Search results for: methyl phenyl malonate
167 Silver Grating for Strong and Reproducible SERS Response
Authors: Y. Kalachyova, O. Lyutakov, V. Svorcik
Abstract:
One of the most significant obstacles for the application of surface enhanced Raman spectroscopy (SERS) is the poor reproducibility of SERS active substrates: SERS intensity can be varied from one substrate to another and moreover along the one substrate surface. High enhancement of the near-field intensity is the key factor for ultrasensitive SERS realization. SERS substrate can be prepared through introduction of highly ordered metal array, where light focusing is achieved through excitation of surface plasmon-polaritons (SPPs). In this work, we report the preparation of silver nanostructures with plasmon absorption peaks tuned by the metal arrangement. Excimer laser modification of poly(methyl methacrylate) followed by silver evaporation is proposed as an effective way for the creation of reproducible and effective surface plasmon-polaritons (SPP)-based SERS substrate. Theoretical and experimental studies were performed to optimize structure parameter for effective SPP excitation. It was found that the narrow range of grating periodicity and metal thickness exist, where SPPs can be most efficiently excited. In spite of the fact, that SERS response was almost always achieved, the enhancement factor was found to vary more with the effectivity of SPP excitation. When the real structure parameters were set to optimal for SPP excitation, a SERS enhancement factor was achieved up to four times. Theoretical and experimental investigation of SPP excitation on the two-dimensional periodical silver array was performed with the aim to make SERS response as high as possible.Keywords: grating, nanostructures, plasmon-polaritons, SERS
Procedia PDF Downloads 268166 Microbiological Analysis of Biofuels in Order to Follow Stability on Room Temperature
Authors: Radovan Cobanovic, Milica Rankov Sicar
Abstract:
Biodiesel refers to a vegetable oil - or animal fat-based diesel fuel consisting of long-chain alkyl (methyl, ethyl, or propyl) esters. It is derived by alcoholysis of triacylglycerols (triglycerides) from various lipid based materials that can be traditionally categorized into the following main groups: vegetable oils, animal fats, waste and algal oils. The goal of this study was to evaluate microbiological stability of biodiesel samples since it has been made from vegetable oil or animal fat which was stored on room temperature. For the purposes of this study, analyzes were conducted on six samples of biodiesel first at zero sample at the reception day than fifth, thirtieth, sixtieth, ninetieth and one hundred twentieth day from the day of reception. During this period, biodiesel samples were subjected to microbiological analyses (Salmonella spp., Listeria monocytogenes, Enterobacteriaceae and total plate count). All analyses were tested according to ISO methodology: Salmonella spp ISO 6579, Listeria monocytogenes ISO 11290-2, Enterobacteriaceae ISO 21528-1, total plate count ISO 4833-1. The results obtained after the analyses which were done according to the plan during the 120 days indicate that are no changes of products concerning microbiological analyses. Salmonella spp., Listeria monocytogenes, Enterobacteriaceae were not detected and results for total plate count showed values < 10 cfu/g for all six samples. On the basis of this monitoring under defined storage conditions at room temperatures, the results showed that biodiesel is very stable as far as microbiological analysis were concerned.Keywords: biodiesel, microbiology, room temperature, stability
Procedia PDF Downloads 284165 Quantitative Analysis of Caffeine in Pharmaceutical Formulations Using a Cost-Effective Electrochemical Sensor
Authors: Y. T. Gebreslassie, Abrha Tadesse, R. C. Saini, Rishi Pal
Abstract:
Caffeine, known chemically as 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione, is a naturally occurring alkaloid classified as an N-methyl derivative of xanthine. Given its widespread use in coffee and other caffeine-containing products, it is the most commonly consumed psychoactive substance in everyday human life. This research aimed to develop a cost-effective, sensitive, and easily manufacturable sensor for the detection of caffeine. Antraquinone-modified carbon paste electrode (AQMCPE) was fabricated, and the electrochemical behavior of caffeine on this electrode was investigated using cyclic voltammetry (CV) and square wave voltammetry (SWV) in a solution of 0.1M perchloric acid at pH 0.56. The modified electrode displayed enhanced electrocatalytic activity towards caffeine oxidation, exhibiting a two-fold increase in peak current and an 82 mV shift of the peak potential in the negative direction compared to an unmodified carbon paste electrode (UMCPE). Exploiting the electrocatalytic properties of the modified electrode, SWV was employed for the quantitative determination of caffeine. Under optimized experimental conditions, a linear relationship between peak current and concentration was observed within the range of 2.0 x 10⁻⁶ to 1.0× 10⁻⁴ M, with a correlation coefficient of 0.998 and a detection limit of 1.47× 10⁻⁷ M (signal-to-noise ratio = 3). Finally, the proposed method was successfully applied to the quantitative analysis of caffeine in pharmaceutical formulations, yielding recovery percentages ranging from 95.27% to 106.75%.Keywords: antraquinone-modified carbon paste electrode, caffeine, detection, electrochemical sensor, quantitative analysis
Procedia PDF Downloads 65164 Construction and Performance of Nanocomposite-Based Electrochemical Biosensor
Authors: Jianfang Wang, Xianzhe Chen, Zhuoliang Liu, Cheng-An Tao, Yujiao Li
Abstract:
Organophosphorus (OPs) pesticide used as insecticides are widely used in agricultural pest control, household and storage deworming. The detection of pesticides needs more simple and efficient methods. One of the best ways is to make electrochemical biosensors. In this paper, an electrochemical enzyme biosensor based on acetylcholine esterase (AChE) was constructed, and its sensing properties and sensing mechanisms were studied. Reduced graphene oxide-polydopamine complexes (RGO-PDA), gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were prepared firstly and composited with AChE and chitosan (CS), then fixed on the glassy carbon electrode (GCE) surface to construct the biosensor GCE/RGO-PDA-AuNPs-AgNPs-AChE-CS by one-pot method. The results show that graphene oxide (GO) can be reduced by dopamine (DA) and dispersed well in RGO-PDA complexes. And the composites have a synergistic catalysis effect and can improve the surface resistance of GCE. The biosensor selectively can detect acetylcholine (ACh) and OPs pesticide with good linear range and high sensitivity. The performance of the biosensor is affected by the ratio and adding ways of AChE and the adding of AuNPs and AChE. And the biosensor can achieve a detection limit of 2.4 ng/L for methyl parathion and a wide linear detection range of 0.02 ng/L ~ 80 ng/L, and has excellent stability, good anti-interference ability, and excellent preservation performance, indicating that the sensor has practical value.Keywords: acetylcholine esterase, electrochemical biosensor, nanoparticles, organophosphates, reduced graphene oxide
