Search results for: energy conservation management
17583 Identifying the Conservation Gaps in Poorly Studied Protected Area in the Philippines: A Study Case of Sibuyan Island
Authors: Roven Tumaneng, Angelica Kristina Monzon, Ralph Sedricke Lapuz, Jose Don De Alban, Jennica Paula Masigan, Joanne Rae Pales, Laila Monera Pornel, Dennis Tablazon, Rizza Karen Veridiano, Jackie Lou Wenceslao, Edmund Leo Rico, Neil Aldrin Mallari
Abstract:
Most protected area management plans in the Philippines, particularly the smaller and more remote islands suffer from insufficient baseline data, which should provide the bases for formulating measureable conservation targets and appropriate management interventions for these protected areas. Attempts to synthesize available data particularly on cultural and socio-economic characteristic of local peoples within and outside protected areas also suffer from the lack of comprehensive and detailed inventories, which should be considered in designing adaptive management interventions to be used for those protected areas. Mt Guiting-guiting Natural Park (MGGNP) located in Sibuyan Island is one of the poorly studied protected areas in the Philippines. In this study, we determined the highly biologically important areas of the protected area using Maximum Entropy approach (MaxEnt) from environmental predictors (i.e., topographic, bioclimatic,land cover, and soil image layers) derived from global remotely sensed data and point occurrence data of species of birds and trees recorded during field surveys on the island. A total of 23 trigger species of birds and trees was modeled and stacked to generate species richness maps for biological high conservation value areas (HCVAs). Forest habitat change was delineated using dual-polarised L-band ALOS-PALSAR mosaic data at 25 meter spatial resolution, taken at two acquisition years 2007 and 2009 to provide information on forest cover ad habitat change in the island between year 2007 and 2009. Determining the livelihood guilds were also conducted using the data gathered from171 household interviews, from which demographic and livelihood variables were extracted (i.e., age, gender, number of household members, educational attainment, years of residency, distance from forest edge, main occupation, alternative sources of food and resources during scarcity months, and sources of these alternative resources).Using Principal Component Analysis (PCA) and Kruskal-Wallis test, the diversity and patterns of forest resource use by people in the island were determined with particular focus on the economic activities that directly and indirectly affect the population of key species as well as to identify levels of forest resource use by people in different areas of the park.Results showed that there are gaps in the area occupied by the natural park, as evidenced by the mismatch of the proposed HCVAs and the existing perimeters of the park. We found out that subsistence forest gathering was the possible main driver for forest degradation out of the eight livelihood guilds that were identified in the park. Determining the high conservation areas and identifyingthe anthropogenic factors that influence the species richness and abundance of key species in the different management zone of MGGNP would provide guidance for the design of a protected area management plan and future monitoring programs. However, through intensive communication and consultation with government stakeholders and local communities our results led to setting conservation targets in local development plans and serve as a basis for the reposition of the boundaries and reconfiguration of the management zones of MGGNP.Keywords: conservation gaps, livelihood guilds, MaxEnt, protected area
Procedia PDF Downloads 40717582 The Effect of Surface Wave on the Performance Characteristic of a Wave-Tidal Integral Turbine Hybrid Generation System
Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib
Abstract:
More than 70% of the Earth is covered by oceans, which are considered to possess boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy, and chemical energy. The hybrid system help in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper propose a hybrid power generation system suitable for remote area application and highlight the impact of surface waves on turbine design and performance, and the importance of understanding the site-specific wave conditions.Keywords: marine current energy, tidal turbines, wave turbine, renewable energy, surface waves, hydraulic flume experiments, instantaneous wave phase
Procedia PDF Downloads 40817581 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles
Authors: Masood Roohi, Amir Taghavipour
Abstract:
This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.Keywords: hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time
Procedia PDF Downloads 35217580 Exploring Perceptions of Non-Energy Benefits and Energy Efficiency Investment in the Malaysian Industrial Sector
Authors: Siti Noor Baiti Binti Mustafa
Abstract:
Energy management studies regarding energy efficiency investments in Malaysia has yet to address the lack of empirical research that examines pro- sustainability behavior of managers in the industrial sector and how it influences energy efficiency investment decision-making. This study adopts the Theory of Planned Behavior (TPB) to examine the relationship between personal attitude, subjective norms, and perceived behavioral control (PBC), the intention of energy efficiency investments, and how perceptions of Non-Energy Benefits (NEB) influence these intentions among managers in the industrial sector in Malaysia. Managers from various sub-sectors in the industrial sector were selected from a sample of companies that are participants of the Government-led program named the Energy Audit Conditional Grant (EACG) that aimed to promote energy efficiency. Data collection was conducted through an online semi-structured, open-ended questionnaire and then later interviewed. The results of this explorative sequential qualitative study showed that perceived behavioral control was a significant predictor of energy efficiency investment intentions as compared to factors such as attitude and subjective norms. The level of awareness and perceptions towards NEB further played a significant factor in influencing energy efficiency investment decision-making as well. Various measures and policy recommendations are provided together with insights on factors that influence decision-makers intention to invest in energy efficiency, whilst new knowledge on NEB perceptions will be useful to enhance the attractiveness of energy-efficient investments.Keywords: energy efficiency investments, non-energy benefits, theory of planned behavior, personal attitude, subjective norms, perceived behavioral control, Malaysia industrial sector
