Search results for: indoor exploration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1725

Search results for: indoor exploration

1365 Cogeneration Unit for Small Stove

Authors: Michal Spilacek, Marian Brazdil, Otakar Stelcl, Jiri Pospisil

Abstract:

This paper shows an experimental testing of a small unit for combustion of solid fuels, such as charcoal and wood logs, that can provide electricity. One of the concepts is that the unit does not require a qualified personnel for its operation. The unit itself is composed of two main parts. The design requires a heat producing stove and an electricity producing thermoelectric generator. After the construction the unit was tested and the results shows that the emission release is within the legislative requirements for emission production and environmental protection. That qualifies such unit for indoor application.

Keywords: micro-cogeneration, thermoelectric generator, biomass combustion, wood stove

Procedia PDF Downloads 603
1364 An Overview of Pakistani Shales for Shale Gas Exploration and Comparison to North American Shale Plays

Authors: Ghulam Sohail, Christopher Hawkes

Abstract:

Pakistan has been facing a growing energy crisis for the last decade, and the government is seeking new horizons for increasing oil and gas production to reduce the gap between supply and demand. Recent developments in technologies to produce natural gas from shales at economical rates has unlocked new horizons for hydrocarbon exploration and development throughout the world. Operating companies in the U.S.A. and Canada have been particularly successful at producing shale gas, so comparing against the properties of shale gas reservoirs in these countries is used for an initial assessment of prospective shale gas reservoirs in other parts of the world. In this study, selected source rocks of Pakistan are evaluated for their shale gas potential using analogs selected from various North American shales for which data have been published. Published data for Pakistani shales were compiled, then assessed and supplemented through consultation with industry professionals. Pakistani formations reviewed are the Datta (shaly sandstone), Hangu (sandy shale), Patala (sandy shale), Ranikot (shaly sandstone), Sembar (sandy shale) and Lower Goru (shaly sandstone) formations, all of which are known source rocks in the Indus Basin. For this study, available geological, geochemical, petrophysical and elastic parameters have been investigated and are correlated specifically with the eight most active shale gas plays of the U.S.A., while data for other North American shale gas plays are used for general discussion on prospective Pakistani shales. The results show that the geological and geochemical parameters of all the Pakistani shales reviewed in this work are promising regarding their shale gas. However, more petrophysical and geomechanical data are required before conclusions on economic production from these shales can be made with confidence.

Keywords: Canada shale gas, Indus Basin, Pakistani shales, U.S.A shale gas

Procedia PDF Downloads 175
1363 Understanding Profit Shifting by Multinationals in the Context of Cross-Border M&A: A Methodological Exploration

Authors: Michal Friedrich

Abstract:

Cross-border investment has never been easier than in today’s global economy. Despite recent initiatives tightening the international tax landscape, profit shifting and tax optimization by multinational entities (MNEs) in the context of cross-border M&A remain persistent and complex phenomena that warrant in-depth exploration. By synthesizing the outcomes of existing research, this study aims to first provide a methodological framework for identifying MNEs’ profit-shifting behavior and quantifying its fiscal impacts via various macroeconomic and microeconomic approaches. The study also proposes additional methods and qualitative/quantitative measures for extracting insight into the profit shifting behavior of MNEs in the context of their M&A activities at industry and entity levels. To develop the proposed methods, this study applies the knowledge of international tax laws and known profit shifting conduits (incl. dividends, interest, and royalties) on several model cases/types of cross-border acquisitions and post-acquisition integration activities by MNEs and highlights important factors that encourage or discourage tax optimization. Follow-up research is envisaged to apply the methods outlined in this study on published data on real-world M&A transactions to gain practical country-by-country, industry and entity-level insights. In conclusion, this study seeks to contribute to the ongoing discourse on profit shifting by providing a methodological toolkit for exploring profit shifting tendencies MNEs in connection with their M&A activities and to serve as a backbone for further research. The study is expected to provide valuable insight to policymakers, tax authorities, and tax professionals alike.

Keywords: BEPS, cross-border M&A, international taxation, profit shifting, tax optimization

Procedia PDF Downloads 57
1362 Exploring Environmental, Social, and Governance (ESG) Standards for Space Exploration

Authors: Rachael Sullivan, Joshua Berman

Abstract:

The number of satellites orbiting earth are in the thousands now. Commercial launches are increasing, and civilians are venturing into the outer reaches of the atmosphere. As the space industry continues to grow and evolve, so too will the demand on resources, the disparities amongst socio-economic groups, and space company governance standards. Outside of just ensuring that space operations are compliant with government regulations, export controls, and international sanctions, companies should also keep in mind the impact their operations will have on society and the environment. Those looking to expand their operations into outer space should remain mindful of both the opportunities and challenges that they could encounter along the way. From commercial launches promoting civilian space travel—like the recent launches from Blue Origin, Virgin Galactic, and Space X—to regulatory and policy shifts, the commercial landscape beyond the Earth's atmosphere is evolving. But practices will also have to become sustainable. Through a review and analysis of space industry trends, international government regulations, and empirical data, this research explores how Environmental, Social, and Governance (ESG) reporting and investing will manifest within a fast-changing space industry.Institutions, regulators, investors, and employees are increasingly relying on ESG. Those working in the space industry will be no exception. Companies (or investors) that are already engaging or plan to engage in space operations should consider 1) environmental standards and objectives when tackling space debris and space mining, 2) social standards and objectives when considering how such practices may impact access and opportunities for different socioeconomic groups to the benefits of space exploration, and 3) how decision-making and governing boards will function ethically, equitably, and sustainably as we chart new paths and encounter novel challenges in outer space.