Procedia PDF Downloads 112163 Relationship between Response of the Resistive Sensors on the Chosen Volatile Organic Compounds (VOCs) and Their Concentration
Authors: Marek Gancarz, Agnieszka Nawrocka, Robert Rusinek, Marcin Tadla
Abstract:
Volatile organic compounds (VOCs) are the fungi metabolites in the gaseous form produced during improper storage of agricultural commodities (e.g. grain, food). The spoilt commodities produce a wide range of VOCs including alcohols, esters, aldehydes, ketones, alkanes, alkenes, furans, phenols etc. The characteristic VOCs and odours can be determined by using electronic nose (e-Nose) which contains a matrix of different kinds of sensors e.g. resistive sensors. The aim of the present studies was to determine relationship between response of the resistive sensors on the chosen volatiles and their concentration. According to the literature, it was chosen volatiles characteristic for the cereals: ethanol, 3-methyl-1-butanol and hexanal. Analysis of the sensor signals shows that a signal shape is different for the different substances. Moreover, each VOC signal gives information about a maximum of the normalized sensor response (R/Rmax), an impregnation time (tIM) and a cleaning time at half maximum of R/Rmax (tCL). These three parameters can be regarded as a ‘VOC fingerprint’. Seven resistive sensors (TGS2600-B00, TGS2602-B00, TGS2610-C00, TGS2611-C00, TGS2611-E00, TGS2612-D00, TGS2620-C00) produced by Figaro USA Inc., and one (AS-MLV-P2) produced by AMS AG, Austria were used. Two out of seven sensors (TGS2611-E00, TGS2612-D00) did not react to the chosen VOCs. The most responsive sensor was AS-MLV-P2. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013.Keywords: agricultural commodities, organic compounds, resistive sensors, volatile
Procedia PDF Downloads 368162 Antidepressant-Like Effects of EQC-34, a 5HT3 Receptor Antagonist in Neurobehavioral Mouse Model of Depression
Authors: D: Gupta, M. Radhakrishnan, Y. Kurhe, D. Thangaraj
Abstract:
Depression is among the leading causes of death worldwide. The current pharmacotherapy is associated with poor compliance, resistance and relapse, which necessitate the development of novel compounds with better efficacy. The present study designed and synthesized EQC-34 (N-cyclohexyl-3-ethoxyquinoxalin-2-carboxamide) as novel serotonin type-3 (5HT3) antagonist and evaluated its antidepressant-like effects using neurobehavioral mouse model. 5HT3 antagonism (as pA2 value) was determined on the longitudinal smooth muscle of guinea-pig ileum against 2-methyl-5HT (a 5HT3 agonist). The doses were calculated by dose response of basal locomotor activity. Consequently, effects of EQC-34 on neurobehavioral parameters were measured in forced swim (FST) and tail suspension test (TST). The possible mechanism was estimated by interaction study with fluoxetine (a selective serotonin reuptake inhibitor) and mCPBG (1-(m-chlorophenyl)-biguanide, a selective 5HT3 agonist), and confirmed by potentiation of head twitch response by 5hydroxy-L-tryptophan (5HTP). EQC-34 (1-4 mg/kg, i.p.) produced significant decreased behavioral despair effects in FST and TST. It potentiated fluoxetine response, while mCPBG reduced EQC-34 activity in FST. Further, EQC-34 potentiated 5HTP induced head twitch response. EQC-34 revealed potential antidepressant-like effects, which may involve 5HT3 receptor mediated facilitation of 5HT neurotransmission, thereby reversing the pathological deficiency of monoamines (5HT) observed in depression. Thus, it may be further investigated as promising agent to improve therapeutics of depression.Keywords: depression, forced swim test, 5HT3 receptor antagonist, serotonin
Procedia PDF Downloads 435161 Design, Synthesis and Anti-Inflammatory Activity of Some Coumarin and Flavone Derivatives Containing 1,4 Dioxane Ring System
Authors: Asif Husain, Shah Alam Khan
Abstract:
Coumarins and flavones are oxygen containing heterocyclic compounds which are present in various biologically active compounds. Both the heterocyclic rings are associated with diverse biological actions, therefore considered as an important scaffold for the design of molecules of pharmaceutical interest. Aim: To synthesize and evaluate the in vivo anti-inflammatory activity of few coumrain and flavone derivatives containing 1,4 dioxane ring system. Materials and methods: Coumarin derivatives (3a-d) were synthesized by reacting 7,8 dihydroxy coumarin (2a) and its 4-methyl derivative (2b) with epichlorohydrin/ethylene dibromide. The flavone derivatives (10a-d) were prepared by using quercetin and 3,4 dihydroxy flavones. Compounds of both the series were also evaluated for their anti-inflammatory, analgesic activity and ulcerogenicity in animal models by reported methods. Results and Discussion: The structures of all newly synthesized compounds were confirmed with the help of IR, 1H NMR, 13C NMR and Mass spectral studies. Elemental analyses data for each element analyzed (C, H, N) was found to be within acceptable range of ±0.4 %. Flavone derivatives, but in particular quercetin containing 1,4 dioxane ring system (10d) showed better anti-inflammatory and analgesic activity along with reduced gastrointestinal toxicity as compared to other synthesized compounds. The results of anti-inflammatory and analgesic activities of both the series are comparable with the positive control, diclofenac. Conclusion: Compound 10d, a quercetin derivative, emerged as a lead molecule which exhibited potent anti-inflammatory and analgesic activity with significant reduced gastric toxicity.Keywords: analgesic, anti-inflammatory, 1, 4 dioxane, coumarin, flavone
Procedia PDF Downloads 327160 Applying Cationic Porphyrin Derivative 5, 10-Dihexyl-15, 20bis Porphyrin, as Transfection Reagent for Gene Delivery into Mammalian Cells
Authors: Hajar Hosseini Khorami
Abstract:
Porphyrins are organic, aromatic compounds found in heme, cytochrome, cobalamin, chlorophyll , and many other natural products with essential roles in biological processes that their cationic forms have been used as groups of favorable non-viral vectors recently. Cationic porphyrins are self-chromogenic reagents with a high capacity for modifications, great interaction with DNA and protection of DNA from nuclease during delivery of it into a cell with low toxicity. In order to have high efficient gene transfection into the cell while causing low toxicity, genetically manipulations of the non-viral vector, cationic porphyrin, would be useful. In this study newly modified cationic porphyrin derivative, 5, 10-dihexyl-15, 20bis (N-methyl-4-pyridyl) porphyrin was applied. Cytotoxicity of synthesized cationic porphyrin on Chinese Hamster Ovarian (CHO) cells was evaluated by using MTT assay. This cationic derivative is dose-dependent, with low cytotoxicity at the ranges from 100 μM to 0.01μM. It was uptake by cells at high concentration. Using direct non-viral gene transfection method and different concentration of cationic porphyrin were tested on transfection of CHO cells by applying derived transfection reagent with X-tremeGENE HP DNA as a positive control. However, no transfection observed by porphyrin derivative and the parameters tested except for positive control. Results of this study suggested that applying different protocol, and also trying other concentration of cationic porphyrins and DNA for forming a strong complex would increase the possibility of efficient gene transfection by using cationic porphyrins.Keywords: cationic porphyrins, gene delivery, non-viral vectors, transfection reagents
