Search results for: elastic stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3998

Search results for: elastic stability

3638 Surface Erosion and Slope Stability Assessment of Cut and Fill Slope

Authors: Kongrat Nokkaew

Abstract:

This article assessed the surface erosion and stability of cut and fill slope in the excavation of the detention basin, Kalasin Province, Thailand. The large excavation project was built to enlarge detention basin for relieving repeated flooding and drought which usually happen in this area. However, at the end of the 1st rainstorm season, severely erosions slope failures were widespread observed. After investigation, the severity of erosions and slope failure were classified into five level from sheet erosion (Level 1), rill erosion (Level 2, 3), gully erosion (Level 4), and slope failure (Level 5) for proposing slope remediation. The preliminary investigation showed that lack of runoff control were the major factors of the surface erosions while insufficient compacted of the fill slope leaded to slopes failures. The slope stability of four selected slope failure was back calculated by using Simplified Bishop with Seep-W. The result show that factor of safety of slope located on non-plasticity sand was less than one, representing instability of the embankment slope. Such analysis agreed well with the failures observed in the field.

Keywords: surface erosion, slope stability, detention basin, cut and fill

Procedia PDF Downloads 336
3637 Analysis of Overall Thermo-Elastic Properties of Random Particulate Nanocomposites with Various Interphase Models

Authors: Lidiia Nazarenko, Henryk Stolarski, Holm Altenbach

Abstract:

In the paper, a (hierarchical) approach to analysis of thermo-elastic properties of random composites with interphases is outlined and illustrated. It is based on the statistical homogenization method – the method of conditional moments – combined with recently introduced notion of the energy-equivalent inhomogeneity which, in this paper, is extended to include thermal effects. After exposition of the general principles, the approach is applied in the investigation of the effective thermo-elastic properties of a material with randomly distributed nanoparticles. The basic idea of equivalent inhomogeneity is to replace the inhomogeneity and the surrounding it interphase by a single equivalent inhomogeneity of constant stiffness tensor and coefficient of thermal expansion, combining thermal and elastic properties of both. The equivalent inhomogeneity is then perfectly bonded to the matrix which allows to analyze composites with interphases using techniques devised for problems without interphases. From the mechanical viewpoint, definition of the equivalent inhomogeneity is based on Hill’s energy equivalence principle, applied to the problem consisting only of the original inhomogeneity and its interphase. It is more general than the definitions proposed in the past in that, conceptually and practically, it allows to consider inhomogeneities of various shapes and various models of interphases. This is illustrated considering spherical particles with two models of interphases, Gurtin-Murdoch material surface model and spring layer model. The resulting equivalent inhomogeneities are subsequently used to determine effective thermo-elastic properties of randomly distributed particulate composites. The effective stiffness tensor and coefficient of thermal extension of the material with so defined equivalent inhomogeneities are determined by the method of conditional moments. Closed-form expressions for the effective thermo-elastic parameters of a composite consisting of a matrix and randomly distributed spherical inhomogeneities are derived for the bulk and the shear moduli as well as for the coefficient of thermal expansion. Dependence of the effective parameters on the interphase properties is included in the resulting expressions, exhibiting analytically the nature of the size-effects in nanomaterials. As a numerical example, the epoxy matrix with randomly distributed spherical glass particles is investigated. The dependence of the effective bulk and shear moduli, as well as of the effective thermal expansion coefficient on the particle volume fraction (for different radii of nanoparticles) and on the radius of nanoparticle (for fixed volume fraction of nanoparticles) for different interphase models are compared to and discussed in the context of other theoretical predictions. Possible applications of the proposed approach to short-fiber composites with various types of interphases are discussed.

Keywords: effective properties, energy equivalence, Gurtin-Murdoch surface model, interphase, random composites, spherical equivalent inhomogeneity, spring layer model

Procedia PDF Downloads 165
3636 Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review

Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee

Abstract:

Biometallic materials are the most important materials for use in biomedical applications especially in manufacturing a variety of biological artificial replacements in a modern worlds, e.g. hip, knee or shoulder joints, due to their advanced characteristics. Titanium (Ti) and its alloys are used extensively in biomedical applications based on their high specific strength and excellent corrosion resistance. Beta-Ti alloys containing completely biocompatible elements are exceptionally prospective materials for manufacturing of bioimplants. They have superior mechanical, chemical and electrochemical properties for use as biomaterials. These biomaterials have the ability to introduce the most important property of biochemical compatibility which is low elastic modulus. This review examines current information on the recent developments in alloying elements leading to improvements of beta Ti alloys for use as biomaterials. Moreover, this paper focuses mainly on the evolution, evaluation and development of the modulus of elasticity as an effective factor on the performance of beta alloys.