Procedia PDF Downloads 12517579 Statistical Analysis to Compare between Smart City and Traditional Housing
Authors: Taha Anjamrooz, Sareh Rajabi, Ayman Alzaatreh
Abstract:
Smart cities are playing important roles in real life. Integration and automation between different features of modern cities and information technologies improve smart city efficiency, energy management, human and equipment resource management, life quality and better utilization of resources for the customers. One of difficulties in this path, is use, interface and link between software, hardware, and other IT technologies to develop and optimize processes in various business fields such as construction, supply chain management and transportation in parallel to cost-effective and resource reduction impacts. Also, Smart cities are certainly intended to demonstrate a vital role in offering a sustainable and efficient model for smart houses while mitigating environmental and ecological matters. Energy management is one of the most important matters within smart houses in the smart cities and communities, because of the sensitivity of energy systems, reduction in energy wastage and maximization in utilizing the required energy. Specially, the consumption of energy in the smart houses is important and considerable in the economic balance and energy management in smart city as it causes significant increment in energy-saving and energy-wastage reduction. This research paper develops features and concept of smart city in term of overall efficiency through various effective variables. The selected variables and observations are analyzed through data analysis processes to demonstrate the efficiency of smart city and compare the effectiveness of each variable. There are ten chosen variables in this study to improve overall efficiency of smart city through increasing effectiveness of smart houses using an automated solar photovoltaic system, RFID System, smart meter and other major elements by interfacing between software and hardware devices as well as IT technologies. Secondly to enhance aspect of energy management by energy-saving within smart house through efficient variables. The main objective of smart city and smart houses is to reproduce energy and increase its efficiency through selected variables with a comfortable and harmless atmosphere for the customers within a smart city in combination of control over the energy consumption in smart house using developed IT technologies. Initially the comparison between traditional housing and smart city samples is conducted to indicate more efficient system. Moreover, the main variables involved in measuring overall efficiency of system are analyzed through various processes to identify and prioritize the variables in accordance to their influence over the model. The result analysis of this model can be used as comparison and benchmarking with traditional life style to demonstrate the privileges of smart cities. Furthermore, due to expensive and expected shortage of natural resources in near future, insufficient and developed research study in the region, and available potential due to climate and governmental vision, the result and analysis of this study can be used as key indicator to select most effective variables or devices during construction phase and designKeywords: smart city, traditional housing, RFID, photovoltaic system, energy efficiency, energy saving
Procedia PDF Downloads 11317578 Exploring the Viability of Biogas Energy Potential in South Africa
Authors: Solomon Eghosa Uhunamure, Karabo Shale
Abstract:
Biogas technology has emerged as a promising solution for sustainable development, enhancing energy security while mitigating environmental hazards. Interest in biogas for household energy is growing due to its potential to address both energy and waste management challenges. To ensure biogas production contributes meaningfully to South Africa's future energy landscape, understanding public perceptions is essential for shaping effective policy measures. A household survey revealed that lower awareness of biogas correlates with reduced social and cultural acceptance, however, after providing basic information—such as a definition, a diagram, or one of two simple messages—support for biogas increased by 10% to 15% compared to the baseline. These findings highlight the critical role of awareness in building support for biogas as a key component of South Africa's decarbonization strategy.Keywords: awareness, barriers, biogas, environmental benefits, South Africa
Procedia PDF Downloads 3217577 [Keynote Talk]: Wave-Tidal Integral Turbine Hybrid Generation Approach for Characterizing Performance of Surface Wave
Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib
Abstract:
Boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy and chemical energy are covered and possessed by oceans. The hybrid system helps in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The objective and concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper reviews applications of using hybrid power generation system for remote area. It also highlights the future directions to investigate the impacts of surface waves on turbine design and performance. The importance of understanding the site-specific wave conditions could also been explored.Keywords: hybrid, marine current energy, tidal turbine, wave turbine
Procedia PDF Downloads 36117576 Experimental investigation on the lithium-Ion Battery Thermal Management System Based on Micro Heat Pipe Array in High Temperature Environment
Authors: Ruyang Ren, Yaohua Zhao, Yanhua Diao
Abstract:
The intermittent and unstable characteristics of renewable energy such as solar energy can be effectively solved through battery energy storage system. Lithium-ion battery is widely used in battery energy storage system because of its advantages of high energy density, small internal resistance, low self-discharge rate, no memory effect and long service life. However, the performance and service life of lithium-ion battery is seriously affected by its operating temperature. Thus, the safety operation of the lithium-ion battery module is inseparable from an effective thermal management system (TMS). In this study, a new type of TMS based on micro heat pipe array (MHPA) for lithium-ion battery is established, and the TMS is applied to a battery energy storage box that needs to operate at a high temperature environment of 40 °C all year round. MHPA is a flat shape metal body with high thermal conductivity and excellent temperature uniformity. The battery energy storage box is composed of four battery modules, with a nominal voltage of 51.2 V, a nominal capacity of 400 Ah. Through the excellent heat transfer characteristics of the MHPA, the heat generated by the charge and discharge process can be quickly