Procedia PDF Downloads 200159 Estimated Human Absorbed Dose of 111 In-BPAMD as a New Bone-Seeking Spect-Imaging Agent
Authors: H. Yousefnia, S. Zolghadri
Abstract:
An early diagnosis of bone metastases is very important for providing a profound decision on a subsequent therapy. A prerequisite for the clinical application of new diagnostic radiopharmaceutical is the measurement of organ radiation exposure dose from biodistribution data in animals. In this study, the dosimetric studies of a novel agent for SPECT-imaging of bone methastases, 111In-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid (111In-BPAMD) complex, have been estimated in human organs based on mice data. The radiolabeled complex was prepared with high radiochemical purity at the optimal conditions. Biodistribution studies of the complex were investigated in male Syrian mice at selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was performed based on mice data by the radiation absorbed dose assessment resource (RADAR) method. 111In-BPAMD complex was prepared with high radiochemical purity >95% (ITLC) and specific activities of 2.85 TBq/mmol. Total body effective absorbed dose for 111In-BPAMD was 0.205 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose to critical organs the complex is well within the acceptable considered range for diagnostic nuclear medicine procedures. Generally, 111In-BPAMD has interesting characteristics and can be considered as a viable agent for SPECT-imaging of the bone metastases in the near future.Keywords: In-111, BPAMD, absorbed dose, RADAR
Procedia PDF Downloads 482158 Integrated Management of Tithonia Diversifolia in the Vhembe Biosphere Reserve
Authors: Mutavhatsindi Tshinakaho
Abstract:
Invasive alien plants (IAP’s) are referred to as species that are non-native to the ecosystem under consideration. Whose introduction causes or is likely to cause economic, ecological, or environmental harm. The integrated management of the invasive plant, Tithonia diversifolia, will be assessed through two herbicide trials (one on the seedlings and the other on matured plants) and a competitive trial between Tithonia and invasive grass species. The initial herbicide trial will be undertaken at the University of Venda Agricultural greenhouse facilities, where Tithonia will be planted in pot plants and watered every after two days until they reach at least 30 cm and will then be subjected to four different herbicide treatments (Metsulfuron methyl, Fluroxypyr, Picloram, Triclopyr), water will be utilised as a control. The percentage damage to foliar will be recorded. The second herbicide trial will be undertaken at Levubu road site, where matured Tithonia will be cut at at least 10cm above the ground and the subjected to herbicide treatments (Picloram, Fluroxypyr, Imazapyr, and Water as a control). The site will be visited post treatment for assessment. For the competition trial, tall grass species will be chosen as competitors (Panicum maximum and Eragrostis murvula), they will be grown at six densities per pot in the greenhouse facilities at the University of Venda, were they will be kept watered for the duration of the experiment. At the end of the experiment, plants will be removed from pots, and the above and below ground biomass will be weighed. The expected results are to know the effective integrated management strategy for T. diversifolia, the effective rehabilitation of T. diversifolia invaded habitats, and the effective chemical control of T. diversifoliaKeywords: foliar, biomass, competition, invasion
Procedia PDF Downloads 95157 Development and Characterization of a Film Based on Hydroxypropyl Methyl Cellulose Incorporated by a Phenolic Extract of Fennel and Reinforced by Magnesium Oxide: In Vivo - in Vitro
Authors: Mazouzi Nourdjihane, K. Boutemak, A. Haddad, Y. Chegreouche
Abstract:
In the last decades, biodegradable polymers have been considered as one of the most popular options for the delivery of drugs and various conventional doses. The film forming system (FFS) can be used in topical, transdermal, ophthalmic, oral and gastric applications. Recently this system has focused on improving drug delivery, which can promote drug release. In this context, the aim of this study is to create polymeric film-forming systems for the stomach and to evaluate and test their gastroprotective effects, comparing the effects of changes in composition on film characteristics. It uses a plant-derived polyphenol extract extracted from fennel to demonstrate anti-inflammatory activity in the film. The films are made from hydroxypropyl methylcellulose polymer and different types of plastic, glycerol and polyethylene glycol. The ffs properties show that MgO-glycerol-reinforced hydroxypropylmethylcellulose (HPMC-MgO-Gly) is better than that based on MgO-PEG-reinforced hydroxypropylmethylcellulose (HPMC-MgO-PEG). It is durable, has a faster drying time and allows for maximum recovery. Water vapor strength and blowing speed and other additions show another advantage of HPMC-MgO-Gly compared to HPMC-MgO-PEG, indicating good adhesion between the support (top) and film production. In this study, the gastroprotective effect of fennel phenol extract was found, showing that this plant material has a gastroprotective effect on ulcers and that the film can absorb the active substance.Keywords: film formin system, hydroxypropyl methylcellulose, magnesium oxide, in vivo
Procedia PDF Downloads 66156 Amine Hardeners with Carbon Nanotubes Dispersing Ability for Epoxy Coating Systems
Authors: Szymon Kugler, Krzysztof Kowalczyk, Tadeusz Spychaj
Abstract:
An addition of carbon nanotubes (CNT) can simultaneously improve many features of epoxy coatings, i.e. electrical, mechanical, functional and thermal. Unfortunately, this nanofiller negatively affects visual properties of the coatings, such as transparency and gloss. The main reason for the low visual performance of CNT-modified epoxy coatings is the lack of compatibility between CNT and popular amine curing agents, although epoxy resins based on bisphenol A are indisputable good CNT dispersants. This is a serious obstacle in utilization of the coatings in advanced applications, demanding both high transparency and electrical conductivity. The aim of performed investigations was to find amine curing agents exhibiting affinity for CNT, and ensuring good performance of epoxy coatings with them. Commercially available CNT was dispersed in epoxy resin, as well as in different aliphatic, cycloaliphatic and aromatic amines, using one of two dispergation methods: ultrasonic or mechanical. The CNT dispersions were subsequently used in the preparation of epoxy coating compositions and coatings on a transparent substrate. It was found that amine derivative of bio-based cardanol, as well as modified o-tolylbiguanide exhibit significant CNT, dispersing properties, resulting in improved transparent/electroconductive performance of epoxy coatings. In one of prepared coating systems just 0.025 wt.% (250 ppm) of CNT was enough to obtain coatings with semi conductive properties, 83% of transparency as well as perfect chemical resistance to methyl-ethyl ketone and improved thermal stability. Additionally, a theory of the influence of amine chemical structure on CNT dispersing properties was proposed.Keywords: bio-based cardanol, carbon nanotubes, epoxy coatings, tolylbiguanide
