Search results for: fusion models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7168

Search results for: fusion models

6808 A Trend Based Forecasting Framework of the ATA Method and Its Performance on the M3-Competition Data

Authors: H. Taylan Selamlar, I. Yavuz, G. Yapar

Abstract:

It is difficult to make predictions especially about the future and making accurate predictions is not always easy. However, better predictions remain the foundation of all science therefore the development of accurate, robust and reliable forecasting methods is very important. Numerous number of forecasting methods have been proposed and studied in the literature. There are still two dominant major forecasting methods: Box-Jenkins ARIMA and Exponential Smoothing (ES), and still new methods are derived or inspired from them. After more than 50 years of widespread use, exponential smoothing is still one of the most practically relevant forecasting methods available due to their simplicity, robustness and accuracy as automatic forecasting procedures especially in the famous M-Competitions. Despite its success and widespread use in many areas, ES models have some shortcomings that negatively affect the accuracy of forecasts. Therefore, a new forecasting method in this study will be proposed to cope with these shortcomings and it will be called ATA method. This new method is obtained from traditional ES models by modifying the smoothing parameters therefore both methods have similar structural forms and ATA can be easily adapted to all of the individual ES models however ATA has many advantages due to its innovative new weighting scheme. In this paper, the focus is on modeling the trend component and handling seasonality patterns by utilizing classical decomposition. Therefore, ATA method is expanded to higher order ES methods for additive, multiplicative, additive damped and multiplicative damped trend components. The proposed models are called ATA trended models and their predictive performances are compared to their counter ES models on the M3 competition data set since it is still the most recent and comprehensive time-series data collection available. It is shown that the models outperform their counters on almost all settings and when a model selection is carried out amongst these trended models ATA outperforms all of the competitors in the M3- competition for both short term and long term forecasting horizons when the models’ forecasting accuracies are compared based on popular error metrics.

Keywords: accuracy, exponential smoothing, forecasting, initial value

Procedia PDF Downloads 176
6807 Advancing Communication Theory in the Age of Digital Technology: Bridging the Gap Between Traditional Models and Emerging Platforms

Authors: Sidique Fofanah

Abstract:

This paper explores the intersection of traditional communication theories and modern digital technologies, analyzing how established models adapt to contemporary communication platforms. It examines the evolving nature of interpersonal, group, and mass communication within digital environments, emphasizing the role of social media, AI-driven communication tools, and virtual reality in reshaping communication paradigms. The paper also discusses the implications for future research and practice in communication studies, proposing an integrated framework that accommodates both classical and emerging theories.

Keywords: communication, traditional models, emerging platforms, digital media

Procedia PDF Downloads 23
6806 Mathematical Modeling of Carotenoids and Polyphenols Content of Faba Beans (Vicia faba L.) during Microwave Treatments

Authors: Ridha Fethi Mechlouch, Ahlem Ayadi, Ammar Ben Brahim

Abstract:

Given the importance of the preservation of polyphenols and carotenoids during thermal processing, we attempted in this study to investigate the variation of these two parameters in faba beans during microwave treatment using different power densities (1; 2; and 3W/g), then to perform a mathematical modeling by using non-linear regression analysis to evaluate the models constants. The variation of the carotenoids and polyphenols ratio of faba beans and the models are tested to validate the experimental results. Exponential models were found to be suitable to describe the variation of caratenoid ratio (R²= 0.945, 0.927 and 0.946) for power densities (1; 2; and 3W/g) respectively, and polyphenol ratio (R²= 0.931, 0.989 and 0.982) for power densities (1; 2; and 3W/g) respectively. The effect of microwave power density Pd(W/g) on the coefficient k of models were also investigated. The coefficient is highly correlated (R² = 1) and can be expressed as a polynomial function.

Keywords: microwave treatment, power density, carotenoid, polyphenol, modeling

Procedia PDF Downloads 257
6805 Multi Universe Existence Based-On Quantum Relativity using DJV Circuit Experiment Interpretation

Authors: Muhammad Arif Jalil, Somchat Sonasang, Preecha Yupapin

Abstract:

This study hypothesizes that the universe is at the center of the universe among the white and black holes, which are the entangled pairs. The coupling between them is in terms of spacetime forming the universe and things. The birth of things is based on exchange energy between the white and black sides. That is, the transition from the white side to the black side is called wave-matter, where it has a speed faster than light with positive gravity. The transition from the black to the white side has a speed faster than light with negative gravity called a wave-particle. In the part where the speed is equal to light, the particle rest mass is formed. Things can appear to take shape here. Thus, the gravity is zero because it is the center. The gravitational force belongs to the Earth itself because it is in a position that is twisted towards the white hole. Therefore, it is negative. The coupling of black-white holes occurs directly on both sides. The mass is formed at the saturation and will create universes and other things. Therefore, it can be hundreds of thousands of universes on both sides of the B and white holes before reaching the saturation point of multi-universes. This work will use the DJV circuit that the research team made as an entangled or two-level system circuit that has been experimentally demonstrated. Therefore, this principle has the possibility for interpretation. This work explains the emergence of multiple universes and can be applied as a practical guideline for searching for universes in the future. Moreover, the results indicate that the DJV circuit can create the elementary particles according to Feynman's diagram with rest mass conditions, which will be discussed for fission and fusion applications.