Keywords: beta alloys, biomedical applications, titanium alloys, Young's modulus

Procedia PDF Downloads 295
3635 A First Order Shear Deformation Theory Approach for the Buckling Behavior of Nanocomposite Beams

Authors: P. Pramod Kumar, Madhu Salumari, V. V. Subba Rao

Abstract:

Due to their high strength-to-weight ratio, carbon nanotube (CNTs) reinforced polymer composites are being considered as one of the most promising nanocomposites which can improve the performance when used in structural applications. The buckling behavior is one of the most important parameter needs to be considered in the design of structural members like beams and plates. In the present paper, the elastic constants of CNT reinforced polymer composites are evaluated by using Mori-Tanaka micromechanics approach. Knowing the elastic constants, an analytical study is being conducted to investigate the buckling behavior of nanocomposites for different CNT volume fractions at different boundary conditions using first-order shear deformation theory (FSDT). The effect of stacking sequence and CNT radius on the buckling of beam has also been presented. This study is being conducted primarily with an intension to find the stiffening effect of CNTs when used in polymer composites as reinforcement.

Keywords: CNT, buckling, micromechanics, FSDT

Procedia PDF Downloads 254
3634 In-Vitro Stability of Aspergillus terreus Phytases in Relation to Different Physico-Chemical Factors

Authors: Qaiser Akram, Ahsan Naeem, Hafiz Muhammad Rizwan, Waqas Ahmad, Rubeena Yasmeen

Abstract:

Aspergillus has good secretory potential for phytases. Morphologically and microscopically identified Aspergillus terreus (A. terreus) (n=20) were screened for phytase production and non-toxicity. Phytases produced by non-toxigenic A. terreus under optimum conditions were quantified. Phytases of highest producer A. terreus were evaluated for stability after exposure to temperature (35, 55, 75 and 95ºC) and pH (2, 4, 6 and 8). Effect of metal ions (Fe⁺³, Ba⁺², Ca⁺², Cu⁺², Mg⁺², Mn⁺², K⁺¹ and Na⁺¹) was assessed on phytase activity. Log reduction in phytase activity was calculated. The highest activity units of phytase produced by A. terreus were 271.49 ± 8.14 phytase unit / mL (FTU/ mL). The lowest reduction in phytase activity was 50.20 ± 7.36 (18.5%) and 68.22 ± 10.3 FTU/mL (25.13%) at 35ºC and pH 6, respectively for 15 minutes. The highest reduction 259 ± 0.84 (95.5%) and 211.99 ± 4.39 FTU/mL (78.1%) was recorded at 95ºC for 60 minutes and pH 2.0 for 45 minutes exposure, respectively. All metal ions negatively affected phytase activity. Phytase activity was inhibited minimum (45.32 ± 28.54 FTU/mL, 16.69%) by K⁺¹(1 mM) and maximum (231.48 ± 3.68 FTU/mL, 80.8%) by Cu⁺² (10 mM). It was concluded that A. terreus phytase stability and activity was dependent on physio-chemical factors.

Keywords: stability, phytase, aspergillus terreus, physio-chemical factors and metal ions

Procedia PDF Downloads 252
3633 Effect of Slope Angle on Gougerd Landslide Stability in Northwest of Iran

Authors: Akbar Khodavirdizadeh

Abstract:

Gougerd village landslide with area about 150 hectares is located in southwest of Khoy city in northwest of the Iran. This Landslide was commenced more than 21 years and caused some damages in houses like some fissures on walls and some cracks on ground and foundations. The main mechanism of landslide is rotational with the high different of top and foot is about 230 m. The thickness of slide mass based on geoelectrical investigation is about 16m obtained. The upper layer of slope is silty sand and the lower layer of clayey gravel. In this paper, the stability of landslide are analyzed based in static analysis under different groundwater surface conditions and at slope angle changes with limit eqlibrium method and the simplified Bishop method. The results of the 72 stability analysis showed that the slope stability of Gougerd landslide increased with increasing of the groundwater surface depth of slope crown. And especially when decreased of slope angle, the safety facter more than in previous state is increased. The required of safety factor for stability in groundwater surface depth from slope crown equal 14 m and with decreased of slope angle to 3 degree at decrease of groundwater surface depth from slope crown equal 6.5 m obtained. The safety factor in critical conditions under groundwater surface depth from slope crown equal 3.5 m and at decreased of slope angle to 3 degree equal 0.5 m obtained. At groudwater surface depth from slope crown of 3 m, 7 m and 10 m respectively equal to 0.97, 1.19 and 1.33 obtained. At groudwater surface depth from slope crown of 3 m, 7 m and 10 m with decreased of slope angle to 3 degree, respectively equal to 1.27, 1.54 and 1.72 obtained. According to the results of this study, for 1 m of groundwater level decrease, the safety factor increased by 5%, and for 1 degree of reduction of the slope angle, safety factor increased by 15%. And the effect of slope angle on Gougerd landslide stability was felt more than groundwater effect.

