In this work, silk yarns were treated using ß-cyclodextrin (ß-CD) and cross-linked with citric acid (CA) via pad-dry-cure method. Elemental and FESEM analyses confirmed the presence of ß-CD on the treated silk samples even after five washing cycles. Then, the treated samples were dyed using natural dyes (carrot, orange and tomato). Results showed that the color strength (K/S) of the treated samples had been markedly enhanced compared with the control sample (after treatment with metal mordant). Finally, the color strength (K/S value) and color fastness (fading, staining and light fastness) of the treated samples with ß-CD were investigated and compared.

Keywords: ß-cyclodextrin, dyeing, natural dyes, silk yarn

Procedia PDF Downloads 123
8922 Capture of Co₂ From Natural Gas Using Modified Imidazolium Ionic Liquids

Authors: Alaa A. Ghanem, S. E. M. Desouky

Abstract:

Natural gas (NG) is considered one of the most essential global energy sources. NG fields are often far away from the market, and a long-distance transporting pipeline usually is required. Production of NG with high content of CO₂ leads to severe problems such as equipment corrosion along with the production line until refinery.in addition to a high level of toxicity and decreasing in calorific value of the NG. So it is recommended to remove or decrease the CO₂ percent to meet transport specifications. This can be reached using different removal techniques such as physical and chemical absorption, pressure swing adsorption, membrane separation, or low-temperature separation. Many solvents and chemicals are being used to capture carbon dioxide on a large scale; among them, Ionic liquids have great potential due to their tunable properties; low vapour pressure, low melting point, and sensible thermal stability. In this research, three modifiedimidazolium ionic liquids will be synthesized and characterized using different tools of analysis such as FT-IR, 1H NMR. Thermal stability and surface activity will be studied. The synthesized compounds will be evaluated as selective solvents for CO₂ removal from natural gas using PVT cell.

Keywords: natural gas, CO₂ capture, imidazolium ionic liquid, PVT cell

Procedia PDF Downloads 175
8921 A New Protocol Ensuring Users' Privacy in Pervasive Environment

Authors: Mohammed Nadir Djedid, Abdallah Chouarfia

Abstract:

Transparency of the system and its integration into the natural environment of the user are some of the important features of pervasive computing. But these characteristics that are considered as the strongest points of pervasive systems are also their weak points in terms of the user’s privacy. The privacy in pervasive systems involves more than the confidentiality of communications and concealing the identity of virtual users. The physical presence and behavior of the user in the pervasive space cannot be completely hidden and can reveal the secret of his/her identity and affect his/her privacy. This paper shows that the application of major techniques for protecting the user’s privacy still insufficient. A new solution named Shadow Protocol is proposed, which allows the users to authenticate and interact with the surrounding devices within an ubiquitous computing environment while preserving their privacy.

Keywords: pervasive systems, identification, authentication, privacy

Procedia PDF Downloads 482
8920 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing

Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä

Abstract:

Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.

Keywords: feature recognition, automation, sheet metal manufacturing, CAD, CAM

Procedia PDF Downloads 354
8919 CO2 Adsorption on the Activated Klaten-Indonesian Natural Zeolite in a Packed Bed Adsorber

Authors: Sang Kompiang Wirawan, Chandra Purnomo

Abstract:

Carbon dioxide (CO2) adsorption on the activated Klaten-Indonesian natural zeolite (AKINZ) in a packed bed adsorber has been studied. Experiment works consisted of acid activation and adsorption experiments. The natural zeolite sample was activated using 0.3 M HCl at the temperature of 353 K. In the adsorption experiments the feed gas concentrations were 40 and 80 % CO2 in helium within various temperatures of 303; 323 and 373 K. The experiments were conducted by using transient step change adsorption and 20 % Ar/He tracer experiment was conducted to measure dispersion and time lag effect of the packed bed system. A mathematical model of CO2 adsorption had been set up by assuming plug flow;isothermal;isobaric and no gas film mass transport resistance. Single site Langmuir physisorption and Maxwell Stefan mass transport in micropore were applied. All the data were then optimized to get the best value of modified fitted parameter. The model was in a good agreement with the experiment data. Diffusivity tended to increase by increasing temperatures.