Keywords: multi-universes, feynman diagram, fission, fusion

Procedia PDF Downloads 62
6804 Exchange Rate Forecasting by Econometric Models

Authors: Zahid Ahmad, Nosheen Imran, Nauman Ali, Farah Amir

Abstract:

The objective of the study is to forecast the US Dollar and Pak Rupee exchange rate by using time series models. For this purpose, daily exchange rates of US and Pakistan for the period of January 01, 2007 - June 2, 2017, are employed. The data set is divided into in sample and out of sample data set where in-sample data are used to estimate as well as forecast the models, whereas out-of-sample data set is exercised to forecast the exchange rate. The ADF test and PP test are used to make the time series stationary. To forecast the exchange rate ARIMA model and GARCH model are applied. Among the different Autoregressive Integrated Moving Average (ARIMA) models best model is selected on the basis of selection criteria. Due to the volatility clustering and ARCH effect the GARCH (1, 1) is also applied. Results of analysis showed that ARIMA (0, 1, 1 ) and GARCH (1, 1) are the most suitable models to forecast the future exchange rate. Further the GARCH (1,1) model provided the volatility with non-constant conditional variance in the exchange rate with good forecasting performance. This study is very useful for researchers, policymakers, and businesses for making decisions through accurate and timely forecasting of the exchange rate and helps them in devising their policies.

Keywords: exchange rate, ARIMA, GARCH, PAK/USD

Procedia PDF Downloads 558
6803 Study on Flexible Diaphragm In-Plane Model of Irregular Multi-Storey Industrial Plant

Authors: Cheng-Hao Jiang, Mu-Xuan Tao

Abstract:

The rigid diaphragm model may cause errors in the calculation of internal forces due to neglecting the in-plane deformation of the diaphragm. This paper thus studies the effects of different diaphragm in-plane models (including in-plane rigid model and in-plane flexible model) on the seismic performance of structures. Taking an actual industrial plant as an example, the seismic performance of the structure is predicted using different floor diaphragm models, and the analysis errors caused by different diaphragm in-plane models including deformation error and internal force error are calculated. Furthermore, the influence of the aspect ratio on the analysis errors is investigated. Finally, the code rationality is evaluated by assessing the analysis errors of the structure models whose floors were determined as rigid according to the code’s criterion. It is found that different floor models may cause great differences in the distribution of structural internal forces, and the current code may underestimate the influence of the floor in-plane effect.

Keywords: industrial plant, diaphragm, calculating error, code rationality

Procedia PDF Downloads 138
6802 Probing Language Models for Multiple Linguistic Information

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, large-scale pre-trained language models have achieved state-of-the-art performance on a variety of natural language processing tasks. The word vectors produced by these language models can be viewed as dense encoded presentations of natural language that in text form. However, it is unknown how much linguistic information is encoded and how. In this paper, we construct several corresponding probing tasks for multiple linguistic information to clarify the encoding capabilities of different language models and performed a visual display. We firstly obtain word presentations in vector form from different language models, including BERT, ELMo, RoBERTa and GPT. Classifiers with a small scale of parameters and unsupervised tasks are then applied on these word vectors to discriminate their capability to encode corresponding linguistic information. The constructed probe tasks contain both semantic and syntactic aspects. The semantic aspect includes the ability of the model to understand semantic entities such as numbers, time, and characters, and the grammatical aspect includes the ability of the language model to understand grammatical structures such as dependency relationships and reference relationships. We also compare encoding capabilities of different layers in the same language model to infer how linguistic information is encoded in the model.

Keywords: language models, probing task, text presentation, linguistic information

Procedia PDF Downloads 107
6801 Application Difference between Cox and Logistic Regression Models

Authors: Idrissa Kayijuka

Abstract:

The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model.