Keywords: climate, environment, ESG, law, outer space, regulation

Procedia PDF Downloads 129
1361 Integrated Services Hub for Exploration and Production Industry: An Indian Narrative

Authors: Sunil Arora, Anitya Kumar Jena, S. A. Ravi

Abstract:

India is at the cusp of major reforms in the hydrocarbon sector. Oil and gas sector is highly liberalised to attract private investment and to increase domestic production. Major hydrocarbon Exploration & Production (E&P) activity here have been undertaken by Government owned companies but with easing up and reworking of hydro carbon exploration licensing policies private players have also joined the fray towards achieving energy security for India. Government of India has come up with policy and administrative reforms including Hydrocarbon Exploration and Licensing Policy (HELP), Sagarmala (port-led development with coastal connectivity), and Development of Small Discovered Fields, etc. with the intention to make industry friendly conditions for investment, ease of doing business and reduce gestation period. To harness the potential resources of Deep water and Ultra deep water, High Pressure – High Temperature (HP-HT) regions, Coal Bed Methane (CBM), Shale Hydrocarbons besides Gas Hydrates, participation shall be required from both domestic and international players. Companies engaged in E&P activities in India have traditionally been managing through their captive supply base, but with crude prices under hammer, the need is being felt to outsource non-core activities. This necessitates establishment of a robust support services to cater to E&P Industry, which is currently non-existent to meet the bourgeon challenges. This paper outlines an agenda for creating an Integrated Services Hub (ISH) under Special Economic Zone (SEZ) to facilitate complete gamut of non-core support activities of E&P industry. This responsive and proficient multi-usage facility becomes viable with better resource utilization, economies of scale to offer cost effective services. The concept envisages companies to bring-in their core technical expertise leaving complete hardware peripherals outsourced to this ISH. The Integrated Services Hub, complying with the best in class global standards, shall typically provide following Services under Single Window Solution, but not limited to: a) Logistics including supply base operations, transport of manpower and material, helicopters, offshore supply vessels, warehousing, inventory management, sourcing and procurement activities, international freight forwarding, domestic trucking, customs clearance service etc. b) Trained/Experienced pool of competent Manpower (Technical, Security etc.) will be available for engagement by companies on either short or long term basis depending upon the requirements with provisions of meeting any training requirements. c) Specialized Services through tie-up with global best companies for Crisis Management, Mud/Cement, Fishing, Floating Dry-dock besides provision of Workshop, Repair and Testing facilities, etc. d) Tools and Tackles including drill strings, etc. A pre-established Integrated Services Hub shall facilitate an early start-up of activities with substantial savings in time lines. This model can be replicated at other parts of the world to expedite E&P activities.

Keywords: integrated service hub, India, oil gas, offshore supply base

Procedia PDF Downloads 132
1360 The Closed Cavity Façade (CCF): Optimization of CCF for Enhancing Energy Efficiency and Indoor Environmental Quality in Office Buildings

Authors: Michalis Michael, Mauro Overend

Abstract:

Buildings, in which we spend 87-90% of our time, act as a shelter protecting us from environmental conditions and weather phenomena. The building's overall performance is significantly dependent on the envelope’s glazing part, which is particularly critical as it is the most vulnerable part to heat gain and heat loss. However, conventional glazing technologies have relatively low-performance thermo-optical characteristics. In this regard, during winter, the heat losses due to the glazing part of a building envelope are significantly increased as well as the heat gains during the summer period. In this study, the contribution of an innovative glazing technology, namely Closed Cavity Façade (CCF) in improving energy efficiency and IEQ in office buildings is examined, aiming to optimize various design configurations of CCF. Using Energy Plus and IDA ICE packages, the performance of several CCF configurations and geometries for various climate types were investigated, aiming to identify the optimum solution. The model used for the simulations and optimization process was MATELab, a recently constructed outdoor test facility at the University of Cambridge (UK). The model was previously experimentally calibrated. The study revealed that the use of CCF technology instead of conventional double or triple glazing leads to important benefits. Particularly, the replacement of the traditional glazing units, used as the baseline, with the optimal configuration of CCF led to a decrease in energy consumption in the range of 18-37% (depending on the location). This mainly occurs due to integrating shading devices in the cavity and applying proper glass coatings and control strategies, which lead to improvement of thermal transmittance and g-value of the glazing. Since the solar gain through the façade is the main contributor to energy consumption during cooling periods, it was observed that a higher energy improvement is achieved in cooling-dominated locations. Furthermore, it was shown that a suitable selection of the constituents of a closed cavity façade, such as the colour and type of shading devices and the type of coatings, leads to an additional improvement of its thermal performance, avoiding overheating phenomena and consequently ensuring temperatures in the glass cavity below the critical value, and reducing the radiant discomfort providing extra benefits in terms of Indoor Environmental Quality (IEQ).

Keywords: building energy efficiency, closed cavity façade, optimization, occupants comfort

Procedia PDF Downloads 50
1359 Geological, Geochronological, Geochemical, and Geophysical Characteristics of the Dalli Porphyry Cu-Au Deposit in Central Iran; Implications for Exploration

Authors: Hooshag Asadi Haroni, Maryam Veiskarami, Yongjun Lu

Abstract:

The Dalli gold-rich porphyry deposit (17 Mt @ 0.5% Cu and 0.65 g/t Au) is located in the Urumieh-Dokhtar Magmatic Arc (UDMA), a small segment of the Tethyan metallogenic belt, hosting several porphyry Cu (Mo-Au) systems in Iran. This research characterizes the Dalli deposit to define exploration criteria in advanced exploration such as the drilling of possible blind porphyry centers. Geological map, trench/drill hole geochemical and ground magnetic data, and age dating and isotope trace element analyses, carried out at the John De Laeter Research Center of Curtin University, were used to characterize the Delli deposit. Mineralization at Dalli is hosted by NE-trending quartz-diorite porphyry stocks (~ 200m in diameter) intruded by a wall-rock andesite porphyry. Disseminated and stockwork Cu-Au mineralization is related to potassic alteration, comprising magnetite, late K-feldspar and biotite, and quartz-sericite-specularite overprint, surrounded by extensive barren argillic and propylitic alterations. In the peripheries of the porphyry centers, there are N-trending vuggy quartz veins, hosting epithermal Au-Ag-As-Sb mineralization. Geochemical analyses of drill core samples showed that the core of the porphyry stocks is low-grade, whereas the high-grade disseminated and stockwork mineralization (~ 1% Cu and ~ 1.2 g/t Au) occurred at the contact of the porphyry stocks and andesite porphyry. Geochemical studies of the drill hole and trench samples showed a strong correlation between Cu and Au and both show a second-order correlation with Fe and As. Magnetic survey revealed two significant magnetic anomalies, associated with intensive potassic alteration, in the reduced-to-the-pole magnetic map of the area. A relatively weaker magnetic anomaly, showing no surface porphyry expressions, is located on a lithocap, consisting of advanced argillic alteration, vuggy quartz veins, and surface expressions of epithermal geochemical signatures. The association of the lithocap and the weak magnetic anomaly could be indicative of a hidden mineralized porphyry center. Litho-geochemical analyses of the least altered Dalli intrusions and volcanic rocks indicated high Sr/Y (49-61) and Eu/Eu* (0.89-0.92), features typical of Cu porphyries. The U-Pb dating of zircons of the mineralized quartz diorite and andesite porphyry, carried out by laser ablation inductively coupled plasma mass spectrometry, yielded magmatic crystallization ages of 15.4-16.0 Ma (Middle Miocene). The zircon trace element concentrations of Dalli are characterized by high Eu/Eu* (0.3-0.8), (Ce/Nd)/Y (0.01-0.3), and 10000*(Eu/Eu*)/Y (2-15) ratios, similar to fertile porphyry suites such as the giant Sar-Cheshmeh and Qulong porphyry Cu deposits along the Tethyan belt. This suggests that the Middle Miocene Dalli intrusions are fertile and require extensive deep drillings to define their potential. Chondrite-normalized rare earth element (REE) patterns show no significant Eu anomalies, and are characterized by light-REE enrichments (La/Sm)n = 2.57–6.40). In normalized multi-element diagrams, analyzed rocks are characterized by enrichments in large ion lithophile elements (LILE) and depletions in high field strength elements (HFSE), and display typical features of subduction-related calc-alkaline magmas. The characteristics of the Dalli deposit provided several recognition criteria for detailed exploration of Cu-Au porphyry deposits and highlighted the importance of the UDMA as a potentially significant, economically important, but relatively underexplored porphyry province.