Procedia PDF Downloads 211155 Characterization of Volatile Compounds in Meat Lamb Fed in Different Algeria Pasture
Authors: Nabila Berrighi, Kaddour Bouderoua, Maria Khossif, Gema Nieto, Gaspar Ros
Abstract:
Ruminant meat is an important source of nutrients and is also of high sensory value. However, the importance and nature of these characteristics depend on ruminant nutrition. The objective of this study is to assess the effect of two Algerian feeding systems applied in the steppic rearing area of Djelfa and in the highlands one of Tiaret on the growth performance of lambs and on their meat quality, especially on their aroma compounds of meat. At the beginning of the experiment, lambs had an average body weight of 34.04 kg, and 35.40 kg for the group reared at Highland (0% concentrate) and Steppe (30% concentrate), respectively. The incorporation of the concentrated feed in Steppe had a significant effect on slaughter weight compared to lambs fed only on pasture (Highland) (49.72 Kg vs. 42.06 Kg, P<0.05). Beyond the first month, animals from the Steppe one showed better weight gains compared to those from Highland (14.32Kg vs. 8.02 Kg, respectively, P<0,05). After slaughter, samples from the Longissimus thoracis were removed and analyzed. The results point to significant differences in the amounts of many of the predominant volatile compounds between both groups (p<0.05), such as Hexanal, 2-methyl-3-furanthiol and nonanal (8.92 μg/kg vs. 4.57 μg/kg), (8.88 μg/kg vs. 7.45 μg/kg) and (2.09 μ/kg vs. 1.02 μg/kg) associated with smells of green, boiling meat and orange fruit, respectively. These compounds, measured by olfactometry, derived from the oxidation of lipids and appear to be responsible for the characteristic flavor of lamb meat in the steppe compared to that generated by meat from animals from the Highland pastures. The Algerian Steppe ecosystem is very interesting for outdoor sheep breeding, which allows to obtain attractive sensory quality and in the production of typical lamb meat that can be considered as a label.Keywords: falvour, growth performance, lamb meat, steppe pasture
Procedia PDF Downloads 101154 Identification and Characterization of Inhibitors of Epoxide Hydrolase from Trichoderma reesei
Authors: Gabriel S. De Oliveira, Patricia P. Adriani, Christophe Moriseau, Bruce D. Hammock, Felipe S. Chambergo
Abstract:
Epoxide hydrolases (EHs) are enzymes that are present in all living organisms and catalyze the hydrolysis of epoxides to the corresponding vicinal diols. EHs have high biotechnological interest for the drug design and chemistry transformation for industries. In this study, we describe the identification of substrates and inhibitors of epoxide hydrolase enzyme from the filamentous fungus Trichoderma reesei (TrEH), and these inhibitors showed the fungal growth inhibitory activity. We have used the cloned enzyme and expressed in E. coli to develop the screening in the library of fluorescent substrates with the objective of finding the best substrate to be used in the identification of good inhibitors for the enzyme TrEH. The substrate (3-phenyloxiranyl)-acetic acid cyano-(6-methoxy-naphthalen-2-yl)-methyl ester showed the highest specific activity and was chosen for the next steps of the study. The inhibitors screening was performed in the library with more than three thousand molecules and we could identify the 6 best inhibitors. The IC50 of these molecules were determined in nM and all the best inhibitors have urea or amide in their structure, because It has been recognized that these groups fit well in the hydrolase catalytic pocket of the epoxide hydrolases. Then the growth of T. reesei in PDA medium containing these TrEH inhibitors was tested, and fungal growth inhibition activity was demonstrated with more than 60% of inhibition of fungus growth in the assay with the TrEH inhibitor with the lowest IC50. Understanding how this EH enzyme from T. reesei responds to inhibitors may contribute for the study of fungal metabolism and drug design against pathogenic fungi.Keywords: epoxide hydrolases, fungal growth inhibition, inhibitor, Trichoderma reesei
Procedia PDF Downloads 202153 The Effects of Extraction Methods on Fat Content and Fatty Acid Profiles of Marine Fish Species
Authors: Yesim Özogul, Fethiye Takadaş, Mustafa Durmus, Yılmaz Ucar, Ali Rıza Köşker, Gulsun Özyurt, Fatih Özogul
Abstract:
It has been well documented that polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on health, regarding prevention of cardiovascular diseases, cancer and autoimmune disorders, development the brain and retina and treatment of major depressive disorder etc. Thus, an adequate intake of omega PUFA is essential and generally marine fish are the richest sources of PUFA in human diet. Thus, this study was conducted to evaluate the efficiency of different extraction methods (Bligh and Dyer, soxhlet, microwave and ultrasonics) on the fat content and fatty acid profiles of marine fish species (Mullus babatus, Upeneus moluccensis, Mullus surmuletus, Anguilla anguilla, Pagellus erythrinus and Saurida undosquamis). Fish species were caught by trawl in Mediterranean Sea and immediately iced. After that, fish were transported to laboratory in ice and stored at -18oC in a freezer until the day of analyses. After extracting lipid from fish by different methods, lipid samples were converted to their constituent fatty acid methyl esters. The fatty acid composition was analysed by a GC Clarus 500 with an autosampler (Perkin Elmer, Shelton, CT, USA) equipped with a flame ionization detector and a fused silica capillary SGE column (30 m x 0.32 mm ID x 0.25 mm BP20 0.25 UM, USA). The results showed that there were significant differences (P < 0.05) in fatty acids of all species and also extraction methods affected fat contents and fatty acid profiles of fish species.Keywords: extraction methods, fatty acids, marine fish, PUFA
Procedia PDF Downloads 267152 Molecular Engineering of High-Performance Nanofiltration Membranes from Intrinsically Microporous Poly (Ether-Ether-Ketone)
Authors: Mahmoud A. Abdulhamid
Abstract:
Poly(ether-ether-ketone) (PEEK) has received increased attention due to its outstanding performance in different membrane applications including gas and liquid separation. However, it suffers from a semi-crystalline morphology, bad solubility and low porosity. To fabricate membranes from PEEK, the usage of harsh acid such as sulfuric acid is essential, regardless its hazardous properties. In this work, we report the molecular design of poly(ether-ether-ketones) (iPEEKs) with intrinsic porosity character, by incorporating kinked units into PEEK backbone such as spirobisindane, Tröger's base, and triptycene. The porous polymers were used to fabricate stable membranes for organic solvent nanofiltration application. To better understand the mechanism, we conducted molecular dynamics simulations to evaluate the possible interactions between the polymers and the solvents. Notable enhancement in separation performance was observed confirming the importance of molecular engineering of high-performance polymers. The iPEEKs demonstrated good solubility in polar aprotic solvents, a high surface area of 205–250 m² g⁻¹, and excellent thermal stability. Mechanically flexible nanofiltration membranes were prepared from N-methyl-2-pyrrolidone dope solution at iPEEK concentrations of 19–35 wt%. The molecular weight cutoff of the membranes was fine-tuned in the range of 450–845 g mol⁻¹ displaying 2–6 fold higher permeance (3.57–11.09 L m⁻² h⁻¹ bar⁻¹) than previous reports. The long-term stabilities were demonstrated by a 7 day continuous cross-flow filtration.Keywords: molecular engineering, polymer synthesis, membrane fabrication, liquid separation