Keywords: logistic regression model, Cox regression model, survival analysis, hazard ratio

Procedia PDF Downloads 452
6800 Comparison of Wake Oscillator Models to Predict Vortex-Induced Vibration of Tall Chimneys

Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta

Abstract:

The present study compares the semi-empirical wake-oscillator models that are used to predict vortex-induced vibration of structures. These models include those proposed by Facchinetti, Farshidian, and Dolatabadi, and Skop and Griffin. These models combine a wake oscillator model resembling the Van der Pol oscillator model and a single degree of freedom oscillation model. In order to use these models for estimating the top displacement of chimneys, the first mode vibration of the chimneys is only considered. The modal equation of the chimney constitutes the single degree of freedom model (SDOF). The equations of the wake oscillator model and the SDOF are simultaneously solved using an iterative procedure. The empirical parameters used in the wake-oscillator models are estimated using a newly developed approach, and response is compared with experimental data, which appeared comparable. For carrying out the iterative solution, the ode solver of MATLAB is used. To carry out the comparative study, a tall concrete chimney of height 210m has been chosen with the base diameter as 28m, top diameter as 20m, and thickness as 0.3m. The responses of the chimney are also determined using the linear model proposed by E. Simiu and the deterministic model given in Eurocode. It is observed from the comparative study that the responses predicted by the Facchinetti model and the model proposed by Skop and Griffin are nearly the same, while the model proposed by Fashidian and Dolatabadi predicts a higher response. The linear model without considering the aero-elastic phenomenon provides a less response as compared to the non-linear models. Further, for large damping, the prediction of the response by the Euro code is relatively well compared to those of non-linear models.

Keywords: chimney, deterministic model, van der pol, vortex-induced vibration

Procedia PDF Downloads 219
6799 YOLO-IR: Infrared Small Object Detection in High Noise Images

Authors: Yufeng Li, Yinan Ma, Jing Wu, Chengnian Long

Abstract:

Infrared object detection aims at separating small and dim target from clutter background and its capabilities extend beyond the limits of visible light, making it invaluable in a wide range of applications such as improving safety, security, efficiency, and functionality. However, existing methods are usually sensitive to the noise of the input infrared image, leading to a decrease in target detection accuracy and an increase in the false alarm rate in high-noise environments. To address this issue, an infrared small target detection algorithm called YOLO-IR is proposed in this paper to improve the robustness to high infrared noise. To address the problem that high noise significantly reduces the clarity and reliability of target features in infrared images, we design a soft-threshold coordinate attention mechanism to improve the model’s ability to extract target features and its robustness to noise. Since the noise may overwhelm the local details of the target, resulting in the loss of small target features during depth down-sampling, we propose a deep and shallow feature fusion neck to improve the detection accuracy. In addition, because the generalized Intersection over Union (IoU)-based loss functions may be sensitive to noise and lead to unstable training in high-noise environments, we introduce a Wasserstein-distance based loss function to improve the training of the model. The experimental results show that YOLO-IR achieves a 5.0% improvement in recall and a 6.6% improvement in F1-score over existing state-of-art model.

Keywords: infrared small target detection, high noise, robustness, soft-threshold coordinate attention, feature fusion

Procedia PDF Downloads 69
6798 Analysis of Moving Loads on Bridges Using Surrogate Models

Authors: Susmita Panda, Arnab Banerjee, Ajinkya Baxy, Bappaditya Manna

Abstract:

The design of short to medium-span high-speed bridges in critical locations is an essential aspect of vehicle-bridge interaction. Due to dynamic interaction between moving load and bridge, mathematical models or finite element modeling computations become time-consuming. Thus, to reduce the computational effort, a universal approximator using an artificial neural network (ANN) has been used to evaluate the dynamic response of the bridge. The data set generation and training of surrogate models have been conducted over the results obtained from mathematical modeling. Further, the robustness of the surrogate model has been investigated, which showed an error percentage of less than 10% with conventional methods. Additionally, the dependency of the dynamic response of the bridge on various load and bridge parameters has been highlighted through a parametric study.

Keywords: artificial neural network, mode superposition method, moving load analysis, surrogate models

Procedia PDF Downloads 98
6797 Applying Multiplicative Weight Update to Skin Cancer Classifiers

Authors: Animish Jain

Abstract:

This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.

Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer

Procedia PDF Downloads 78
6796 Chemometric Estimation of Inhibitory Activity of Benzimidazole Derivatives by Linear Least Squares and Artificial Neural Networks Modelling

Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić, Stela Jokić

Abstract:

The subject of this paper is to correlate antibacterial behavior of benzimidazole derivatives with their molecular characteristics using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on the inhibitory activity of benzimidazole derivatives against Staphylococcus aureus. The data were processed by linear least squares (LLS) and artificial neural network (ANN) procedures. The LLS mathematical models have been developed as a calibration models for prediction of the inhibitory activity. The quality of the models was validated by leave one out (LOO) technique and by using external data set. High agreement between experimental and predicted inhibitory acivities indicated the good quality of the derived models. These results are part of the CMST COST Action No. CM1306 "Understanding Movement and Mechanism in Molecular Machines".