Keywords: porphyry, gold, geochronology, magnetic, exploration

Procedia PDF Downloads 41
1358 Empathy and Yoga Philosophy: Both Eastern and Western Concepts

Authors: Jacqueline Jasmine Kumar

Abstract:

This paper seeks to challenge the predominate Western-centric paradigm concerning empathy by conducting an exploration of its presence within both Western and Eastern philosophical traditions. The primary focus of this inquiry is the examination of the Indian yogic tradition, encompassing the four yogas: bhakti (love/devotion), karma (action), jnāna (knowledge), and rāja (psychic control). Through this examination, it is demonstrated that empathy does not exclusively originate from Western philosophical thought. Rather than superimposing the Western conceptualization of empathy onto the tenets of Indian philosophy, this study endeavours to unearth a distinct array of ideas and concepts within the four yogas, which significantly contribute to our comprehension of empathy as a universally relevant phenomenon. To achieve this objective, an innovative approach is adopted, delving into various facets of empathy, including the propositional, affective/intuitive, perspective-taking, and actionable dimensions. This approach intentionally deviates from conventional Western frameworks, shifting the emphasis towards lived morally as opposed to engagement in abstract theoretical discourse. While it is acknowledged that the explicit term “empathy” may not be overly articulated within the yogic tradition, a scrupulous examination reveals the underlying substance and significance of this phenomenon. Throughout this comparative analysis, the paper aims to lay a robust foundation for the discourse of empathy within the contexts of the human experience. By assimilating insights gleaned from the Indian yogic tradition, it contributes to the expansion of our comprehension of empathy, enabling an exploration of its multifaceted dimensions. Ultimately, this scholarly endeavour facilitates the development of a more comprehensive and inclusive perspective on empathy, transcending cultural boundaries and enriching our collective repository of knowledge.

Keywords: Bhakti, Yogic, Jnana, Karma

Procedia PDF Downloads 56
1357 Diffuse CO₂ Degassing to Study Blind Geothermal Systems: The Acoculco, Puebla (Mexico) Case Study

Authors: Mirna Guevara, Edgar Santoyo, Daniel Perez-Zarate, Erika Almirudis

Abstract:

The Acoculco caldera located in Puebla (Mexico) has been preliminary identified as a blind hot-dry rock geothermal system. Two drilled wells suggest the existence of high temperatures >300°C and non-conventional tools are been applied to study this system. A comprehensive survey of soil-gas (CO₂) flux measurements (1,500 sites) was carried out during the dry seasons over almost two years (2015 and 2016). Isotopic analyses of δ¹³CCO₂ were performed to discriminate the origin source of the CO2 fluxes. The soil CO2 flux measurements were made in situ by the accumulation chamber method, whereas gas samples for δ13CCO2 were selectively collected from the accumulation chamber with evacuated gas vials via a septum. Two anomalous geothermal zones were identified as a result of these campaigns: Los Azufres (19°55'29.4'' N; 98°08'39.9'' W; 2,839 masl) and Alcaparrosa (19°55'20.6'' N; 98°08'38.3'' W; 2,845 masl). To elucidate the origin of the C in soil CO₂ fluxes, the isotopic signature of δ¹³C was used. Graphical Statistical Analysis (GSA) and a three end-member mixing diagram were used to corroborate the presence of distinctive statistical samples, and trends for the diffuse gas fluxes. Spatial and temporal distributions of the CO₂ fluxes were studied. High CO₂ emission rates up to 38,217 g/m2/d and 33,706 g/m2/d were measured for the Los Azufres and Alcaparrosa respectively; whereas the δ¹³C signatures showed values ranging from -3.4 to -5.5 o/oo for both zones, confirming their magmatic origin. This study has provided a valuable framework to set the direction of further exploration campaigns in the Acoculco caldera. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: accumulation chamber method, carbon dioxide, diffusive degassing, geothermal exploration

Procedia PDF Downloads 244
1356 Optimizing the Window Geometry Using Fractals

Authors: K. Geetha Ramesh, A. Ramachandraiah

Abstract:

In an internal building space, daylight becomes a powerful source of illumination. The challenge therefore, is to develop means of utilizing both direct and diffuse natural light in buildings while maintaining and improving occupant's visual comfort, particularly at greater distances from the windows throwing daylight. The geometrical features of windows in a building have significant effect in providing daylight. The main goal of this research is to develop an innovative window geometry, which will effectively provide the daylight component adequately together with internal reflected component(IRC) and also the external reflected component(ERC), if any. This involves exploration of a light redirecting system using fractal geometry for windows, in order to penetrate and distribute daylight more uniformly to greater depths, minimizing heat gain and glare, and also to reduce building energy use substantially. Of late the creation of fractal geometrical window and the occurrence of daylight illuminance due to such windows is becoming an interesting study. The amount of daylight can change significantly based on the window geometry and sky conditions. This leads to the (i) exploration of various fractal patterns suitable for window designs, and (ii) quantification of the effect of chosen fractal window based on the relationship between the fractal pattern, size, orientation and glazing properties for optimizing daylighting. There are a lot of natural lighting applications able to predict the behaviour of a light in a room through a traditional opening - a regular window. The conventional prediction methodology involves the evaluation of the daylight factor, the internal reflected component and the external reflected component. Having evaluated the daylight illuminance level for a conventional window, the technical performance of a fractal window for an optimal daylighting is to be studied and compared with that of a regular window. The methodologies involved are highlighted in this paper.