Keywords: adsorption, Langmuir, Maxwell-Stefan, natural zeolite, surface diffusion

Procedia PDF Downloads 355
8918 Exploring Multi-Feature Based Action Recognition Using Multi-Dimensional Dynamic Time Warping

Authors: Guoliang Lu, Changhou Lu, Xueyong Li

Abstract:

In action recognition, previous studies have demonstrated the effectiveness of using multiple features to improve the recognition performance. We focus on two practical issues: i) most studies use a direct way of concatenating/accumulating multi features to evaluate the similarity between two actions. This way could be too strong since each kind of feature can include different dimensions, quantities, etc; ii) in many studies, the employed classification methods lack of a flexible and effective mechanism to add new feature(s) into classification. In this paper, we explore an unified scheme based on recently-proposed multi-dimensional dynamic time warping (MD-DTW). Experiments demonstrated the scheme's effectiveness of combining multi-feature and the flexibility of adding new feature(s) to increase the recognition performance. In addition, the explored scheme also provides us an open architecture for using new advanced classification methods in the future to enhance action recognition.

Keywords: action recognition, multi features, dynamic time warping, feature combination

Procedia PDF Downloads 437
8917 Evaluation of Achillea millefolium L. Biochemical Changes in Iran's Natural Habitat

Authors: Ghavamaldin Asadian, Aptin Rahnavard, Mariamalsadat Taghavi

Abstract:

Achillea millefolium L. is one of the most important medicinal plants with antioxidant compounds. The use of compounds derived from plants reduces the incidence of many chronic diseases. The purpose of this investigation is study of total phenolic content and antioxidant activity some of ecotypes yarrow grown in natural habitats in Iran. This experimental study was conducted in 2013 at the Islamic Azad University, Tonekabon Branch. After identifying the natural sites, we have attempted to harvest of aerial part and after drying in lab temperature, essential oil was extracted by steam distillation. In this research for evaluate the antioxidant properties was used of three method, DPPH, Antioxidant capacity ferro revival and phosphomolybdenum, that all mechanism is based on the electron donating. All ecotypes had antioxidant activity and ecotypes grown in Kandovan region were measured with the most total phenolic (89.5 mg GA/g dew) and flavonoid (20.4 µg/g dew) and the lowest in Saveh (71.3 mg GA/g dew, 17.4 µg/g dew). Variation of the antioxidant properties were significant (P≤0.01) in areas and were accounted Kandovan with highest value and the lowest in Save. As a result, yarrow essential oil grown in Kandovan in terms of amount of total phenolic, flavonoid and antioxidant property, it was determined the best natural habitat.

Keywords: achillea millefolium L., antioxidant compounds, DPPH, total phenolic, flavonoid natural habitats

Procedia PDF Downloads 456
8916 Risk Assessment of Natural Gas Pipelines in Coal Mined Gobs Based on Bow-Tie Model and Cloud Inference

Authors: Xiaobin Liang, Wei Liang, Laibin Zhang, Xiaoyan Guo

Abstract:

Pipelines pass through coal mined gobs inevitably in the mining area, the stability of which has great influence on the safety of pipelines. After extensive literature study and field research, it was found that there are a few risk assessment methods for coal mined gob pipelines, and there is a lack of data on the gob sites. Therefore, the fuzzy comprehensive evaluation method is widely used based on expert opinions. However, the subjective opinions or lack of experience of individual experts may lead to inaccurate evaluation results. Hence the accuracy of the results needs to be further improved. This paper presents a comprehensive approach to achieve this purpose by combining bow-tie model and cloud inference. The specific evaluation process is as follows: First, a bow-tie model composed of a fault tree and an event tree is established to graphically illustrate the probability and consequence indicators of pipeline failure. Second, the interval estimation method can be scored in the form of intervals to improve the accuracy of the results, and the censored mean algorithm is used to remove the maximum and minimum values of the score to improve the stability of the results. The golden section method is used to determine the weight of the indicators and reduce the subjectivity of index weights. Third, the failure probability and failure consequence scores of the pipeline are converted into three numerical features by using cloud inference. The cloud inference can better describe the ambiguity and volatility of the results which can better describe the volatility of the risk level. Finally, the cloud drop graphs of failure probability and failure consequences can be expressed, which intuitively and accurately illustrate the ambiguity and randomness of the results. A case study of a coal mine gob pipeline carrying natural gas has been investigated to validate the utility of the proposed method. The evaluation results of this case show that the probability of failure of the pipeline is very low, the consequences of failure are more serious, which is consistent with the reality.