Keywords: Antibacterial, benzimidazoles, chemometric, QSAR.

Procedia PDF Downloads 315
6795 Evaluation of QSRR Models by Sum of Ranking Differences Approach: A Case Study of Prediction of Chromatographic Behavior of Pesticides

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

The present study deals with the selection of the most suitable quantitative structure-retention relationship (QSRR) models which should be used in prediction of the retention behavior of basic, neutral, acidic and phenolic pesticides which belong to different classes: fungicides, herbicides, metabolites, insecticides and plant growth regulators. Sum of ranking differences (SRD) approach can give a different point of view on selection of the most consistent QSRR model. SRD approach can be applied not only for ranking of the QSRR models, but also for detection of similarity or dissimilarity among them. Applying the SRD analysis, the most similar models can be found easily. In this study, selection of the best model was carried out on the basis of the reference ranking (“golden standard”) which was defined as the row average values of logarithm of retention time (logtr) defined by high performance liquid chromatography (HPLC). Also, SRD analysis based on experimental logtr values as reference ranking revealed similar grouping of the established QSRR models already obtained by hierarchical cluster analysis (HCA).

Keywords: chemometrics, chromatography, pesticides, sum of ranking differences

Procedia PDF Downloads 373
6794 Computational and Experimental Study of the Mechanics of Heart Tube Formation in the Chick Embryo

Authors: Hadi S. Hosseini, Larry A. Taber

Abstract:

In the embryo, heart is initially a simple tubular structure that undergoes complex morphological changes as it transforms into a four-chambered pump. This work focuses on mechanisms that create heart tube (HT). The early embryo is composed of three relatively flat primary germ layers called endoderm, mesoderm, and ectoderm. Precardiac cells located within bilateral regions of the mesoderm called heart fields (HFs) fold and fuse along the embryonic midline to create the HT. The right and left halves of this plate fold symmetrically to bring their upper edges into contact along the midline, where they fuse. In a region near the fusion line, these layers then separate to generate the primitive HT and foregut, which then extend vertically. The anterior intestinal portal (AIP) is the opening at the caudal end of the foregut, which descends as the HT lengthens. The biomechanical mechanisms that drive this folding are poorly understood. Our central hypothesis is that folding is caused by differences in growth between the endoderm and mesoderm while subsequent extension is driven by contraction along the AIP. The feasibility of this hypothesis is examined using experiments with chick embryos and finite-element modeling (FEM). Fertilized white Leghorn chicken eggs were incubated for approximately 22-33 hours until appropriate Hamburger and Hamilton stage (HH5 to HH9) was reached. To inhibit contraction, embryos were cultured in media containing blebbistatin (myosin II inhibitor) for 18h. Three-dimensional models were created using ABAQUS (D. S. Simulia). The initial geometry consists of a flat plate including two layers representing the mesoderm and endoderm. Tissue was considered as a nonlinear elastic material with growth and contraction (negative growth) simulated using a theory, in which the total deformation gradient is given by F=F^*.G, where G is growth tensor and F* is the elastic deformation gradient tensor. In embryos exposed to blebbistatin, initial folding and AIP descension occurred normally. However, after HFs partially fused to create the upper part of the HT, fusion, and AIP descension stopped, and the HT failed to grow longer. These results suggest that cytoskeletal contraction is required only for the later stages of HT formation. In the model, a larger biaxial growth rate in the mesoderm compared to the endoderm causes the bilayered plate to bend ventrally, as the upper edge moves toward the midline, where it 'fuses' with the other half . This folding creates the upper section of the HT, as well as the foregut pocket bordered by the AIP. After this phase completes by stage HH7, contraction along the arch-shaped AIP pulls the lower edge of the plate downward, stretching the two layers. Results given by model are in reasonable agreement with experimental data for the shape of HT, as well as patterns of stress and strain. In conclusion, results of our study support our hypothesis for the creation of the heart tube.