Keywords: daylighting, fractal geometry, fractal window, optimization

Procedia PDF Downloads 288
1355 The Quality Assessment of Seismic Reflection Survey Data Using Statistical Analysis: A Case Study of Fort Abbas Area, Cholistan Desert, Pakistan

Authors: U. Waqas, M. F. Ahmed, A. Mehmood, M. A. Rashid

Abstract:

In geophysical exploration surveys, the quality of acquired data holds significant importance before executing the data processing and interpretation phases. In this study, 2D seismic reflection survey data of Fort Abbas area, Cholistan Desert, Pakistan was taken as test case in order to assess its quality on statistical bases by using normalized root mean square error (NRMSE), Cronbach’s alpha test (α) and null hypothesis tests (t-test and F-test). The analysis challenged the quality of the acquired data and highlighted the significant errors in the acquired database. It is proven that the study area is plain, tectonically least affected and rich in oil and gas reserves. However, subsurface 3D modeling and contouring by using acquired database revealed high degrees of structural complexities and intense folding. The NRMSE had highest percentage of residuals between the estimated and predicted cases. The outcomes of hypothesis testing also proved the biasness and erraticness of the acquired database. Low estimated value of alpha (α) in Cronbach’s alpha test confirmed poor reliability of acquired database. A very low quality of acquired database needs excessive static correction or in some cases, reacquisition of data is also suggested which is most of the time not feasible on economic grounds. The outcomes of this study could be used to assess the quality of large databases and to further utilize as a guideline to establish database quality assessment models to make much more informed decisions in hydrocarbon exploration field.

Keywords: Data quality, Null hypothesis, Seismic lines, Seismic reflection survey

Procedia PDF Downloads 139
1354 Exploration of FOMO, or the 'Fear of Missing out' and the Use of Mindfulness and Values-Based Interventions for Alleviating Its Effects and Bolstering Well-Being

Authors: Chasity O'Connell

Abstract:

The use of social media and networking sites play a significant role in the lives of adolescents and adults. While research supports that social support and connectedness in general is beneficial; the nature of communication and interaction through social media and its subsequent benefits and impacts could be arguably different. As such, this research aims to explore a specific facet of social media interaction called fear of missing out, or 'FOMO' and investigate its relationship within the context of life stressors, social media usage, anxiety and depressive-symptoms, mindfulness, and psychological well-being. FOMO is the 'uneasy and sometimes all-consuming feeling that you’re missing out—that your peers are doing, in the know about, or in possession of more or something better than you'. Research suggests that FOMO can influence an individual’s level of engagement with friends and social media consumption, drive decisions on participating in various online or offline activities, and ultimately impact mental health. This study hopes to explore the potentially mitigating influence of mindfulness and values-based interventions in reducing the discomfort and distress that can accompany FOMO and increase the sense of psychological well-being in allowing for a more thoughtful and deliberate engagement in life. This study will include an intervention component wherein participants (comprised of university students and adults in the community) will partake in a six-week, group-based intervention focusing on learning practical mindfulness skills and values-exploration exercises (along with a waitlist control group). In doing so, researchers hope to understand if interventions centered on increasing one’s awareness of the present moment and one’s internal values impact decision-making and well-being with regard to social interaction and relationships.

Keywords: FOMO, mindfulness, values, stress, psychological well-being, intervention, distress

Procedia PDF Downloads 180
1353 India's Geothermal Energy Landscape and Role of Geophysical Methods in Unravelling Untapped Reserves

Authors: Satya Narayan

Abstract:

India, a rapidly growing economy with a burgeoning population, grapples with the dual challenge of meeting rising energy demands and reducing its carbon footprint. Geothermal energy, an often overlooked and underutilized renewable source, holds immense potential for addressing this challenge. Geothermal resources offer a valuable, consistent, and sustainable energy source, and may significantly contribute to India's energy. This paper discusses the importance of geothermal exploration in India, emphasizing its role in achieving sustainable energy production while mitigating environmental impacts. It also delves into the methodology employed to assess geothermal resource feasibility, including geophysical surveys and borehole drilling. The results and discussion sections highlight promising geothermal sites across India, illuminating the nation's vast geothermal potential. It detects potential geothermal reservoirs, characterizes subsurface structures, maps temperature gradients, monitors fluid flow, and estimates key reservoir parameters. Globally, geothermal energy falls into high and low enthalpy categories, with India mainly having low enthalpy resources, especially in hot springs. The northwestern Himalayan region boasts high-temperature geothermal resources due to geological factors. Promising sites, like Puga Valley, Chhumthang, and others, feature hot springs suitable for various applications. The Son-Narmada-Tapti lineament intersects regions rich in geological history, contributing to geothermal resources. Southern India, including the Godavari Valley, has thermal springs suitable for power generation. The Andaman-Nicobar region, linked to subduction and volcanic activity, holds high-temperature geothermal potential. Geophysical surveys, utilizing gravity, magnetic, seismic, magnetotelluric, and electrical resistivity techniques, offer vital information on subsurface conditions essential for detecting, evaluating, and exploiting geothermal resources. The gravity and magnetic methods map the depth of the mantle boundary (high-temperature) and later accurately determine the Curie depth. Electrical methods indicate the presence of subsurface fluids. Seismic surveys create detailed sub-surface images, revealing faults and fractures and establishing possible connections to aquifers. Borehole drilling is crucial for assessing geothermal parameters at different depths. Detailed geochemical analysis and geophysical surveys in Dholera, Gujarat, reveal untapped geothermal potential in India, aligning with renewable energy goals. In conclusion, geophysical surveys and borehole drilling play a pivotal role in economically viable geothermal site selection and feasibility assessments. With ongoing exploration and innovative technology, these surveys effectively minimize drilling risks, optimize borehole placement, aid in environmental impact evaluations, and facilitate remote resource exploration. Their cost-effectiveness informs decisions regarding geothermal resource location and extent, ultimately promoting sustainable energy and reducing India's reliance on conventional fossil fuels.