Keywords: Gougerd landslide, stability analysis, slope angle, groundwater, Khoy

Procedia PDF Downloads 145
3632 Thermal Conductivity of Al2O3/Water-Based Nanofluids: Revisiting the Influences of pH and Surfactant

Authors: Nizar Bouguerra, Ahmed Khabou, Sébastien Poncet, Saïd Elkoun

Abstract:

The present work focuses on the preparation and the stabilization of Al2O3-water based nanofluids. Though they have been widely considered in the past, to the best of our knowledge, there is no clear consensus about a proper way to prepare and stabilize them by the appropriate surfactant. In this paper, a careful experimental investigation is performed to quantify the combined influence of pH and the surfactant on the stability of Al2O3-water based nanofluids. Two volume concentrations of nanoparticles and three nanoparticle sizes have been considered. The good preparation and stability of these nanofluids are evaluated through thermal conductivity measurements. The results show that the optimum value for the thermal conductivity is obtained mainly by controlling the pH of the mixture and surfactants are not necessary to stabilize the solution.

Keywords: nanofluid, thermal conductivity, pH, transient hot wire, surfactant, Al2O3, stability, dispersion, preparation

Procedia PDF Downloads 326
3631 On One New Solving Approach of the Plane Mixed Problem for an Elastic Semistrip

Authors: Natalia D. Vaysfel’d, Zinaida Y. Zhuravlova

Abstract:

The loaded plane elastic semistrip, the lateral boundaries of which are fixed, is considered. The integral transformations are applied directly to Lame’s equations. It leads to one dimensional boundary value problem in the transformations’ domain which is formulated as a vector one. With the help of the matrix differential calculation’s apparatus and apparatus of Green matrix function the exact solution of a vector problem is constructed. After the satisfying the boundary condition at the semi strip’s edge the problem is reduced to the solving of the integral singular equation with regard of the unknown stress at the semis trip’s edge. The equation is solved with the orthogonal polynomials method that takes into consideration the real singularities of the solution at the ends of integration interval. The normal stress at the edge of the semis trip were calculated and analyzed.

Keywords: semi strip, Green's Matrix, fourier transformation, orthogonal polynomials method

Procedia PDF Downloads 408
3630 Effect of Built in Polarization on Thermal Properties of InGaN/GaN Heterostructures

Authors: Bijay Kumar Sahoo

Abstract:

An important feature of InₓGa₁-ₓN/GaN heterostructures is strong built-in polarization (BIP) electric field at the hetero-interface due to spontaneous (sp) and piezoelectric (pz) polarizations. The intensity of this electric field reaches several MV/cm. This field has profound impact on optical, electrical and thermal properties. In this work, the effect of BIP field on thermal conductivity of InₓGa₁-ₓN/GaN heterostructure has been investigated theoretically. The interaction between the elastic strain and built in electric field induces additional electric polarization. This additional polarization contributes to the elastic constant of InₓGa₁-ₓN alloy. This in turn modifies material parameters of InₓGa₁-ₓN. The BIP mechanism enhances elastic constant, phonon velocity and Debye temperature and their bowing constants in InₓGa₁-ₓN alloy. These enhanced thermal parameters increase phonon mean free path which boost thermal conduction process. The thermal conductivity (k) of InxGa1-xN alloy has been estimated for x=0, 0.1, 0.3 and 0.9. Computation finds that irrespective of In content, the room temperature k of InₓGa₁-ₓN/GaN heterostructure is enhanced by BIP mechanism. Our analysis shows that at a certain temperature both k with and without BIP show crossover. Below this temperature k with BIP field is lower than k without BIP; however, above this temperature k with BIP field is significantly contributed by BIP mechanism leading to k with BIP field become higher than k without BIP field. The crossover temperature is primary pyroelectric transition temperature. The pyroelectric transition temperature of InₓGa₁-ₓN alloy has been predicted for different x. This signature of pyroelectric nature suggests that thermal conductivity can reveal pyroelectricity in InₓGa₁-ₓN alloy. The composition dependent room temperature k for x=0.1 and 0.3 are in line with prior experimental studies. The result can be used to minimize the self-heating effect in InₓGa₁-ₓN/GaN heterostructures.