Keywords: heart tube formation, FEM, chick embryo, biomechanics

Procedia PDF Downloads 296
6793 Dual Language Immersion Models in Theory and Practice

Authors: S. Gordon

Abstract:

Dual language immersion is growing fast in language teaching today. This study provides an overview and evaluation of the different models of Dual language immersion programs in US K-12 schools. First, the paper provides a brief current literature review on the theory of Dual Language Immersion (DLI) in Second Language Acquisition (SLA) studies. Second, examples of several types of DLI language teaching models in US K-12 public schools are presented (including 50/50 models, 90/10 models, etc.). Third, we focus on the unique example of DLI education in the state of Utah, a successful, growing program in K-12 schools that includes: French, Chinese, Spanish, and Portuguese. The project investigates the theory and practice particularly of the case of public elementary and secondary school children that study half their school day in the L1 and the other half in the chosen L2, from kindergarten (age 5-6) through high school (age 17-18). Finally, the project takes the observations of Utah French DLI elementary through secondary programs as a case study. To conclude, we look at the principal challenges, pedagogical objectives and outcomes, and important implications for other US states and other countries (such as France currently) that are in the process of developing similar language learning programs.

Keywords: dual language immersion, second language acquisition, language teaching, pedagogy, teaching, French

Procedia PDF Downloads 173
6792 Fixed-Bed Column Studies of Green Malachite Removal by Use of Alginate-Encapsulated Aluminium Pillared Clay

Authors: Lazhar mouloud, Chemat Zoubida, Ouhoumna Faiza

Abstract:

The main objective of this study, concerns the modeling of breakthrough curves obtained in the adsorption column of malachite green into alginate-encapsulated aluminium pillared clay in fixed bed according to various operating parameters such as the initial concentration, the feed rate and the height fixed bed, applying mathematical models namely: the model of Bohart and Adams, Wolborska, Bed Depth Service Time, Clark and Yoon-Nelson. These models allow us to express the different parameters controlling the performance of the dynamic adsorption system. The results have shown that all models were found suitable for describing the whole or a definite part of the dynamic behavior of the column with respect to the flow rate, the inlet dye concentration and the height of fixed bed.

Keywords: adsorption column, malachite green, pillared clays, alginate, modeling, mathematic models, encapsulation.

Procedia PDF Downloads 506
6791 Impact of Totiviridae L-A dsRNA Virus on Saccharomyces Cerevisiae Host: Transcriptomic and Proteomic Approach

Authors: Juliana Lukša, Bazilė Ravoitytė, Elena Servienė, Saulius Serva

Abstract:

Totiviridae L-A virus is a persistent Saccharomyces cerevisiae dsRNA virus. It encodes the major structural capsid protein Gag and Gag-Pol fusion protein, responsible for virus replication and encapsulation. These features also enable the copying of satellite dsRNAs (called M dsRNAs) encoding a secreted toxin and immunity to it (known as killer toxin). Viral capsid pore presumably functions in nucleotide uptake and viral mRNA release. During cell division, sporogenesis, and cell fusion, the virions remain intracellular and are transferred to daughter cells. By employing high throughput RNA sequencing data analysis, we describe the influence of solely L-A virus on the expression of genes in three different S. cerevisiae hosts. We provide a new perception into Totiviridae L-A virus-related transcriptional regulation, encompassing multiple bioinformatics analyses. Transcriptional responses to L-A infection were similar to those induced upon stress or availability of nutrients. It also delves into the connection between the cell metabolism and L-A virus-conferred demands to the host transcriptome by uncovering host proteins that may be associated with intact virions. To better understand the virus-host interaction, we applied differential proteomic analysis of virus particle-enriched fractions of yeast strains that harboreither complete killer system (L-A-lus and M-2 virus), M-2 depleted orvirus-free. Our analysis resulted in the identification of host proteins, associated with structural proteins of the virus (Gag and Gag-Pol). This research was funded by the European Social Fund under the No.09.3.3-LMT-K-712-19-0157“Development of Competences of Scientists, other Researchers, and Students through Practical Research Activities” measure.

Keywords: totiviridae, killer virus, proteomics, transcriptomics

Procedia PDF Downloads 144
6790 An Improvement of a Dynamic Model of the Secondary Sedimentation Tank and Field Validation

Authors: Zahir Bakiri, Saci Nacefa

Abstract:

In this paper a comparison in made between two models, with and without dispersion term, and focused on the characterization of the movement of the sludge blanket in the secondary sedimentation tank using the solid flux theory and the velocity settling. This allowed us develop a one-dimensional models, with and without dispersion based on a thorough experimental study carried out in situ and the application of online data which are the mass load flow, transfer concentration, and influent characteristic. On the other hand, in the proposed model, the new settling velocity law (double-exponential function) used is based on the Vesilind function.