Keywords: geothermal resources, geophysical methods, exploration, exploitation

Procedia PDF Downloads 58
1352 System Devices to Reduce Particulate Matter Concentrations in Railway Metro Systems

Authors: Armando Cartenì

Abstract:

Within the design of sustainable transportation engineering, the problem of reducing particulate matter (PM) concentrations in railways metro system was not much discussed. It is well known that PM levels in railways metro system are mainly produced by mechanical friction at the rail-wheel-brake interactions and by the PM re-suspension caused by the turbulence generated by the train passage, which causes dangerous problems for passenger health. Starting from these considerations, the aim of this research was twofold: i) to investigate the particulate matter concentrations in a ‘traditional’ railways metro system; ii) to investigate the particulate matter concentrations of a ‘high quality’ metro system equipped with design devices useful for reducing PM concentrations: platform screen doors, rubber-tyred and an advanced ventilation system. Two measurement surveys were performed: one in the ‘traditional’ metro system of Naples (Italy) and onother in the ‘high quality’ rubber-tyred metro system of Turin (Italy). Experimental results regarding the ‘traditional’ metro system of Naples, show that the average PM10 concentrations measured in the underground station platforms are very high and range between 172 and 262 µg/m3 whilst the average PM2,5 concentrations range between 45 and 60 µg/m3, with dangerous problems for passenger health. By contrast the measurements results regarding the ‘high quality’ metro system of Turin show that: i) the average PM10 (PM2.5) concentrations measured in the underground station platform is 22.7 µg/m3 (16.0 µg/m3) with a standard deviation of 9.6 µg/m3 (7.6 µg/m3); ii) the indoor concentrations (both for PM10 and for PM2.5) are statistically lower from those measured in outdoors (with a ratio equal to 0.9-0.8), meaning that the indoor air quality is greater than those in urban ambient; iii) that PM concentrations in underground stations are correlated to the trains passage; iv) the inside trains concentrations (both for PM10 and for PM2.5) are statistically lower from those measured at station platform (with a ratio equal to 0.7-0.8), meaning that inside trains the use of air conditioning system could promote a greater circulation that clean the air. The comparison among the two case studies allow to conclude that the metro system designed with PM reduction devices allow to reduce PM concentration up to 11 times against a ‘traditional’ one. From these results, it is possible to conclude that PM concentrations measured in a ‘high quality’ metro system are significantly lower than the ones measured in a ‘traditional’ railway metro systems. This result allows possessing the bases for the design of useful devices for retrofitting metro systems all around the world.

Keywords: air quality, pollutant emission, quality in public transport, underground railway, external cost reduction, transportation planning

Procedia PDF Downloads 192
1351 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving

Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem

Abstract:

This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.

Keywords: energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability

Procedia PDF Downloads 285
1350 Passive Solar Techniques to Improve Thermal Comfort and Reduce Energy Consumption of Domestic Use

Authors: Naci Kalkan, Ihsan Dagtekin

Abstract:

Passive design responds to improve indoor thermal comfort and minimize the energy consumption. The present research analyzed the how efficiently passive solar technologies generate heating and cooling and provide the system integration for domestic applications. In addition to this, the aim of this study is to increase the efficiency of solar systems system with integration some innovation and optimization. As a result, outputs of the project might start a new sector to provide environmentally friendly and cheap cooling for domestic use.

Keywords: passive solar systems, heating, cooling, thermal comfort, ventilation systems

Procedia PDF Downloads 279
1349 Optimizing Solids Control and Cuttings Dewatering for Water-Powered Percussive Drilling in Mineral Exploration

Authors: S. J. Addinell, A. F. Grabsch, P. D. Fawell, B. Evans

Abstract:

The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising down-hole water-powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barren cover. This system has shown superior rates of penetration in water-rich, hard rock formations at depths exceeding 500 metres. With fluid flow rates of up to 120 litres per minute at 200 bar operating pressure to energise the bottom hole tooling, excessive quantities of high quality drilling fluid (water) would be required for a prolonged drilling campaign. As a result, drilling fluid recovery and recycling has been identified as a necessary option to minimise costs and logistical effort. While the majority of the cuttings report as coarse particles, a significant fines fraction will typically also be present. To maximise tool life longevity, the percussive bottom hole assembly requires high quality fluid with minimal solids loading and any recycled fluid needs to have a solids cut point below 40 microns and a concentration less than 400 ppm before it can be used to reenergise the system. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process shows a strong power law relationship for particle size distributions. This data is critical in optimising solids control strategies and cuttings dewatering techniques. Optimisation of deployable solids control equipment is discussed and how the required centrate clarity was achieved in the presence of pyrite-rich metasediment cuttings. Key results were the successful pre-aggregation of fines through the selection and use of high molecular weight anionic polyacrylamide flocculants and the techniques developed for optimal dosing prior to scroll decanter centrifugation, thus keeping sub 40 micron solids loading within prescribed limits. Experiments on maximising fines capture in the presence of thixotropic drilling fluid additives (e.g. Xanthan gum and other biopolymers) are also discussed. As no core is produced during the drilling process, it is intended that the particle laden returned drilling fluid is used for top-of-hole geochemical and mineralogical assessment. A discussion is therefore presented on the biasing and latency of cuttings representivity by dewatering techniques, as well as the resulting detrimental effects on depth fidelity and accuracy. Data pertaining to the sample biasing with respect to geochemical signatures due to particle size distributions is presented and shows that, depending on the solids control and dewatering techniques used, it can have unwanted influence on top-of-hole analysis. Strategies are proposed to overcome these effects, improving sample quality. Successful solids control and cuttings dewatering for water-powered percussive drilling is presented, contributing towards the successful advancement of coiled tubing based greenfields mineral exploration.