Procedia PDF Downloads 96151 Halogenated Methoxy- and Methyl-benzoic Acids: Joint Experimental and DFT Study For Molecular Structure, Vibrational Analysis, and Other Molecular Properties
Authors: Boda Sreenivas, Lyathakula Ravindranath, Kanugula Srishailam, Byru Venkatram Reddy
Abstract:
Extensive research into the optimized structure and molecular properties of 3-Flouro-2-methylbenzoicacid(FMB), 3-Chloro-2-methoxybenzoicacid (CMB), and 3-Bromo-2-methylbenzoicacid (BMB) was carried out using FT-IR, FT-Raman and UV-Visible spectra, as well as theoretically using the DFT approach with B3LYPfunctional in conjunction with 6-311++G(d,p) basis set. The optimized structure was determined by evaluating torsional scans about free rotation bonds. Structure parameters, harmonic vibrational frequencies, potential energy distribution(PED), and infrared and Raman intensities were computed. The computational results from the DFT approach, such asFT-IR, FT-Raman, and UV-Visible spectra, were compared with the experimental results and found good agreement. Observed and calculated frequencies agreed with an rms error of 8.42, 6.60, and 6.95 cm-1 for FMB, CMB, and BMB, respectively. Unambiguous vibrational assignments were made for all fundamentals using PED and eigenvectors. The electronic HOMO-LUMO, H-bonding, and strong conjugative interactions across different molecular entities are discussed using experimental and simulated Ultraviolet-Visible spectra. The title molecules' molecular properties such as dipole moment, mean polarizability, and first-order hyperpolarizability, were calculated to study their non-linear optical (NLO) behavior. The chemical reactivity descriptors and mapped electrostatic surface potential (MESP) were also evaluated. Natural bond orbital (NBO) analysis was used to examine the stability of molecules resulting from hyperconjugative interactions and charge delocalization.Keywords: ftir/raman spectra, DFT, NLO, homo-lumo, NBO, halogenated benzoic acids
Procedia PDF Downloads 76150 Fatty Acids and Inflammatory Protein Biomarkers in Freshly Frozen Plasma Samples from Patients with and without COVID-19
Authors: Alaa Hamed Habib
Abstract:
The Coronavirus disease 2019 (COVID-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and associated with systemic inflammation. Inflammation is an important process that follows infection and facilitates the repair of damaged tissue. Polyunsaturated fatty acids play an important role in the inflammatory process. These lipids can target transcription factors to modulate gene expression and protein function. Here, we evaluated whether differences in basal levels of different types of biomarkers can be detected in freshly frozen plasma samples from patients with and without COVID19. Fatty acid methyl ester (FAME) analysis showed a decrease in arachidic acid and myristic acid, but an increase in caprylic acid, palmitic acid, and eicosenoic acid in the plasma of COVID-19 patients compared to non-COVID19 patients. Multiple chemokines, including IP-10, MCP-1, and MIP-1 beta, were increased in the COVID-19 group compared to the non-COVID-19 group. Similarly, cytokines including IL-1 alpha and IL-8, and cell adhesion and inflammatory response markers including ICAM-1 and E-selectin were greater in the plasma of COVID-19 patients compared to non-COVID-19 patients. A baseline signature of specific polyunsaturated fatty acids, cytokines, and chemokines present in the plasma after COVID-19 viral infection may serve as biomarkers that can be useful in various applications, including determination of the severity of infection, an indication of disease prognosis and consideration for therapeutic options.Keywords: MARKS, COVID 19, UEVS NON COVIDS, kidneys, nanoparticles
Procedia PDF Downloads 7149 Quantification of Hydrogen Sulfide and Methyl Mercaptan in Air Samples from a Waste Management Facilities
Authors: R. F. Vieira, S. A. Figueiredo, O. M. Freitas, V. F. Domingues, C. Delerue-Matos
Abstract:
The presence of sulphur compounds like hydrogen sulphide and mercaptans is one of the reasons for waste-water treatment and waste management being associated with odour emissions. In this context having a quantifying method for these compounds helps in the optimization of treatment with the goal of their elimination, namely biofiltration processes. The aim of this study was the development of a method for quantification of odorous gases in waste treatment plants air samples. A method based on head space solid phase microextraction (HS-SPME) coupled with gas chromatography - flame photometric detector (GC-FPD) was used to analyse H2S and Metil Mercaptan (MM). The extraction was carried out with a 75-μm Carboxen-polydimethylsiloxane fiber coating at 22 ºC for 20 min, and analysed by a GC 2010 Plus A from Shimadzu with a sulphur filter detector: splitless mode (0.3 min), the column temperature program was from 60 ºC, increased by 15 ºC/min to 100 ºC (2 min). The injector temperature was held at 250 ºC, and the detector at 260 ºC. For calibration curve a gas diluter equipment (digital Hovagas G2 - Multi Component Gas Mixer) was used to do the standards. This unit had two input connections, one for a stream of the dilute gas and another for a stream of nitrogen and an output connected to a glass bulb. A 40 ppm H2S and a 50 ppm MM cylinders were used. The equipment was programmed to the selected concentration, and it automatically carried out the dilution to the glass bulb. The mixture was left flowing through the glass bulb for 5 min and then the extremities were closed. This method allowed the calibration between 1-20 ppm for H2S and 0.02-0.1 ppm and 1-3.5 ppm for MM. Several quantifications of air samples from inlet and outlet of a biofilter operating in a waste management facility in the north of Portugal allowed the evaluation the biofilters performance.Keywords: biofiltration, hydrogen sulphide, mercaptans, quantification
Procedia PDF Downloads 476148 Protective Potential of Hyperhalophilic Diatoms Extract Against Lead Induced Oxidative Stress in Rats and Human HepG2 and HEK293 Cells Line
Authors: Wassim Guermazi, Saoussan Boukhris, Neila Annabi Trabelsi, Tarek Rebai, Alya Sellami-Kamoun, Habib Ayadi
Abstract:
This work investigates the protective effects of the microalga Halamphora sp. extract (H. Ext) as a natural product on lead-intoxicated liver and kidney human cells in vitro and in vivo on rats wistar. HepG2 cells line derived from human hepatocellular carcinoma and HEK293 cells line derived from human embryonic kidney were used for the in vitro study. The analysis of the fatty acids methyl esters of the extract was performed by a GC/MS. Four groups of rats, each of which was composed of six animals, were used for the in vivo experiment. The pretreatment of HepG2 and HEK293 cells line with the extract (100 µg mL-1) significantly (p < 0.05) protected against cytotoxicity induced by lead exposure. In vivo, the biochemical parameters in serum, namely malondialdehyde level (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities, were measured in supernatants of organ homogenates. H. Ext was found to be rich in fatty acids, essentially palmitic and palmitoleic accounting respectively 29.46% and 42.07% of total fatty acids. Both in vitro and in vivo, the co-treatment with H. Ext allowed the protection of the liver and kidney cells structure, as well as the significant preservation of normal antioxidant and biochemical parameters in rats. Halamphora extract rich in fatty acids has been proven to be effective in protection against Pb-induced toxicity.Keywords: microalga extract, human cells line, fatty acid, lead exposure, oxidative stress, rats
Procedia PDF Downloads 88147 Evaluation of the Efficiency of Nanomaterials in the Consolidation of Limestone
Authors: Mohamed Saad Gad Elzoghby
Abstract:
Nanomaterials are widely used nowadays for the consolidation of degraded archaeological limestone. It’s one of the most predominant stones in monumental buildings and statuary works. It is exposed to different weathering processes that cause degradation and the presence of deterioration pattern as cracks, fissures, and granular disintegration. Nanomaterials have been applied to limestone consolidation. Among these nanomaterials are nanolimes, i.e., dispersions of lime nanoparticles in alcohols, and nano-silica, i.e., dispersions of silica nanoparticles in water, promising consolidating products for limestone. It was investigated and applied to overcome the disadvantages of traditional consolidation materials such as lime water, water glass, and paraliod. So, researchers investigated and tested the effectiveness of nanomaterials as consolidation materials for limestone. The present study includes an evaluation of some nanomaterials in consolidation limestone stone in comparison with traditional consolidants. These consolidation materials are nano calcium hydroxide nanolime, and nanosilica. The latter is known commercially as Nano Estel and the former Known as Nanorestore compared to traditional consolidants Wacker OH (ethyl silicate) and Paraloid B72 (a copolymer of ethyl methacrylate and methyl acrylate). The study evaluated the consolidation effectiveness of nanomaterials and traditional consolidants by using followed methods, characterization of physical properties of stone, scanning electron microscopy (SEM), X-ray diffractometry, Fourier transforms infrared spectroscopy, and mechanical properties. The study confirmed that nanomaterials were better in the distribution and encapsulation of calcite grains in limestone, and traditional materials were better in improving the physical properties of limestone. It demonstrated that good results could be achieved through mixtures of nanomaterials and traditional consolidants.Keywords: nanomaterials, limestone, consolidation, evaluation, weathering, nanolime, nanosilica, scanning electron microscope
Procedia PDF Downloads 81146 Evaluation of the Efficiency of Nanomaterials in Consolidation of Limestone
Authors: Mohamed Saad Gad Eloghby
Abstract:
Nanomaterials are widely used nowadays for the consolidation of degraded archaeological limestone. It’s one of the most predominant stones in monumental buildings and statuary works. Exposure to different weathering processes caused degradation and the presence of deterioration pattern as cracks, fissures, and granular disintegration. Nanomaterials have been applied to limestone consolidation. Among these nanomaterials are nanolimes, i.e., dispersions of lime nanoparticles in alcohols and nanosilica, i.e., dispersions of silica nanoparticles in water promising consolidating products for limestone. It was investigated and applied to overcome the disadvantages of traditional consolidation materials such as lime water, water glass and paraliod. So, researchers investigated and tested the effectiveness of nanomaterials as consolidation materials for limestone. The present study includes the evaluation of some nano materials in consolidation limestone stone in comparison with traditional consolidantes. These consolidation materials are nano calcium hydroxide nanolime and nanosilica. The latter is known commercially as Nano Estel and the former is known as Nanorestore compared to traditional consolidantes Wacker OH (ethyl silicate) and Paraloid B72 (a copolymer of ethyl methacrylate and methyl acrylate). The study evaluated the consolidation effectiveness of nanomaterials and traditional consolidantes by using followed methods, Characterization of physical properties of stone, Scanning electron microscopy (SEM), X-ray diffractometry, Fourier transform infrared spectroscopy and Mechanical properties. The study confirmed that nanomaterials were better in the distribution and encapsulation of calcite grains in limestone, and traditional materials were better in improving the physical properties of limestone. It demonstrated that good results can be achieved through mixtures of nanomaterials and traditional consolidants.Keywords: nanomaterials, limestone, consolidation, evaluation, weathering, nanolime, nanosilica, scanning electron microscope
Procedia PDF Downloads 76145 Nagami Kumkuat: A Source of Antiviral and Antimicrobial Bioactive Compounds
Authors: Howaida I. Abd-Alla, Nagwa M. M. Shalaby
Abstract:
The fruit rind of Fortunella margarita (Nagami Kumkuat) was investigated for its chemical constituents. Thirteen metabolites were obtained and classified into, a sterol; β-sitosterol (1) and twelve phenolic compounds, three coumarins; xanthotoxin (2), isopimpinellin (3), umbelliferone (4), nine flavonoids of O-glycosides of flavone; apigenin-7-O-β-D-glucopyranoside (5), apigenin-7-O-rhamnoglucoside (rhoifolin) (6), C-glycosides; vitexin (7), vicenin II (8), and the methoxylated; 6-methoxyapigenin-7-methyl ether (9) and tangeretin (10) as well as flavanones class; naringenin (11), liquiritigenin (12), hesperdin (hesperetin-7-rhamnoglucoside) (13). All compounds were identified for the first time in F. margarita except compound (8). The major glycosides 5, 6, and 13 and total crude extract showed potential antiviral activity against live Newcastle disease virus vaccine strains (Komarov and LaSota) and live infectious bursitis viruses vaccine strain D78 replication in VERO cell cultures and on specific pathogen-free embryonated chicken eggs. Antiviral inhibitory concentration fifty (IC50), cytotoxic concentration fifty (CC50), and therapeutic index (TI) were calculated. In addition, the extract and compounds 7 and 13 showed marked antimicrobial activity against different strains of fungi, Gram-positive and negative bacteria, including some foodborne pathogens of animal origin, caused human disease. These results suggested that the extract of F. margarita may be considered potentially useful as a source of natural antiviral and antimicrobial agents. It can be used as an ingredient for functional food and/or pharmaceuticals.Keywords: antimicrobial, antiviral, Fortunella margarita, Nagami Kumkuat, phenolic secondary metabolites
Procedia PDF Downloads 206144 Development of Electrospun Membranes with Defined Polyethylene Collagen and Oxide Architectures Reinforced with Medium and High Intensity Statins
Authors: S. Jaramillo, Y. Montoya, W. Agudelo, J. Bustamante
Abstract:
Cardiovascular diseases (CVD) are related to affectations of the heart and blood vessels, within these are pathologies such as coronary or peripheral heart disease, caused by the narrowing of the vessel wall (atherosclerosis), which is related to the accumulation of Low-Density Lipoproteins (LDL) in the arterial walls that leads to a progressive reduction of the lumen of the vessel and alterations in blood perfusion. Currently, the main therapeutic strategy for this type of alteration is drug treatment with statins, which inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), responsible for modulating the rate of cholesterol production and other isoprenoids in the mevalonate pathway. This enzyme induces the expression of LDL receptors in the liver, increasing their number on the surface of liver cells, reducing the plasma concentration of cholesterol. On the other hand, when the blood vessel presents stenosis, a surgical procedure with vascular implants is indicated, which are used to restore circulation in the arterial or venous bed. Among the materials used for the development of vascular implants are Dacron® and Teflon®, which perform the function of re-waterproofing the circulatory circuit, but due to their low biocompatibility, they do not have the ability to promote remodeling and tissue regeneration processes. Based on this, the present research proposes the development of a hydrolyzed collagen and polyethylene oxide electrospun membrane reinforced with medium and high-intensity statins, so that in future research it can favor tissue remodeling processes from its microarchitecture.Keywords: atherosclerosis, medium and high-intensity statins, microarchitecture, electrospun membrane
Procedia PDF Downloads 137143 Effects of a Bioactive Subfraction of Strobilanthes Crispus on the Tumour Growth, Body Weight and Haematological Parameters in 4T1-Induced Breast Cancer Model
Authors: Yusha'u Shu'aibu Baraya, Kah Keng Wong, Nik Soriani Yaacob
Abstract:
Strobilanthes crispus (S. crispus), is a Malaysian herb locally known as ‘Pecah kaca’ or ‘Jin batu’ which have demonstrated potent anticancer effects in both in vitro and in vivo models. In particular, S. crispus subfraction (SCS) significantly reduced tumor growth in N-methyl-N-Nitrosourea-induced breast cancer rat model. However, there is paucity of information on the effects of SCS in breast cancer metastasis. Thus, in this study, the antimetastatic effects of SCS (100 mg/kg) was investigated following 30 days of treatment in 4T1-induced mammary tumor (n = 5) model. The response to treatment was assessed based on the outcome of the tumour growth, body weight and hematological parameters. The results demonstrated that tumor bearing mice treated with SCS (TM-S) had significant (p<0.05) reduction in the mean tumor number and tumor volume as well as tumor weight compared to the tumor bearing mice (TM), i.e. tumor untreated group. Also, there was no secondary tumor formation or tumor-associated lesions in the major organs of TM-S compared to the TM group. Similarly, comparable body weights were observed among the TM-S, normal (uninduced) mice treated with SCS and normal (untreated/control) mice (NM) groups compared to the TM group (p<0.05). Furthermore, SCS administration does not cause significant changes in the hematological parameters as compared to the NM group, which indicates no sign of anemia and toxicity related effects. In conclusion, SCS significantly inhibited the overall tumor growth and metastasis in 4T1-induced breast cancer mouse model suggesting its promising potentials as therapeutic agent for breast cancer treatment.Keywords: 4T1-cells, breast cancer, metastasis, Strobilanthes crispus
Procedia PDF Downloads 152142 Preparation of Allyl BODIPY for the Click Reaction with Thioglycolic Acid
Authors: Chrislaura Carmo, Luca Deiana, Mafalda Laranjo, Abilio Sobral, Armando Cordova
Abstract:
Photodynamic therapy (PDT) is currently used for the treatment of malignancies and premalignant tumors. It is based on the capture of a photosensitizing molecule (PS) which, when excited by light at a certain wavelength, reacts with oxygen and generates oxidizing species (radicals, singlet oxygen, triplet species) in target tissues, leading to cell death. BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indaceno) derivatives are emerging as important candidates for photosensitizer in photodynamic therapy of cancer cells due to their high triplet quantum yield. Today these dyes are relevant molecules in photovoltaic materials and fluorescent sensors. In this study, it will be demonstrated the possibility that BODIPY can be covalently linked to thioglycolic acid through the click reaction. Thiol−ene click chemistry has become a powerful synthesis method in materials science and surface modification. The design of biobased allyl-terminated precursors with high renewable carbon content for the construction of the thiol-ene polymer networks is essential for sustainable development and green chemistry. The work aims to synthesize the BODIPY (10-(4-(allyloxy) phenyl)-2,8-diethyl-5,5-difluoro-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-c:2',1'-f] [1,3,2] diazaborinin-4-ium-5-uide) and to click reaction with Thioglycolic acid. BODIPY was synthesized by the condensation reaction between aldehyde and pyrrole in dichloromethane, followed by in situ complexation with BF3·OEt2 in the presence of the base. Then it was functionalized with allyl bromide to achieve the double bond and thus be able to carry out the click reaction. The thiol−ene click was performed using DMPA (2,2-Dimethoxy-2-phenylacetophenone) as a photo-initiator in the presence of UV light (320–500 nm) in DMF at room temperature for 24 hours. Compounds were characterized by standard analytical techniques, including UV-Vis Spectroscopy, 1H, 13C, 19F NMR and mass spectroscopy. The results of this study will be important to link BODIPY to polymers through the thiol group offering a diversity of applications and functionalization. This new molecule can be tested as third-generation photosensitizers, in which the dye is targeted by antibodies or nanocarriers by cells, mainly in cancer cells, PDT and Photodynamic Antimicrobial Chemotherapy (PACT). According to our studies, it was possible to visualize a click reaction between allyl BODIPY and thioglycolic acid. Our team will also test the reaction with other thiol groups for comparison. Further, we will do the click reaction of BODIPY with a natural polymer linked with a thiol group. The results of the above compounds will be tested in PDT assays on various lung cancer cell lines.Keywords: bodipy, click reaction, thioglycolic acid, allyl, thiol-ene click
Procedia PDF Downloads 132141 Integrated Two Stage Processing of Biomass Conversion to Hydroxymethylfurfural Esters Using Ionic Liquid as Green Solvent and Catalyst: Synthesis of Mono Esters
Authors: Komal Kumar, Sreedevi Upadhyayula
Abstract:
In this study, a two-stage process was established for the synthesis of HMF esters using ionic liquid acid catalyst. Ionic liquid catalyst with different strength of the Bronsted acidity was prepared in the laboratory and characterized using 1H NMR, FT-IR, and 13C NMR spectroscopy. Solid acid catalyst from the ionic liquid catalyst was prepared using the immobilization method. The acidity of the synthesized acid catalyst was measured using Hammett function and titration method. Catalytic performance was evaluated for the biomass conversion to 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) in methyl isobutyl ketone (MIBK)-water biphasic system. A good yield of 5-HMF and LA was found at the different composition of MIBK: Water. In the case of MIBK: Water ratio 10:1, good yield of 5-HMF was observed at ambient temperature 150˚C. Upgrading of 5-HMF into monoesters from the reaction of 5-HMF and reactants using biomass-derived monoacid were performed. Ionic liquid catalyst with -SO₃H functional group was found to be best efficient in comparative of a solid acid catalyst for the esterification reaction and biomass conversion. A good yield of 5-HMF esters with high 5-HMF conversion was found to be at 105˚C using the best active catalyst. In this process, process A was the hydrothermal conversion of cellulose and monomer into 5-HMF and LA using acid catalyst. And the process B was the esterification followed by using similar acid catalyst. All monoesters of 5-HMF synthesized here can be used in chemical, cross linker for adhesive or coatings and pharmaceutical industry. A theoretical density functional theory (DFT) study for the optimization of the ionic liquid structure was performed using the Gaussian 09 program to find out the minimum energy configuration of ionic liquid catalyst.Keywords: biomass conversion, 5-HMF, Ionic liquid, HMF ester
Procedia PDF Downloads 251140 Biodiesel Fuel Properties of Mixed Culture Microalgae under Different CO₂ Concentration from Coal Fired Flue Gas
Authors: Ambreen Aslam, Tahira Aziz Mughal, Skye R. Thomas-Hall, Peer M. Schenk
Abstract:
Biodiesel is an alternative to petroleum-derived fuel mainly composed of fatty acid from oleaginous microalgae feedstock. Microalgae produced fatty acid methyl esters (FAMEs) as they can store high levels of lipids without competing for food productivity. After lipid extraction and esterification, fatty acid profile from algae feedstock possessed the abundance of fatty acids with carbon chain length specifically C16 and C18. The qualitative analysis of FAME was done by cultivating mix microalgae consortia under three different CO₂ concentrations (1%, 3%, and 5.5%) from a coal fired flue gas. FAME content (280.3 µg/mL) and productivity (18.69 µg/mL/D) was higher under 1% CO₂ (flue gas) as compare to other treatments. Whereas, Mixed C. (F) supplemented with 5.5% CO₂ (50% flue gas) had higher SFA (36.28%) and UFA (63.72%) which improve the oxidative stability of biodiesel. Subsequently, low Iodine value (136.3 gI₂/100g) and higher Cetane number (52) of Mixed C.+P (F) were found to be in accordance with European (EN 14214) standard under 5.5% CO₂ along with 50mM phosphate buffer. Experimental results revealed that sufficient phosphate reduced FAME productivity but significantly enhance biodiesel quality. This research aimed to develop an integrated approach of utilizing flue gas (as CO₂ source) for significant improvement in biodiesel quality under surplus phosphorus. CO₂ sequestration from industrial flue gas not only reduce greenhouse gases (GHG) emissions but also ensure sustainability and eco-friendliness of the biodiesel production process through microalgae.Keywords: biodiesel analysis, carbon dioxide, coal fired flue gas, FAME productivity, fatty acid profile, fuel properties, lipid content, mixed culture microalgae
Procedia PDF Downloads 328139 Enhancement in Bactericidal Activity of Hydantoin Based Microsphere from Smooth to Rough
Authors: Rajani Kant Rai, Jayakrishnan Athipet
Abstract:
There have been several attempts to prepare polymers with antimicrobial properties by doping with various N-halamines. Hydantoins (Cyclic N-halamine) is of importance due to their stability rechargeable chloroamide function, broad-spectrum anti-microbial action and ability to prevent resistance to the organisms. Polymerizable hydantoins are synthesized by tethering vinyl moieties to 5,5,-dialkyl hydantoin sacrificing the imide hydrogen in the molecule thereby restricting the halogen capture only to the amide nitrogen that results in compromised antibacterial activity. In order to increase the activity of the antimicrobial polymer, we have developed a scheme to maximize the attachment of chlorine to the amide and the imide moieties of hydantoin. Vinyl hydantoin monomer, (Z)-5-(4-((3-methylbuta-1,3-dien-2-yl)oxy)benzylidene)imidazolidine-2,4-dione (MBBID) was synthesized and copolymerized with a commercially available monomer, methyl methacrylate, by free radical polymerization. The antimicrobial activity of hydantoin is strongly dependent on their surface area and hence their microbial activity increases when incorporated in microspheres or nanoparticles as compared to their bulk counterpart. In this regard, smooth and rough surface microsphere of the vinyl monomer (MBBID) with commercial monomer was synthesized. The oxidative chlorine content of the copolymer ranged from 1.5 to 2.45 %. Further, to demonstrate the water purification potential, the thin column was packed with smooth or rough microspheres and challenged with simulated contaminated water that exhibited 6 log kill (total kill) of the bacteria in 20 minutes of exposure with smooth (25 mg/ml) and rough microsphere (15.0 mg/ml).Keywords: cyclic N-halamine, vinyl hydantoin monomer, rough surface microsphere, simulated contaminated water
Procedia PDF Downloads 145138 Screening of Potential Cytotoxic Activities of Some Medicinal Plants of Saudi Arabia
Authors: Syed Farooq Adil, Merajuddinkhan, Mujeeb Khan, Hamad Z. Alkhathlan
Abstract:
Phytochemicals from plant extracts belong to an important source of natural products which have demonstrated excellent cytotoxic activities. However, plants of different origins exhibit diverse chemical compositions and bioactivities. Therefore, the discovery of plants based new anticancer agents from different parts of the world is always challenging. In this study, methanolic extracts of different parts of 11 plants from Saudi Arabia have been tested in vitro for their anticancer potential on human liver cancer cell line (HepG2). Particularly, for this study, plants from Asteraceae, Resedaceae, and Polygonaceae families were chosen on the basis of locally available ethnobotanical data and their medicinal properties. Among 12 tested extract samples, three samples obtained from Artemisia monosperma stem, Ochradenus baccatus aerial parts, and Pulicaria glutinosa stem have demonstrated interesting cytotoxic activities with a cell viability of 29.3%, 28.4% and 24.2%, respectively. Whereas, four plant extracts including Calendula arvensis aerial parts, Scorzonera musilii whole plant, A. monosperma leaves show moderate anticancer properties bearing a cell viability ranging from 11.9 to 16.7%. The remaining extracts have shown poor cytotoxic activities. Subsequently, GC-MS analysis of methanolic extracts of the four most active plants extracts such as C. comosum, O. baccatus, P. glutinosa and A. monosperma detected the presence of 41 phytomolecules. Among which 3-(4-hydroxyphenyl) propionitrile (1), 8,11-octadecadiynoic acid methyl ester (2), 6,7-dimethoxycoumarin (3), and 1-(2-hydroxyphenyl) ethenone (4) were found to be the lead compounds of C. comosum, O. baccatus P. glutinosa and A. monosperma, respectively.Keywords: medicinal plants, asteraceae, polygonaceae, hepg2
Procedia PDF Downloads 127