Keywords: wastewater, activated sludge, sedimentation, settling velocity, settling models

Procedia PDF Downloads 388
6789 Research on Intercity Travel Mode Choice Behavior Considering Traveler’s Heterogeneity and Psychological Latent Variables

Authors: Yue Huang, Hongcheng Gan

Abstract:

The new urbanization pattern has led to a rapid growth in demand for short-distance intercity travel, and the emergence of new travel modes has also increased the variety of intercity travel options. In previous studies on intercity travel mode choice behavior, the impact of functional amenities of travel mode and travelers’ long-term personality characteristics has rarely been considered, and empirical results have typically been calibrated using revealed preference (RP) or stated preference (SP) data. This study designed a questionnaire that combines the RP and SP experiment from the perspective of a trip chain combining inner-city and intercity mobility, with consideration for the actual condition of the Huainan-Hefei traffic corridor. On the basis of RP/SP fusion data, a hybrid choice model considering both random taste heterogeneity and psychological characteristics was established to investigate travelers’ mode choice behavior for traditional train, high-speed rail, intercity bus, private car, and intercity online car-hailing. The findings show that intercity time and cost exert the greatest influence on mode choice, with significant heterogeneity across the population. Although inner-city cost does not demonstrate a significant influence, inner-city time plays an important role. Service attributes of travel mode, such as catering and hygiene services, as well as free wireless network supply, only play a minor role in mode selection. Finally, our study demonstrates that safety-seeking tendency, hedonism, and introversion all have differential and significant effects on intercity travel mode choice.

Keywords: intercity travel mode choice, stated preference survey, hybrid choice model, RP/SP fusion data, psychological latent variable, heterogeneity

Procedia PDF Downloads 109
6788 Mapping Poverty in the Philippines: Insights from Satellite Data and Spatial Econometrics

Authors: Htet Khaing Lin

Abstract:

This study explores the relationship between a diverse set of variables, encompassing both environmental and socio-economic factors, and poverty levels in the Philippines for the years 2012, 2015, and 2018. Employing Ordinary Least Squares (OLS), Spatial Lag Models (SLM), and Spatial Error Models (SEM), this study delves into the dynamics of key indicators, including daytime and nighttime land surface temperature, cropland surface, urban land surface, rainfall, population size, normalized difference water, vegetation, and drought indices. The findings reveal consistent patterns and unexpected correlations, highlighting the need for nuanced policies that address the multifaceted challenges arising from the interplay of environmental and socio-economic factors.

Keywords: poverty analysis, OLS, spatial lag models, spatial error models, Philippines, google earth engine, satellite data, environmental dynamics, socio-economic factors

Procedia PDF Downloads 98
6787 Geopotential Models Evaluation in Algeria Using Stochastic Method, GPS/Leveling and Topographic Data

Authors: M. A. Meslem

Abstract:

For precise geoid determination, we use a reference field to subtract long and medium wavelength of the gravity field from observations data when we use the remove-compute-restore technique. Therefore, a comparison study between considered models should be made in order to select the optimal reference gravity field to be used. In this context, two recent global geopotential models have been selected to perform this comparison study over Northern Algeria. The Earth Gravitational Model (EGM2008) and the Global Gravity Model (GECO) conceived with a combination of the first model with anomalous potential derived from a GOCE satellite-only global model. Free air gravity anomalies in the area under study have been used to compute residual data using both gravity field models and a Digital Terrain Model (DTM) to subtract the residual terrain effect from the gravity observations. Residual data were used to generate local empirical covariance functions and their fitting to the closed form in order to compare their statistical behaviors according to both cases. Finally, height anomalies were computed from both geopotential models and compared to a set of GPS levelled points on benchmarks using least squares adjustment. The result described in details in this paper regarding these two models has pointed out a slight advantage of GECO global model globally through error degree variances comparison and ground-truth evaluation.

Keywords: quasigeoid, gravity aomalies, covariance, GGM

Procedia PDF Downloads 136
6786 Characterization of Hyaluronic Acid-Based Injections Used on Rejuvenation Skin Treatments

Authors: Lucas Kurth de Azambuja, Loise Silveira da Silva, Gean Vitor Salmoria, Darlan Dallacosta, Carlos Rodrigo de Mello Roesler

Abstract:

This work provides a physicochemical and thermal characterization assessment of three different hyaluronic acid (HA)-based injections used for rejuvenation skin treatments. The three products analyzed are manufactured by the same manufacturer and commercialized for application on different skin levels. According to the manufacturer, all three HA-based injections are crosslinked and have a concentration of 23 mg/mL of HA, and 0.3% of lidocaine. Samples were characterized by Fourier-transformed infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) techniques. FTIR analysis resulted in a similar spectrum when comparing the different products. DSC analysis demonstrated that the fusion points differ in each product, with a higher fusion temperature observed in specimen A, which is used for subcutaneous applications, when compared with B and C, which are used for the middle dermis and deep dermis, respectively. TGA data demonstrated a considerable mass loss at 100°C, which means that the product has more than 50% of water in its composition. TGA analysis also showed that Specimen A had a lower mass loss at 100°C when compared to Specimen C. A mass loss of around 220°C was observed on all samples, characterizing the presence of hyaluronic acid. SEM images displayed a similar structure on all samples analyzed, with a thicker layer for Specimen A when compared with B and C. This series of analyses demonstrated that, as expected, the physicochemical and thermal properties of the products differ according to their application. Furthermore, to better characterize the crosslinking degree of each product and their mechanical properties, a set of different techniques should be applied in parallel to correlate the results and, thereby, relate injection application with material properties.