Keywords: cuttings, dewatering, flocculation, percussive drilling, solids control

Procedia PDF Downloads 230
1348 An Exploration of Promoting EFL Students’ Language Learning Autonomy Using Multimodal Teaching - A Case Study of an Art University in Western China

Authors: Dian Guan

Abstract:

With the wide application of multimedia and the Internet, the development of teaching theories, and the implementation of teaching reforms, many different university English classroom teaching modes have emerged. The university English teaching mode is changing from the traditional teaching mode based on conversation and text to the multimodal English teaching mode containing discussion, pictures, audio, film, etc. Applying university English teaching models is conducive to cultivating lifelong learning skills. In addition, lifelong learning skills can also be called learners' autonomous learning skills. Learners' independent learning ability has a significant impact on English learning. However, many university students, especially art and design students, don't know how to learn individually. When they become university students, their English foundation is a relative deficiency because they always remember the language in a traditional way, which, to a certain extent, neglects the cultivation of English learners' independent ability. As a result, the autonomous learning ability of most university students is not satisfactory. The participants in this study were 60 students and one teacher in their first year at a university in western China. Two observations and interviews were conducted inside and outside the classroom to understand the impact of a multimodal teaching model of university English on students' autonomous learning ability. The results were analyzed, and it was found that the multimodal teaching model of university English significantly affected learners' autonomy. Incorporating classroom presentations and poster exhibitions into multimodal teaching can increase learners' interest in learning and enhance their learning ability outside the classroom. However, further exploration is needed to develop multimodal teaching materials and evaluate multimodal teaching outcomes. Despite the limitations of this study, the study adopts a scientific research method to analyze the impact of the multimodal teaching mode of university English on students' independent learning ability. It puts forward a different outlook for further research on this topic.

Keywords: art university, EFL education, learner autonomy, multimodal pedagogy

Procedia PDF Downloads 74
1347 Characterization of Pectinase from Local Microorganisms to Support Industry Based Green Chemistry

Authors: Sasangka Prasetyawan, Anna Roosdiana, Diah Mardiana, Suratmo

Abstract:

Pectinase are enzymes that hydrolyze pectin compounds. The use of this enzyme is primarily to reduce the viscosity of the beverage thus simplifying the purification process. Pectinase activity influenced by microbial sources . Exploration of two types of microbes that Aspergillus spp. and Bacillus spp. pectinase give different performance, but the use of local strain is still not widely studied. The aim of this research is exploration of pectinase from A. niger and B. firmus include production conditions and characterization. Bacillus firmus incubated and shaken at a speed of 200 rpm at pH variation (5, 6, 7, 8, 9, 10), temperature (30, 35, 40, 45, 50) °C and incubation time (6, 12, 18, 24, 30, 36 ) hours. Media was centrifuged at 3000 rpm, pectinase enzyme activity determined. Enzyme production by A. niger determined to variations in temperature and pH were similar to B. firmus, but the variation of the incubation time was 24, 48, 72, 96, 120 hours. Pectinase crude extract was further purified by precipitation using ammonium sulfate saturation in fraction 0-20 %, 20-40 %, 40-60 %, 60-80 %, then dialyzed. Determination of optimum conditions pectinase activity performed by measuring the variation of enzyme activity on pH (4, 6, 7, 8, 10), temperature (30, 35, 40, 45, 50) °C, and the incubation time (10, 20, 30, 40, 50) minutes . Determination of kinetic parameters of pectinase enzyme reaction carried out by measuring the rate of enzyme reactions at the optimum conditions, but the variation of the concentration of substrate (pectin 0.1 % , 0.2 % , 0.3 % , 0.4 % , 0.5 % ). The results showed that the optimum conditions of production of pectinase from B. firmus achieved at pH 7-8.0, 40-50 ⁰C temperature and fermentation time 18 hours. Purification of pectinase showed the highest purity in the 40-80 % ammonium sulfate fraction. Character pectinase obtained : the optimum working conditions of A. niger pectinase at pH 5 , while pectinase from B. firmus at pH 7, temperature and optimum incubation time showed the same value, namely the temperature of 50 ⁰C and incubation time of 30 minutes. The presence of metal ions can affect the activity of pectinase , the concentration of Zn 2 + , Pb 2 + , Ca 2 + and K + and 2 mM Mg 2 + above 6 mM inhibit the activity of pectinase .

Keywords: pectinase, Bacillus firmus, Aspergillus niger, green chemistry

Procedia PDF Downloads 350
1346 A Critical Exploration of Dominant Perspectives Regarding Inclusion and Disability: Shifts Toward Meaningful Approaches

Authors: Luigi Iannacci

Abstract:

This study critically explores how disability and disability are presently and problematically configured within education. As such, pedagogies, discourses, and practices that shape this configuration are examined to forward a reconceptualization of disability as it relates to education and the inclusion of students with special needs in mainstream classroom contexts. The study examines how the dominant medical/deficit model of disability positions students with special needs and advocates for a shift towards a social/critical model of disability as applied to education and classrooms. This is demonstrated through a critical look at how language, processes, and ‘interventions’ name and address deficits people who have a disability are presumed to have and, as such, conceptualize these deficits as inherent flaws that are in need of ‘fixing.’ The study will demonstrate the necessary shifts in thinking, language and practice required to forward a critical/social model of disability. The ultimate aim of this research is to offer a much-needed reconceptualization of inclusion that recognizes disability as epistemology, identity, and diversity through a critical exploration of dominant discourses that impact language, policy, instruction and ultimately, the experiences students with disabilities have within mainstream classrooms. The presentation seeks to explore disability as neurodiversity and therefore elucidate how people with disabilities can demonstrate these ways of knowing within inclusive education that avoids superficial approaches that are not responsive to their needs. This research is, therefore, of interest and use to educators teaching at the elementary, secondary, and in-service levels as well as graduate students and scholars working in the areas of inclusion, special education, and literacy. Ultimately the presentation attempts to foster a social justice and human rights-focused approach to inclusion that is responsive to students with disabilities and, as such ensures a reconceptualization of present language, understandings and practices that continue to configure disability in problematic ways.

Keywords: inclusion, disability, critical approach, social justice

Procedia PDF Downloads 59
1345 Probabilistic Graphical Model for the Web

Authors: M. Nekri, A. Khelladi

Abstract:

The world wide web network is a network with a complex topology, the main properties of which are the distribution of degrees in power law, A low clustering coefficient and a weak average distance. Modeling the web as a graph allows locating the information in little time and consequently offering a help in the construction of the research engine. Here, we present a model based on the already existing probabilistic graphs with all the aforesaid characteristics. This work will consist in studying the web in order to know its structuring thus it will enable us to modelize it more easily and propose a possible algorithm for its exploration.

Keywords: clustering coefficient, preferential attachment, small world, web community

Procedia PDF Downloads 257
1344 The Effect of Wellness Program on Organizations Productivity: The Case of Pakistani Corporation’s

Authors: Saad Bin Nasir

Abstract:

This study imperially evaluated of five human resource (HR) practices (Wellness program extents are Employee’s assistance program, Health care screenings, and Recreation trips, Seminars for life style, Indoor and Outdoor activities) and there likely impact on the organization productivity in Pakistani organizations. The data were gathering by administrating questionnaires. The result indicated that all five variables are positively and significantly correlated with organization productivity. Results of regressing the all variables on organization productivity show that seminars for life style and employee’s assistance program strong predictors of organization productivity.