transferred out of the battery module. In addition, if only the MHPA cannot meet the heat dissipation requirements of the battery module, the TMS can automatically control the opening of the external fan outside the battery module according to the temperature of the battery, so as to further enhance the heat dissipation of the battery module. The thermal management performance of lithium-ion battery TMS based on MHPA is studied experimentally under different ambient temperatures and the condition to turn on the fan or not. Results show that when the ambient temperature is 40 °C and the fan is not turned on in the whole charge and discharge process, the maximum temperature of the battery in the energy storage box is 53.1 °C and the maximum temperature difference in the battery module is 2.4 °C. After the fan is turned on in the whole charge and discharge process, the maximum temperature is reduced to 50.1 °C, and the maximum temperature difference is reduced to 1.7 °C. Obviously, the lithium-ion battery TMS based on MHPA not only could control the maximum temperature of the battery below 55 °C, but also ensure the excellent temperature uniformity of the battery module. In conclusion, the lithium-ion battery TMS based on MHPA can ensure the safe and stable operation of the battery energy storage box in high temperature environment.Keywords: heat dissipation, lithium-ion battery thermal management, micro heat pipe array, temperature uniformity
Procedia PDF Downloads 18117575 Energy Efficient Microgrid Design with Hybrid Power Systems
Authors: Pedro Esteban
Abstract:
Today’s electrical networks, including microgrids, are evolving into smart grids. The smart grid concept brings the idea that the power comes from various sources (continuous or intermittent), in various forms (AC or DC, high, medium or low voltage, etc.), and it must be integrated into the electric power system in a smart way to guarantee a continuous and reliable supply that complies with power quality and energy efficiency standards and grid code requirements. This idea brings questions for the different players like how the required power will be generated, what kind of power will be more suitable, how to store exceeding levels for short or long-term usage, and how to combine and distribute all the different generation power sources in an efficient way. To address these issues, there has been lots of development in recent years on the field of on-grid and off-grid hybrid power systems (HPS). These systems usually combine one or more modes of electricity generation together with energy storage to ensure optimal supply reliability and high level of energy security. Hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.Keywords: microgrids, hybrid power systems, energy storage, power quality improvement
Procedia PDF Downloads 14217574 Insulation, Sustainable Construction, and Architectural Design to Reduce Energy Consumption in Sustainable Buildings
Authors: Gholamreza Namavar, Ali Bayati
Abstract:
Nowadays according to increasing the population all around the world, consuming of fossil fuels increased dramatically. Many believe that most of the atmospheric pollution comes by using fossil fuels. The process of natural sources entering cities show one of the large challenges in consumption sources management. Nowadays, everyone considered about the consumption of fossil fuels and also reduction of consumption civil energy in megacities that play a key role in solving serious problems such as air pollution, producing greenhouse gasses, global warming and damage ozone layer. In construction industry we should use the materials with the lowest need to energy for making and carrying them, and also the materials which need the lowest energy and expenses to recycling. In this way, the kind of usage material, the way of processing, regional materials and the adaption with environment is critical. Otherwise, the isolation should be use and mention in long term. Accordingly, in this article we investigates the new ways in order to reduce environmental pollution and save more energy by using materials that are not harmful to the environment, fully insulated materials in buildings, sustainable and diversified buildings, suitable urban design and using solar energy more efficiently in order to reduce energy consumption.Keywords: architectural design, insulation, sustainable construction, reducing energy consumption
Procedia PDF Downloads 25217573 Hybridization Potential of Oreochromis Niloticus (Nile Tilapia) with Oreochromis Jipe (Tilapia Jipe) in View of Lake Jipe Fishery Genetic Conservation
Authors: Mercy Chepkirui, Paul Orina, Priscilla Boera, Judith Achoki
Abstract:
Oreochromis jipe is a tropical freshwater bentho-pelagic fish belonging to the Cichlid family that is endemic to the Pangani River basin and Lake Jipe in Kenya and northern Tanzania, while Oreochromis niloticus inhabits the Lake Victoria basin with reported cases in Lake jipe too. Unlike O. jipe, Oreochromis niloticus is spreading across the globe due to its cultural potential. This, however, could cause genetic purity concerns in the event of cross-breeding among the tilapiines, which is already taking place in the wild. The study envisaged establishing the possibility of hybridization among the two species under aquaculture conditions and phenotypically informing the difference between pure and cross lines. Two hundred sixteen mature brooders weighing 100-120g were selected randomly, 108 of Oreochromis Jipe and 108 of Oreochromis niloticus; for each trial, 72 males and 144 females were distributed into 3 crosses, each grouped in triplicates (Oreochromis niloticus (♀) X Oreochromis niloticus(♂);Oreochromis niloticus (♂) X Oreochromis jipe ( ♀); Oreochromis jipe (♂) X Oreochromis niloticus (♀); Oreochromis jipe (♂) X Oreochromis jipe (♀). All trials had the F1 generation, which is currently undergoing growth trials and assessing its viability for the 2nd generation. The results indicated that Oreochromis niloticus has better growth, followed by crosses (Oreochromis niloticus X Oreochromis jipe) and, finally, pure line Oreochromis jipe. Further, pure Oreochromis jipe F1 demonstrated potential for aquaculture adoption despite its recent introduction into aquaculture; thus, this will help towards the conservation of indigenous fish species of Lake Jipe fishery, which is currently under the Internationa Union for Conservation of Nature Red List of endangered fish species. However, there is a need to inform the purity of existing Oreochromis jipe wild stocks to inform genetic material conservation.Keywords: biodiversity, climate change, fisheries, oreochromis jipe, conservation
Procedia PDF Downloads 12617572 The Use of Energy Efficiency and Renewable Energy in Building for Sustainable Development
Authors: Zakariya B. H., Idris M. I., Jungudo M. A.