Keywords: hyaluronic acid, characterization, soft-tissue fillers, injectable gels

Procedia PDF Downloads 87
6785 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models

Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai

Abstract:

Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.

Keywords: plant identification, CNN, image processing, vision transformer, classification

Procedia PDF Downloads 102
6784 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models

Authors: A. B. M. Rezaul Islam, Ernur Karadogan

Abstract:

Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.

Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis

Procedia PDF Downloads 143
6783 Lateral Retroperitoneal Transpsoas Approach: A Practical Minimal Invasive Surgery Option for Treating Pyogenic Spondylitis of the Lumbar Vertebra

Authors: Sundaresan Soundararajan, Chor Ngee Tan

Abstract:

Introduction: Pyogenic spondylitis, otherwise treated conservatively with long term antibiotics, would require surgical debridement and reconstruction in about 10% to 20% of cases. The classical approach adopted many surgeons have always been anterior approach in ensuring thorough and complete debridement. This, however, comes with high rates of morbidity due to the nature of its access. Direct lateral retroperitoneal approach, which has been growing in usage in degenerative lumbar diseases, has the potential in treating pyogenic spondylitis with its ease of approach and relatively low risk of complications. Aims/Objectives: The objective of this study was to evaluate the effectiveness and clinical outcome of using lateral approach surgery in the surgical management of pyogenic spondylitis of the lumbar spine. Methods: Retrospective chart analysis was done on all patients who presented with pyogenic spondylitis (lumbar discitis/vertebral osteomyelitis) and had undergone direct lateral retroperitoneal lumbar vertebral debridement and posterior instrumentation between 2014 and 2016. Data on blood loss, surgical operating time, surgical complications, clinical outcomes and fusion rates were recorded. Results: A total of 6 patients (3 male and 3 female) underwent this procedure at a single institution by a single surgeon during the defined period. One patient presented with infected implant (PLIF) and vertebral osteomyelitis while the other five presented with single level spondylodiscitis. All patients underwent lumbar debridement, iliac strut grafting and posterior instrumentation (revision of screws for infected PLIF case). The mean operating time was 308.3 mins for all 6 cases. Mean blood loss was reported at 341cc (range from 200cc to 600cc). Presenting symptom of back pain resolved in all 6 cases while 2 cases that presented with lower limb weakness had improvement of neurological deficits. One patient had dislodged strut graft while performing posterior instrumentation and needed graft revision intraoperatively. Infective markers normalized for all patients subsequently. All subjects also showed radiological evidence of fusion on 6 months follow up. Conclusions: Lateral approach in treating pyogenic spondylitis is a viable option as it allows debridement and reconstruction without the risk that comes with other anterior approaches. It allows efficient debridement, short surgical time, moderate blood loss and low risk of vascular injuries. Clinical outcomes and fusion rates by this approach also support its use as practical MIS option surgery for such infection cases.

Keywords: lateral approach, minimally invasive, pyogenic spondylitis, XLIF

Procedia PDF Downloads 176
6782 Measuring Environmental Efficiency of Energy in OPEC Countries

Authors: Bahram Fathi, Seyedhossein Sajadifar, Naser Khiabani

Abstract:

Data envelopment analysis (DEA) has recently gained popularity in energy efficiency analysis. A common feature of the previously proposed DEA models for measuring energy efficiency performance is that they treat energy consumption as an input within a production framework without considering undesirable outputs. However, energy use results in the generation of undesirable outputs as byproducts of producing desirable outputs. Within a joint production framework of both desirable and undesirable outputs, this paper presents several DEA-type linear programming models for measuring energy efficiency performance. In addition to considering undesirable outputs, our models treat different energy sources as different inputs so that changes in energy mix could be accounted for in evaluating energy efficiency. The proposed models are applied to measure the energy efficiency performances of 12 OPEC countries and the results obtained are presented.