Keywords: wellness program, organization’s productivity, employee’s assistance program, health care screening

Procedia PDF Downloads 332
1343 CFD Simulations to Examine Natural Ventilation of a Work Area in a Public Building

Authors: An-Shik Yang, Chiang-Ho Cheng, Jen-Hao Wu, Yu-Hsuan Juan

Abstract:

Natural ventilation has played an important role for many low energy-building designs. It has been also noticed as a essential subject to persistently bring the fresh cool air from the outside into a building. This study carried out the computational fluid dynamics (CFD)-based simulations to examine the natural ventilation development of a work area in a public building. The simulated results can be useful to better understand the indoor microclimate and the interaction of wind with buildings. Besides, this CFD simulation procedure can serve as an effective analysis tool to characterize the airing performance, and thereby optimize the building ventilation for strengthening the architects, planners and other decision makers on improving the natural ventilation design of public buildings.

Keywords: CFD simulations, natural ventilation, microclimate, wind environment

Procedia PDF Downloads 554
1342 Comprehensive Approach to Control Virus Infection and Energy Consumption in An Occupant Classroom

Authors: SeyedKeivan Nateghi, Jan Kaczmarczyk

Abstract:

People nowadays spend most of their time in buildings. Accordingly, maintaining a good quality of indoor air is very important. New universal matters related to the prevalence of Covid-19 also highlight the importance of indoor air conditioning in reducing the risk of virus infection. Cooling and Heating of a house will provide a suitable zone of air temperature for residents. One of the significant factors in energy demand is energy consumption in the building. In general, building divisions compose more than 30% of the world's fundamental energy requirement. As energy demand increased, greenhouse effects emerged that caused global warming. Regardless of the environmental damage to the ecosystem, it can spread infectious diseases such as malaria, cholera, or dengue to many other parts of the world. With the advent of the Covid-19 phenomenon, the previous instructions to reduce energy consumption are no longer responsive because they increase the risk of virus infection among people in the room. Two problems of high energy consumption and coronavirus infection are opposite. A classroom with 30 students and one teacher in Katowice, Poland, considered controlling two objectives simultaneal. The probability of transmission of the disease is calculated from the carbon dioxide concentration of people. Also, in a certain period, the amount of energy consumption is estimated by EnergyPlus. The effect of three parameters of number, angle, and time or schedule of opening windows on the probability of infection transmission and energy consumption of the class were investigated. Parameters were examined widely to determine the best possible condition for simultaneous control of infection spread and energy consumption. The number of opening windows is discrete (0,3), and two other parameters are continuous (0,180) and (8 AM, 2 PM). Preliminary results show that changes in the number, angle, and timing of window openings significantly impact the likelihood of virus transmission and class energy consumption. The greater the number, tilt, and timing of window openings, the less likely the student will transmit the virus. But energy consumption is increasing. When all the windows were closed at all hours of the class, the energy consumption for the first day of January was only 0.2 megajoules. In comparison, the probability of transmitting the virus per person in the classroom is more than 45%. But when all windows were open at maximum angles during class, the chance of transmitting the infection was reduced to 0.35%. But the energy consumption will be 36 megajoules. Therefore, school classrooms need an optimal schedule to control both functions. In this article, we will present a suitable plan for the classroom with natural ventilation through windows to control energy consumption and the possibility of infection transmission at the same time.

Keywords: Covid-19, energy consumption, building, carbon dioxide, energyplus

Procedia PDF Downloads 81
1341 Shadows and Symbols: The Tri-Level Importance of Memory in Jane Yolen's 'the Devil's Arithmetic' and Soon-To-Be-Published 'Mapping the Bones'

Authors: Kirsten A. Bartels

Abstract:

'Never again' and 'Lest we forget' have long been messages associated with the events of the Shoah. Yet as we attempt to learn from the past, we must find new ways to engage with its memories. The preservation of the culture and the value of tradition are critical factors in Jane Yolen's works of Holocaust fiction, The Devil's Arithmetic and Mapping the Bones, emphasized through the importance of remembering. That word, in its multitude of forms (remember, remembering, memories), occurs no less than ten times in the first four pages and over one hundred times in the one hundred and sixty-four-page narrative The Devil’s Arithmetic. While Yolen takes a different approach to showcasing the importance of memory in Mapping the Bones, it is of equal import in this work and arguably to the future of Holocaust knowing. The idea of remembering, the desire to remember, and the ability to remember, are explored in three divergent ways in The Devil’s Arithmetic. First, in the importance to remember a past which is not her own – to understand history or acquired memories. Second, in the protagonist's actual or initial memories, those of her life in modern-day New York. Third, in a reverse mode of forgetting and trying to reacquire that which has been lost -- as Hannah is processed in the camp and she forgets everything, all worlds prior to the camp are lost to her. As numbers replace names, Yolen stresses the importance of self-identity or owned memories. In addition, the importance of relaying memory, the transitions of memory from perspective, and the ideas of reflective telling are explored in Mapping the Bones -- through the telling of the story through the lens of one of the twins as the events are unfolding; and then the through the reflective telling from the lens of the other twin. Parallel to the exploration of the intersemiosis of memory is the discussion of literary shadows (foreshadowing, backshadowing, and side-shadowing) and their impact on the reader's experience with Yolen's narrative. For in this type of exploration, one cannot look at the events described in Yolen's work and not also contemplate the figurative shadows cast.