Abstract:
High energy consumptions of urban settlements in Nigeria are escalating due to strong population growth and migration as a result of crises. The demand for lighting, heating, ventilation and air conditioning (LHVAC) is becoming higher. Conversely, there is a poor electricity supply to both rural and urban settlement in Nigeria. Generators were mostly used in Nigeria as a source of energy for LHVAC. Energy efficiency can be defined as any measure taken to reduce the amount of energy consumed for heating ventilation and air-conditioning (HVAC), and house hold appliances like computers, stoves, refrigerators, televisions etc. The aim of the study was to minimize energy consumption in building through the integration of energy efficiency and renewable energy in building sector. Some of the energy efficient buildings within the study area were identified, the study covers there major cities of Nigeria namely, Abuja, Kaduna and Lagos city. The cost of investment on the energy efficiency and renewable energy was determined and compared with other fossil energy source for conventional building. Findings revealed that the low energy and energy efficient buildings in Nigeria are cheaper than the conventional ones. Based on the finding of the research, construction stake holders are strongly encouraged to abandon the conventional buildings and consider energy efficiency and renewable energy in buildings.Keywords: energy, efficiency, LHVAC, sustainable development
Procedia PDF Downloads 58117571 Input Energy Requirements and Performance of Different Soil Tillage Systems on Yield of Maize Crop
Authors: Shafique Qadir Memon, Muhammad Safar Mirjat, Abdul Quadir Mughal, Nadeem Amjad
Abstract:
The aims of this study were to determine direct input energy and indirect energy in maize production, to evaluate the inputs energy consumption and outputs energy gained for maize production in Islamabad, Pakistan for spring 2013. Results showed that grain yield was maximum under deep tillage as compared to conventional and zero tillage. Total energy input/output were maximum in deep tillage as compared to conventional tillage while lowest in zero tillage, net energy gain were found maximum under deep tillage.Keywords: tillage, energy, grain yield, net energy gain
Procedia PDF Downloads 45917570 Comprehensive Assessment of Energy Efficiency within the Production Process
Authors: S. Kreitlein, N. Eder, J. Franke
Abstract:
The importance of energy efficiency within the production process increases steadily. Unfortunately, so far no tools for a comprehensive assessment of energy efficiency within the production process exist. Therefore the Institute for Factory Automation and Production Systems of the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency: EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state of the art as well as the developed approaches.Keywords: energy efficiency, energy efficiency value, energetic process efficiency, production
Procedia PDF Downloads 73317569 Conservation Agriculture and Precision Water Management in Alkaline Soils under Rice-Wheat Cropping System: Effect on Wheat Productivity and Irrigation Water Use-a Case Study from India
Authors: S. K. Kakraliya, H. S. Jat, Manish Kakraliya, P. C. Sharma, M. L. Jat
Abstract:
The biggest challenge in agriculture is to produce more food for the continually increasing world population with in the limited land and water resources. Serious water deficits and reducing natural resources are some of the major threats to the agricultural sustainability in many regions of South Asia. Food and water security may be gained by bringing improvement in the crop water productivity and the amount produced per unit of water consumed. Improvement in the crop water productivity may be achieved by pursuing alternative modern agronomics approaches, which are more friendly and efficient in utilizing natural resources. Therefore, a research trial on conservation agriculture (CA) and precision water management (PWM) was conducted in 2018-19 at Karnal, India to evaluate the effect on crop productivity and irrigation in sodic soils under rice-wheat (RW) systems of Indo-Gangetic Plains (IGP). Eight scenarios were compared varied in the tillage, crop establishment, residue and irrigarion management i.e., {First four scenarios irrigated with flood irrigation method;Sc1-Conventional tillage (CT) without residue, Sc2-CT with residue, Sc3- Zero tillage (ZT) without residue, Sc4-ZT with residue}, and {last four scenarios irrigated with sub-surface drip irrigation method; Sc5-ZT without residue, Sc6- ZT with residue, Sc7-ZT inclusion legume without residue and Sc8- ZT inclusion legume with residue}. Results revealed that CA-flood irrigation (S3, Sc4) and CA-PWM system (Sc5, Sc6, Sc7 and Sc8) recorded about ~5% and ~15% higher wheat yield, respectively compared to Sc1. Similar, CA-PWM saved ~40% irrigation water compared to Sc1. Rice yield was not different under different scenarios in the first year (kharif 2019) but almost half irrigation water saved under CA-PWM system. Therefore, results of our study on modern agronomic practices including CA and precision water management (subsurface drip irrigation) for RW rotation would be addressed the existing and future challenges in the RW system.Keywords: Sub-surface drip, Crop residue, Crop yield , Zero tillage
Procedia PDF Downloads 12017568 Efficiency-Based Model for Solar Urban Planning
Authors: M. F. Amado, A. Amado, F. Poggi, J. Correia de Freitas
Abstract:
Today it is widely understood that global energy consumption patterns are directly related to the ongoing urban expansion and development process. This expansion is based on the natural growth of human activities and has left most urban areas totally dependent on fossil fuel derived external energy inputs. This status-quo of production, transportation, storage and consumption of energy has become inefficient and is set to become even more so when the continuous increases in energy demand are factored in. The territorial management of land use and related activities is a central component in the search for more efficient models of energy use, models that can meet current and future regional, national and European goals. In this paper, a methodology is developed and discussed with the aim of improving energy efficiency at the municipal level. The development of this methodology is based on the monitoring of energy consumption and its use patterns resulting from the natural dynamism of human activities in the territory and can be utilized to assess sustainability at the local scale. A set of parameters and indicators are defined with the objective of constructing a systemic model based on the optimization, adaptation and innovation of the current energy framework and the associated energy consumption patterns. The use of the model will enable local governments to strike the necessary balance between human activities, economic development, and the local and global environment while safeguarding fairness in the energy sector.Keywords: solar urban planning, solar smart city, urban development, energy efficiency
Procedia PDF Downloads 32817567 Sustainable Integrated Waste Management System
Authors: Lidia Lombardi
Abstract:
Waste management in Europe and North America is evolving towards sustainable materials management, intended as a systemic approach to using and reusing materials more productively over their entire life cycles. Various waste management strategies are prioritized and ranked from the most to the least environmentally preferred, placing emphasis on reducing, reusing, and recycling as key to sustainable materials management. However, non-recyclable materials must also be appropriately addressed, and waste-to-energy (WtE) offers a solution to manage them, especially when a WtE plant is integrated within a complex system of waste and wastewater treatment plants and potential users of the output flows. To evaluate the environmental effects of such system integration, Life Cycle Assessment (LCA) is a helpful and powerful tool. LCA has been largely applied to the waste management sector, dating back to the late 1990s, producing a large number of theoretical studies and applications to the real world as support to waste management planning. However, LCA still has a fundamental role in helping the development of waste management systems supporting decisions. Thus, LCA was applied to evaluate the environmental performances of a Municipal Solid Waste (MSW) management system, with improved separate material collection and recycling and an integrated network of treatment plants including WtE, anaerobic digestion (AD) and also wastewater treatment plant (WWTP), for a reference study case area. The proposed system was compared to the actual situation, characterized by poor recycling, large landfilling and absence of WtE. The LCA results showed that the increased recycling significantly increases the environmental performances, but there is still room for improvement through the introduction of energy recovery (especially by WtE) and through its use within the system, for instance, by feeding the heat to the AD, to sludge recovery processes and supporting the water reuse practice. WtE offers a solution to manage non-recyclable MSW and allows saving important resources (such as landfill volumes and non-renewable energy), reducing the contribution to global warming, and providing an essential contribution to fulfill the goals of really sustainable waste management.Keywords: anaerobic digestion, life cycle assessment, waste-to-energy, municipal solid waste
Procedia PDF Downloads 6017566 A Quantitative Analysis of the Conservation of Resources, Burnout, and Other Selected Behavioral Variables among Law Enforcement Officers
Authors: Nathan Moran, Robert Hanser, Attapol Kuanliang
Abstract:
The purpose of this study is to determine the relationship between personal and social resources and burnout for police officers. Current conceptualizations of the condition of burnout are challenged as being too phenomenological and ambiguous, and consequently, not given to direct empirical testing. The conservation of resources model is based on the supposition that people strive to retain, protect, and build resources as a means to protect them from the impacts of burnout. The model proposes that the effects of stress (i.e. burnout) can be manifested in personal and professional attitudes and attributes, which can measure burnout using self-reports to provide strong support for the conservation of resources model, in that, personal and professional demands are related to the exhaustion component of burnout, whereas personal and professional resources can be compiled to counteract the negative impact of the burnout condition. Highly similar patterns of burnout resistance factors were witnessed in police officers in two department precincts (N:81). In addition, results confirmed the positive influence of key demographic variables in burnout resistance using the conservation of resources model. Participants in this study are all sheriff’s deputies with a populous county in a Pacific Northwestern state (N = 274). Four instruments will be used in this quantitative study for data collection (a) a series of demographic questions, (b) the Organizational Citizenship Behavior, (c) the PANAS-X Scale (OCB: Watson& Clark, 1994), and (d) The Maslach Burnout Inventory.Keywords: behavioral, burnout, law enforcement, quantitative
Procedia PDF Downloads 28617565 Simulation, Optimization, and Analysis Approach of Microgrid Systems
Authors: Saqib Ali
Abstract:
Sources are classified into two depending upon the factor of reviving. These sources, which cannot be revived into their original shape once they are consumed, are considered as nonrenewable energy resources, i.e., (coal, fuel) Moreover, those energy resources which are revivable to the original condition even after being consumed are known as renewable energy resources, i.e., (wind, solar, hydel) Renewable energy is a cost-effective way to generate clean and green electrical energy Now a day’s majority of the countries are paying heed to energy generation from RES Pakistan is mostly relying on conventional energy resources which are mostly nonrenewable in nature coal, fuel is one of the major resources, and with the advent of time their prices are increasing on the other hand RES have great potential in the country with the deployment of RES greater reliability and an effective power system can be obtained In this thesis, a similar concept is being used and a hybrid power system is proposed which is composed of intermixing of renewable and nonrenewable sources The Source side is composed of solar, wind, fuel cells which will be used in an optimal manner to serve load The goal is to provide an economical, reliable, uninterruptable power supply. This is achieved by optimal controller (PI, PD, PID, FOPID) Optimization techniques are applied to the controllers to achieve the desired results. Advanced algorithms (Particle swarm optimization, Flower Pollination Algorithm) will be used to extract the desired output from the controller Detailed comparison in the form of tables and results will be provided, which will highlight the efficiency of the proposed system.Keywords: distributed generation, demand-side management, hybrid power system, micro grid, renewable energy resources, supply-side management