Keywords: energy efficiency, undesirable outputs, data envelopment analysis

Procedia PDF Downloads 734
6781 Enhancing Model Interoperability and Reuse by Designing and Developing a Unified Metamodel Standard

Authors: Arash Gharibi

Abstract:

Mankind has always used models to solve problems. Essentially, models are simplified versions of reality, whose need stems from having to deal with complexity; many processes or phenomena are too complex to be described completely. Thus a fundamental model requirement is that it contains the characteristic features that are essential in the context of the problem to be solved or described. Models are used in virtually every scientific domain to deal with various problems. During the recent decades, the number of models has increased exponentially. Publication of models as part of original research has traditionally been in in scientific periodicals, series, monographs, agency reports, national journals and laboratory reports. This makes it difficult for interested groups and communities to stay informed about the state-of-the-art. During the modeling process, many important decisions are made which impact the final form of the model. Without a record of these considerations, the final model remains ill-defined and open to varying interpretations. Unfortunately, the details of these considerations are often lost or in case there is any existing information about a model, it is likely to be written intuitively in different layouts and in different degrees of detail. In order to overcome these issues, different domains have attempted to implement their own approaches to preserve their models’ information in forms of model documentation. The most frequently cited model documentation approaches show that they are domain specific, not to applicable to the existing models and evolutionary flexibility and intrinsic corrections and improvements are not possible with the current approaches. These issues are all because of a lack of unified standards for model documentation. As a way forward, this research will propose a new standard for capturing and managing models’ information in a unified way so that interoperability and reusability of models become possible. This standard will also be evolutionary, meaning members of modeling realm could contribute to its ongoing developments and improvements. In this paper, the current 3 of the most common metamodels are reviewed and according to pros and cons of each, a new metamodel is proposed.

Keywords: metamodel, modeling, interoperability, reuse

Procedia PDF Downloads 197
6780 Implied Adjusted Volatility by Leland Option Pricing Models: Evidence from Australian Index Options

Authors: Mimi Hafizah Abdullah, Hanani Farhah Harun, Nik Ruzni Nik Idris

Abstract:

With the implied volatility as an important factor in financial decision-making, in particular in option pricing valuation, and also the given fact that the pricing biases of Leland option pricing models and the implied volatility structure for the options are related, this study considers examining the implied adjusted volatility smile patterns and term structures in the S&P/ASX 200 index options using the different Leland option pricing models. The examination of the implied adjusted volatility smiles and term structures in the Australian index options market covers the global financial crisis in the mid-2007. The implied adjusted volatility was found to escalate approximately triple the rate prior the crisis.

Keywords: implied adjusted volatility, financial crisis, Leland option pricing models, Australian index options

Procedia PDF Downloads 378
6779 Experimental Study of Hydrogen and Water Vapor Extraction from Helium with Zeolite Membranes for Tritium Processes

Authors: Rodrigo Antunes, Olga Borisevich, David Demange

Abstract:

The Tritium Laboratory Karlsruhe (TLK) has identified zeolite membranes as most promising for tritium processes in the future fusion reactors. Tritium diluted in purge gases or gaseous effluents, and present in both molecular and oxidized forms, can be pre-concentrated by a stage of zeolite membranes followed by a main downstream recovery stage (e.g., catalytic membrane reactor). Since 2011 several membrane zeolite samples have been tested to measure the membrane performances in the separation of hydrogen and water vapor from helium streams. These experiments were carried out in the ZIMT (Zeolite Inorganic Membranes for Tritium) facility where mass spectrometry and cold traps were used to measure the membranes’ performances. The membranes were tested at temperatures ranging from 25 °C up to 130 °C, at feed pressures between 1 and 3 bar, and typical feed flows of 2 l/min. During this experimental campaign, several zeolite-type membranes were studied: a hollow-fiber MFI nanocomposite membrane purchased from IRCELYON (France), and tubular MFI-ZSM5, NaA and H-SOD membranes purchased from Institute for Ceramic Technologies and Systems (IKTS, Germany). Among these membranes, only the MFI-based showed relevant performances for the H2/He separation, with rather high permeances (~0.5 – 0.7 μmol/sm2Pa for H2 at 25 °C for MFI-ZSM5), however with a limited ideal selectivity of around 2 for H2/He regardless of the feed concentration. Both MFI and NaA showed higher separation performances when water vapor was used instead; for example, at 30 °C, the separation factor for MFI-ZSM5 is approximately 10 and 38 for 0.2% and 10% H2O/He, respectively. The H-SOD evidenced to be considerably defective and therefore not considered for further experiments. In this contribution, a comprehensive analysis of the experimental methods and results obtained for the separation performance of different zeolite membranes during the past four years in inactive environment is given. These results are encouraging for the experimental campaign with molecular and oxidized tritium that will follow in 2017.

Keywords: gas separation, nuclear fusion, tritium processes, zeolite membranes

Procedia PDF Downloads 247