Keywords: bow-tie model, natural gas pipeline, coal mine gob, cloud inference

Procedia PDF Downloads 250
8915 Economics of Oil and Its Stability in the Gulf Region

Authors: Al Mutawa A. Amir, Liaqat Ali, Faisal Ali

Abstract:

After the World War II, the world economy was disrupted and changed due to oil and its prices. The research in this paper presents the basic statistical features and economic characteristics of the Gulf economy. The main features of the Gulf economies and its heavy dependence on oil exports, its dualism between modern and traditional sectors and its rapidly increasing affluences are particularly emphasized.  In this context, the research in this paper discussed the problems of growth versus development and has attempted to draw the implications for the future economic development of this area.

Keywords: oil prices, GCC, economic growth, gulf oil

Procedia PDF Downloads 335
8914 Predicting of Hydrate Deposition in Loading and Offloading Flowlines of Marine CNG Systems

Authors: Esam I. Jassim

Abstract:

The main aim of this paper is to demonstrate the prediction of the model capability of predicting the nucleation process, the growth rate, and the deposition potential of second phase particles in gas flowlines. The primary objective of the research is to predict the risk hazards involved in the marine transportation of compressed natural gas. However, the proposed model can be equally used for other applications including production and transportation of natural gas in any high-pressure flow-line. The proposed model employs the following three main components to approach the problem: computational fluid dynamics (CFD) technique is used to configure the flow field; the nucleation model is developed and incorporated in the simulation to predict the incipient hydrate particles size and growth rate; and the deposition of the gas/particle flow is proposed using the concept of the particle deposition velocity. These components are integrated in a comprehended model to locate the hydrate deposition in natural gas flowlines. The present research is prepared to foresee the deposition location of solid particles that could occur in a real application in Compressed Natural Gas loading and offloading. A pipeline with 120 m length and different sizes carried a natural gas is taken in the study. The location of particle deposition formed as a result of restriction is determined based on the procedure mentioned earlier and the effect of water content and downstream pressure is studied. The critical flow speed that prevents such particle to accumulate in the certain pipe length is also addressed.

Keywords: hydrate deposition, compressed natural gas, marine transportation, oceanography

Procedia PDF Downloads 487
8913 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity

Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish

Abstract:

Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.

Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow

Procedia PDF Downloads 132
8912 Researches on Attractive Flowered Natural Woody Plants of Bursa Flora in Terms of Landscape Design

Authors: Elvan Ender, Murat Zencirkıran

Abstract:

One of the most important criteria that increase the success of design in landscape architecture is the visual effect. The characteristics that affect visual appearance in plant design vary depending on the phenological periods of the plants. In plants, although different effects are observed in different periods of the year, this effect is felt most prominently in flowering periods. For this reason, knowing the flowering time, duration and flower characteristics should be considered as a factor increasing the success of plant design. In this study, flower characteristics of natural woody plants with attractive flowers have been examined. Because of the variability of these characteristics of plants in the region, consideration of these criteria in the planting design processes in the region may increase the success of the design. At the same time, when species selection is made considering the obtained data, visuality and sustainability of natural species can be possible in Bursa city with planting design.

Keywords: Bursa, flower characteristics, natural plants, planting design

Procedia PDF Downloads 266
8911 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier

Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh

Abstract:

This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.

Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems

Procedia PDF Downloads 43
8910 An Exploratory Study of Chinese Paper-Cut Art in Household Product Design

Authors: Ruining Wu, Na Song

Abstract:

Paper-cut, as one of the Chinese traditional folk decoration art, has become a unique visual aesthetic characteristics of the Chinese nation in the long-term evolution of cultural symbols. Chinese paper-cut art is the treasure-house for product design in natural resources. This paper first analyzed Chinese folk art of historical origin, cultural background, cultural values, aesthetic value, style features of Chinese paper cut art, then analyzed the design thought and design cases of paper-cut art application in different areas, such as clothing design, logo design and product design areas. Through the research of Chinese paper-cut art culture and design elements, this paper aims to build a household product design concept of Chinese traditional culture.

Keywords: paper-cut art, culture, household products, design

Procedia PDF Downloads 613