Procedia PDF Downloads 9717564 Promotion of Renewable Marines Energies in Morocco: Perspectives and Strategies
Authors: Nachtane Mourad, Tarfaoui Mostapha, Saifaoui Dennoun, El Moumen Ahmed
Abstract:
The current energy policy recommends the subject of energy efficiency and to phase out fossil energy as a master question for the prospective years. The kingdom requires restructuring its power equipment by improving the percentage of renewable energy supply and optimizing power systems and storage. Developing energy efficiency, therefore, obliges as a consubstantial objection to reducing energy consumption. The objective of this work is to show the energy transition in Morocco towards renewable energies, in particular, to show the great potential of renewable marine energies in Morocco, This goes back to the advantages of cost and non-pollution in addition to that of the independence of fossil energies. Bearing in mind the necessity of the balance of the Moroccan energy mix, hydraulic and thermal power plants have also been installed which will be added to the power stations already established as a prospect for a balanced network that is flexible to fluctuate demand.Keywords: renewable marine energy, energy transition, efficiency energy, renewable energy
Procedia PDF Downloads 28617563 Internet of Things Based Battery Management System
Authors: Pakhil Singh, Rahul Singh, Mohammad Saad Alam, Yasser Rafat
Abstract:
The battery management system is an essential package/system which ensures optimum performance and safety of a battery by monitoring the key essential parameters of the battery like the voltage, current, temperature, state of charge, state of health during charging and discharging. This can be accomplished using outputs of various sensors employed to serve the purpose. The increasing demand for electricity generation from renewable energy sources requires proper storage and hence a proper monitoring system as well. A battery management system is required in wide applications ranging from renewable energy storage systems, off-grid solar PV applications to electric vehicles. The aim of this paper is to study the parameters used in monitoring various battery operating conditions and proposes the usage of the internet of things (IoT) to implement a reliable battery management system.Keywords: electric vehicles, internet of things, sensors, state of charge, state of health
Procedia PDF Downloads 19717562 Energy Consumption, Population and Economic Development Dynamics in Nigeria: An Empirical Evidence
Authors: Evelyn Nwamaka Ogbeide-Osaretin, Bright Orhewere
Abstract:
This study examined the role of the population in the linkage between energy consumption and economic development in Nigeria. Time series data on energy consumption, population, and economic development were used for the period 1995 to 2020. The Autoregressive Distributed Lag -Error Correction Model (ARDL-ECM) was engaged. Economic development had a negative substantial impact on energy consumption in the long run. Population growth had a positive significant effect on energy consumption. Government expenditure was also found to impact the level of energy consumption, while energy consumption is not a function of oil price in Nigeria.Keywords: dynamic analysis, energy consumption, population, economic development, Nigeria
Procedia PDF Downloads 18017561 Energy Efficiency Factors in Toll Plazas
Authors: S. Balubaid, M. Z. Abd Majid, R. Zakaria
Abstract:
Energy efficiency is one of the most important issues for green buildings and their sustainability. This is not only due to the environmental impacts, but also because of significantly high energy cost. The aim of this study is to identify the potential actions required for toll plaza that lead to energy reduction. The data were obtained through set of questionnaire and interviewing targeted respondents, including the employees at toll plaza, and architects and engineers who are directly involved in design of highway projects. The data was analyzed using descriptive statistics analysis method. The findings of this study are the critical elements that influence the energy usage and factors that lead to energy wastage. Finally, potential actions are recommended to reduce energy consumption in toll plazas.Keywords: energy efficiency, toll plaza, energy consumption
Procedia PDF Downloads 54717560 The Security Trade-Offs in Resource Constrained Nodes for IoT Application
Authors: Sultan Alharby, Nick Harris, Alex Weddell, Jeff Reeve
Abstract:
The concept of the Internet of Things (IoT) has received much attention over the last five years. It is predicted that the IoT will influence every aspect of our lifestyles in the near future. Wireless Sensor Networks are one of the key enablers of the operation of IoTs, allowing data to be collected from the surrounding environment. However, due to limited resources, nature of deployment and unattended operation, a WSN is vulnerable to various types of attack. Security is paramount for reliable and safe communication between IoT embedded devices, but it does, however, come at a cost to resources. Nodes are usually equipped with small batteries, which makes energy conservation crucial to IoT devices. Nevertheless, security cost in terms of energy consumption has not been studied sufficiently. Previous research has used a security specification of 802.15.4 for IoT applications, but the energy cost of each security level and the impact on quality of services (QoS) parameters remain unknown. This research focuses on the cost of security at the IoT media access control (MAC) layer. It begins by studying the energy consumption of IEEE 802.15.4 security levels, which is followed by an evaluation for the impact of security on data latency and throughput, and then presents the impact of transmission power on security overhead, and finally shows the effects of security on memory footprint. The results show that security overhead in terms of energy consumption with a payload of 24 bytes fluctuates between 31.5% at minimum level over non-secure packets and 60.4% at the top security level of 802.15.4 security specification. Also, it shows that security cost has less impact at longer packet lengths, and more with smaller packet size. In addition, the results depicts a significant impact on data latency and throughput. Overall, maximum authentication length decreases throughput by almost 53%, and encryption and authentication together by almost 62%.Keywords: energy consumption, IEEE 802.15.4, IoT security, security cost evaluation
Procedia PDF Downloads 16817559 Design and Analysis for a 4-Stage Crash Energy Management System for Railway Vehicles
Authors: Ziwen Fang, Jianran Wang, Hongtao Liu, Weiguo Kong, Kefei Wang, Qi Luo, Haifeng Hong
Abstract:
A 4-stage crash energy management (CEM) system for subway rail vehicles used by Massachusetts Bay Transportation Authority (MBTA) in the USA is developed in this paper. The 4 stages of this new CEM system include 1) energy absorbing coupler (draft gear and shear bolts), 2) primary energy absorbers (aluminum honeycomb structured box), 3) secondary energy absorbers (crush tube), and 4) collision post and corner post. A sliding anti-climber and a fixed anti-climber are designed at the front of the vehicle cooperating with the 4-stage CEM to maximize the energy to be absorbed and minimize the damage to passengers and crews. In order to investigate the effectiveness of this CEM system, both finite element (FE) methods and crashworthiness test have been employed. The whole vehicle consists of 3 married pairs, i.e., six cars. In the FE approach, full-scale railway car models are developed and different collision cases such as a single moving car impacting a rigid wall, two moving cars into a rigid wall, two moving cars into two stationary cars, six moving cars into six stationary cars and so on are investigated. The FE analysis results show that the railway vehicle incorporating this CEM system has a superior crashworthiness performance. In the crashworthiness test, a simplified vehicle front end including the sliding anti-climber, the fixed anti-climber, the primary energy absorbers, the secondary energy absorber, the collision post and the corner post is built and impacted to a rigid wall. The same test model is also analyzed in the FE and the results such as crushing force, stress, and strain of critical components, acceleration and velocity curves are compared and studied. FE results show very good comparison to the test results.Keywords: railway vehicle collision, crash energy management design, finite element method, crashworthiness test
Procedia PDF Downloads 40217558 The Architectural Conservation and Restoration Problems of Istanbul’s “Yalı” Waterfront Mansions
Authors: Zeynep Tanrıverdi
Abstract:
The Bosphorus is an international waterway in Istanbul city of Turkey connecting the Sea of Marmara and the Black Sea. The Bosphorus, which has formed an important part of the silhouette of Istanbul throughout history, has also influenced the design of the coastal structures built around it. The waterfront mansions, which are located on both sides of the Bosphorus by the sea, and can be generally of two or three storeys, are called “yalı”. The yalı buildings with their architectural characteristics of the traditional Turkish House are the most grandiose examples of Ottoman residential architecture. However, the classical Ottoman yalı architecture of the 18th century can only be seen in engravings, and today only the modest and smaller yalı examples from the 19th century can be seen because of their disappearance over time. The study aims to reveal the architectural conservation and restoration problems of waterfront mansions and propose solutions for them. Firstly, the development of the waterfront mansion architecture in Bosphorus was evaluated in its historical process. Secondly, the waterfront mansions and their architectural features were explained. Thirdly, the architectural conservation and restoration problems that caused the disappearance of waterfront mansions were discussed. These problems include disruptions in legal regulations and practices about the Bosphorus, dramatic changes in Turkey’s socio-cultural life from the Ottoman Empire to the present, inadequacies in economic resources, negative environmental effects, and errors in restoration works. Finally, solution suggestions were proposed for the problems that threaten the protection of waterfront mansions. In the study, literature on waterfront mansions was reviewed using historical reports, photographs, maps, and drawings in archival documents. It is hoped that this study will contribute the conservation of the “Yalı” waterfront mansions, which occupy a particular role in the cultural heritage of Turkey, and to their transmission with their authentic values to the next generation.Keywords: bosphorus architecture, conservation, heritage, Istanbul, waterfront mansions (yalı)
Procedia PDF Downloads 7717557 Hominin Niche in the Times of Climate Change
Authors: Emilia Hunt, Sally C. Reynolds, Fiona Coward, Fabio Parracho Silva, Philip Hopley
Abstract:
Ecological niche modeling is widely used in conservation studies, but application to the extinct hominin species is a relatively new approach. Being able to understand what ecological niches were occupied by respective hominin species provides a new perspective into influences on evolutionary processes. Niche separation or overlap can tell us more about specific requirements of the species within the given timeframe. Many of the ancestral species lived through enormous climate changes: glacial and interglacial periods, changes in rainfall, leading to desertification or flooding of regions and displayed impressive levels of adaptation necessary for their survival. This paper reviews niche modeling methodologies and their application to hominin studies. Traditional conservation methods might not be directly applicable to extinct species and are not comparable to hominins. Hominin niche also includes aspects of technologies, use of fire and extended communication, which are not traditionally used in building conservation models. Future perspectives on how to improve niche modeling for extinct hominin species will be discussed.Keywords: hominin niche, climate change, evolution, adaptation, ecological niche modelling
Procedia PDF Downloads 18917556 Harnessing the Potential of Renewable Energy Sources to Reduce Fossil Energy Consumption in the Wastewater Treatment Process
Authors: Hen Friman
Abstract:
Various categories of aqueous solutions are discharged within residential, institutional, commercial, and industrial structures. To safeguard public health and preserve the environment, it is imperative to subject wastewater to treatment processes that eliminate pathogens (such as bacteria and viruses), nutrients (such as nitrogen and phosphorus), and other compounds. Failure to address untreated sewage accumulation can result in an array of adverse consequences. Israel exemplifies a special case in wastewater management. Appropriate wastewater treatment significantly benefits sectors such as agriculture, tourism, horticulture, and industry. Nevertheless, untreated sewage in settlements lacking proper sewage collection or transportation networks remains an ongoing and substantial threat. Notably, the process of wastewater treatment entails substantial energy consumption. Consequently, this study explores the integration of solar energy as a renewable power source within the wastewater treatment framework. By incorporating renewable energy sources into the process, costs can be minimized, and decentralized facilities can be established even in areas lacking adequate infrastructure for traditional treatment methods.Keywords: renewable energy, solar energy, innovative, wastewater treatment
Procedia PDF Downloads 10817555 Feasibility Study on the Use of HEMS for Thermal Comfort and Energy Saving in Japanese Residential Buildings
Authors: K. C. Rajan, H. B. Rijal, Kazui Yoshida, Masanori Shukuya
Abstract:
The electricity consumption in the Japanese household sector has increased with higher rate than that of other sectors. This may be because of aging and information oriented society that requires more electrical appliances to make the life better and easier, under this circumstances, energy saving is one of the essential necessity in Japanese society. To understand the way of energy use and demand response of the residential occupants, it is important to understand the structure of energy used. Home Energy Management System (HEMS) may be used for understanding the pattern and the structure of energy used. HEMS is a visualization system of the energy usage by connecting the electrical equipment in the home and thereby automatically control the energy use in each device, so that the energy saving is achieved. Therefore, the HEMS can provide with the easiest way to understand the structure of energy use. The HEMS has entered the mainstream of the Japanese market. The objective of this study is to understand the pattern of energy saving and cost saving in different regions including Japan during HEMS use. To observe thermal comfort level of HEMS managed residential buildings in Japan, the field survey was made and altogether, 1534 votes from 37 occupants related to thermal comfort, occupants’ behaviors and clothing insulation were collected and analyzed. According to the result obtained, approximately 17.9% energy saving and 8.9% cost saving is possible if HEMS is applied effectively. We found the thermal sensation and overall comfort level of the occupants is high in the studied buildings. The occupants residing in those HEMS buildings are satisfied with the thermal environment and they have accepted it. Our study concluded that the significant reduction in Japanese residential energy use can be achieved by the proper utilization of the HEMS. Better thermal comfort is also possible with the use of HEMS if energy use is managed in a rationally effective manner.Keywords: energy reduction, thermal comfort, HEMS utility, thermal environment
Procedia PDF Downloads 28817554 Artificial Intelligence-Based Thermal Management of Battery System for Electric Vehicles
Authors: Raghunandan Gurumurthy, Aricson Pereira, Sandeep Patil
Abstract:
The escalating adoption of electric vehicles (EVs) across the globe has underscored the critical importance of advancing battery system technologies. This has catalyzed a shift towards the design and development of battery systems that not only exhibit higher energy efficiency but also boast enhanced thermal performance and sophisticated multi-material enclosures. A significant leap in this domain has been the incorporation of simulation-based design optimization for battery packs and Battery Management Systems (BMS), a move further enriched by integrating artificial intelligence/machine learning (AI/ML) approaches. These strategies are pivotal in refining the design, manufacturing, and operational processes for electric vehicles and energy storage systems. By leveraging AI/ML, stakeholders can now predict battery performance metrics—such as State of Health, State of Charge, and State of Power—with unprecedented accuracy. Furthermore, as Li-ion batteries (LIBs) become more prevalent in urban settings, the imperative for bolstering thermal and fire resilience has intensified. This has propelled Battery Thermal Management Systems (BTMs) to the forefront of energy storage research, highlighting the role of machine learning and AI not just as tools for enhanced safety management through accurate temperature forecasts and diagnostics but also as indispensable allies in the early detection and warning of potential battery fires.Keywords: electric vehicles, battery thermal management, industrial engineering, machine learning, artificial intelligence, manufacturing
Procedia PDF Downloads 97