Keywords: holocaust literature, memory, narrative, Yolen

Procedia PDF Downloads 218
1340 A Preliminary End-Point Approach for Calculating Odorous Emissions in Life Cycle Assessment

Authors: G. M. Cappucci, C. Losi, P. Neri, M. Pini, A. M. Ferrari

Abstract:

Waste treatment and many production processes cause significant emissions of odors, thus typically leading to intense debate. The introduction of odorimetric units and their units of measurement, i.e., U.O. / m3, with the European regulation UE 13725 of 2003 designates the dynamic olfactometry as the official method for odorimetric analysis. Italy has filled the pre-existing legislative gap on the regulation of odorous emissions only recently, by introducing the Legislative Decree n°183 in 2017. The concentration of the odor to which a perceptive response occurs to 50% of the panel corresponds to the odorimetric unit of the sample under examination (1 U.O. / m3) and is equal to the threshold of perceptibility of the substance (O.T.). In particular, the treatment of Municipal Solid Waste (MSW) by Mechanical-Biological Treatment (MBT) plants produces odorous emissions, typically generated by aerobic procedures, potentially leading to significant environmental burdens. The quantification of odorous emissions represents a challenge within a LCA study since primary data are often missing. The aim of this study is to present the preliminary findings of an ongoing study whose aim is to identify and quantify odor emissions from the Tre Monti MBT plant, located in Imola (Bologna, Italy). Particularly, the issues faced with odor emissions in the present work are: i) the identification of the components of the gaseous mixture, whose total quantification in terms of odorimetric units is known, ii) the distribution of the total odorimetric units among the single substances identified and iii) the quantification of the mass emitted for each substance. The environmental analysis was carried out on the basis of the amount of emitted substance. The calculation method IMPact Assessment of Chemical Toxics (IMPACT) 2002+ has been modified since the original one does not take into account indoor emissions. Characterization factors were obtained by adopting a preliminary method in order to calculate indoor human effects. The impact and damage assessments were performed without the identification of new categories, thus in accordance with the categories of the selected calculation method. The results show that the damage associated to odorous emissions is the 0.24% of the total damage, and the most affected damage category is Human Health, mainly as a consequence of ammonia emission (86.06%). In conclusion, this preliminary approach allowed identifying and quantifying the substances responsible for the odour impact, in order to attribute them the relative damage on human health as well as ecosystem quality.

Keywords: life cycle assessment, municipal solid waste, odorous emissions, waste treatment

Procedia PDF Downloads 162
1339 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration

Authors: Matthew Yeager, Christopher Willy, John Bischoff

Abstract:

The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.

Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design

Procedia PDF Downloads 164
1338 Developing and Enacting a Model for Institutional Implementation of the Humanizing Pedagogy: Case Study of Nelson Mandela University

Authors: Mukhtar Raban

Abstract:

As part of Nelson Mandela University’s journey of repositioning its learning and teaching agenda, the university adopted and foregrounded a humanizing pedagogy-aligning with institutional goals of critically transforming the academic project. The university established the Humanizing Pedagogy Praxis and Research Niche (HPPRN) as a centralized hub for coordinating institutional work exploring and advancing humanizing pedagogies and tasked the unit with developing and enacting a model for humanizing pedagogy exploration. This investigation endeavored to report on the development and enactment of a model that sought to institutionalize a humanizing pedagogy at a South African university. Having followed a qualitative approach, the investigation presents the case study of Nelson Mandela University’s HPPRN and the model it subsequently established and enacted for the advancement towards a more common institutional understanding, interpretation and application of the humanizing pedagogy. The study adopted an interpretive lens for analysis, complementing the qualitative approach of the investigation. The primary challenge that confronted the HPPRN was the development of a ‘living model’ that had to complement existing institutional initiatives while accommodating a renewed spirit of critical reflection, innovation and research of continued and new humanizing pedagogical exploration and applications. The study found that the explicit consideration of tenets of humanizing and critical pedagogies in underpinning and framing the HPPRN Model contributed to the sense of ‘lived’ humanizing pedagogy experiences during enactment. The multi-leveled inclusion of critical reflection in the development and enactment stages was found to further the processes of praxis employed at the university, which is integral to the advancement of humanizing and critical pedagogies. The development and implementation of a model that seeks to institutionalize the humanizing pedagogy at a university rely not only on sound theoretical conceptualization but also on the ‘richness of becoming more human’ explicitly expressed and encountered in praxes and application.

Keywords: humanizing pedagogy, critical pedagogy, institutional implementation, praxis

Procedia PDF Downloads 153
1337 Streamlining Coastal Defense: Investigating the Impact of Seawall Geometry on Wave Loads

Authors: Ahmadreza Ebadati, Asaad Y. Shamseldin, Amin Ghadirian

Abstract:

Seawall geometry plays a crucial role in mitigating wave impacts, though detailed exploration of its manipulation is limited. This study delves into the effects of varying cross-shore seawall geometry on the dynamics of wave impacts, with a particular focus on vertical seawalls. Inspired by foundational insights linking seawall shape to hydraulic efficiency, this investigation centres on how alterations in seawall geometry can influence wave energy dissipation and subsequent wave impacts. The study investigates the 2D interaction of regular waves with a period of 2.1s with a vertical seawall and berm featuring small-scale cross-shore protrusions and recesses. Utilising OpenFOAM® simulations and a k-ω SST turbulence model, this investigation compares results to a base case simulation, which is partially calibrated with experimental data from a flume study. The analysis evaluates various geometric modifications, specifically interchanged protrusions and recesses at different heights and orientations along the seawall. Findings suggest that specific configurations, such as interchanged protrusions and recesses, can mitigate initial impact forces, while certain arrangements may intensify subsequent impacts. Key insights include the identification of geometry configurations that can effectively reduce the force impulse of slamming waves on coastal structures and potentially decrease the frequency and cost of seawall maintenance. This research contributes to the field by advancing the understanding of how seawall geometry influences wave forces and by providing actionable insights for the design of more resilient seawall structures. Further exploration of seawall geometry variation is recommended, advocating additional case studies to optimise designs tailored to specific coastal environments.

Keywords: seawall geometry, wave impact loads, numerical simulation, coastal engineering, wave-structure interaction

Procedia PDF Downloads 25
1336 Ammonia Release during Photocopying Operations

Authors: Kiurski S. Jelena, Kecić S. Vesna, Oros B. Ivana, Ranogajec G. Jonjaua

Abstract:

The paper represents the dependence of ammonia concentration on microclimate parameters and photocopying shop circulation. The concentration of ammonia was determined during 8-hours working time over five days including three sampling points of a photocopying shop in Novi Sad, Serbia. The obtained results pointed out that the room temperature possesses the highest impact on ammonia release. The obtained ammonia concentration was in the range of 1.53 to 0.42ppm and decreased with the temperature decreasing from 24.6 to 20.7 °C. As the detected concentrations were within the permissible levels of The Occupational Safety and Health Administration, The National Institute for Occupational Safety and The Health and Official Gazette of Republic of Serbia, in the range of 35 to 200ppm, there was no danger to the employee’s health in the photocopying shop.

Keywords: ammonia, emission, indoor environment, photocopying procedure

Procedia PDF Downloads 391