Keywords: built-in polarization, phonon relaxation time, thermal properties of InₓGa₁-ₓN /GaN heterostructure, self-heating

Procedia PDF Downloads 384
3629 Study of Proton-9,11Li Elastic Scattering at 60~75 MeV/Nucleon

Authors: Arafa A. Alholaisi, Jamal H. Madani, M. A. Alvi

Abstract:

The radial form of nuclear matter distribution, charge and the shape of nuclei are essential properties of nuclei, and hence, are of great attention for several areas of research in nuclear physics. More than last three decades have witnessed a range of experimental means employing leptonic probes (such as muons, electrons etc.) for exploring nuclear charge distributions, whereas the hadronic probes (for example alpha particles, protons, etc.) have been used to investigate the nuclear matter distributions. In this paper, p-9,11Li elastic scattering differential cross sections in the energy range  to  MeV have been studied by means of Coulomb modified Glauber scattering formalism. By applying the semi-phenomenological Bhagwat-Gambhir-Patil [BGP] nuclear density for loosely bound neutron rich 11Li nucleus, the estimated matter radius is found to be 3.446 fm which is quite large as compared to so known experimental value 3.12 fm. The results of microscopic optical model based calculation by applying Bethe-Brueckner–Hartree–Fock formalism (BHF) have also been compared. It should be noted that in most of phenomenological density model used to reproduce the p-11Li differential elastic scattering cross sections data, the calculated matter radius lies between 2.964 and 3.55 fm. The calculated results with phenomenological BGP model density and with nucleon density calculated in the relativistic mean-field (RMF) reproduces p-9Li and p-11Li experimental data quite nicely as compared to Gaussian- Gaussian or Gaussian-Oscillator densities at all energies under consideration. In the approach described here, no free/adjustable parameter has been employed to reproduce the elastic scattering data as against the well-known optical model based studies that involve at least four to six adjustable parameters to match the experimental data. Calculated reaction cross sections σR for p-11Li at these energies are quite large as compared to estimated values reported by earlier works though so far no experimental studies have been performed to measure it.

Keywords: Bhagwat-Gambhir-Patil density, Coulomb modified Glauber model, halo nucleus, optical limit approximation

Procedia PDF Downloads 132
3628 Stability Enhancement of a Large-Scale Power System Using Power System Stabilizer Based on Adaptive Neuro Fuzzy Inference System

Authors: Agung Budi Muljono, I Made Ginarsa, I Made Ari Nrartha

Abstract:

A large-scale power system (LSPS) consists of two or more sub-systems connected by inter-connecting transmission. Loading pattern on an LSPS always changes from time to time and varies depend on consumer need. The serious instability problem is appeared in an LSPS due to load fluctuation in all of the bus. Adaptive neuro-fuzzy inference system (ANFIS)-based power system stabilizer (PSS) is presented to cover the stability problem and to enhance the stability of an LSPS. The ANFIS control is presented because the ANFIS control is more effective than Mamdani fuzzy control in the computation aspect. Simulation results show that the presented PSS is able to maintain the stability by decreasing peak overshoot to the value of −2.56 × 10−5 pu for rotor speed deviation Δω2−3. The presented PSS also makes the settling time to achieve at 3.78 s on local mode oscillation. Furthermore, the presented PSS is able to improve the peak overshoot and settling time of Δω3−9 to the value of −0.868 × 10−5 pu and at the time of 3.50 s for inter-area oscillation.

Keywords: ANFIS, large-scale, power system, PSS, stability enhancement

Procedia PDF Downloads 279
3627 Simulation of Acoustic Properties of Borate and Tellurite Glasses

Authors: M. S. Gaafar, S. Y. Marzouk, I. S. Mahmoud, S. Al-Zobaidi

Abstract:

Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined.

Keywords: glasses, ultrasonic wave velocities, elastic modulus, Makishima & Mackenzie Model

Procedia PDF Downloads 361
3626 Stability and Sensitivity Analysis of Cholera Model with Treatment Class

Authors: Yunusa Aliyu Hadejia

Abstract:

Cholera is a gastrointestinal disease caused by a bacterium called Vibrio Cholerae which spread as a result of eating food or drinking water contaminated with feaces from an infected person. In this work we proposed and analyzed the impact of isolating infected people and give them therapeutic treatment, the specific objectives of the research was to formulate a mathematical model of cholera transmission incorporating treatment class, to make analysis on stability of equilibrium points of the model, positivity and boundedness was shown to ensure that the model has a biological meaning, the basic reproduction number was derived by next generation matrix approach. The result of stability analysis show that the Disease free equilibrium was both locally and globally asymptotically stable when R_0< 1 while endemic equilibrium has locally asymptotically stable when R_0> 1. Sensitivity analysis was perform to determine the contribution of each parameter to the basic reproduction number. Numerical simulation was carried out to show the impact of the model parameters using MAT Lab Software.

Keywords: mathematical model, treatment, stability, sensitivity

Procedia PDF Downloads 69
3625 Motion of an Infinitesimal Particle in Binary Stellar Systems: Kepler-34, Kepler-35, Kepler-16, Kepler-413

Authors: Rajib Mia, Badam Singh Kushvah

Abstract:

The present research was motivated by the recent discovery of the binary star systems. In this paper, we use the restricted three-body problem in the binary stellar systems, considering photogravitational effects of both the stars. The aim of this study is to investigate the motion of the infinitesimal mass in the vicinity of the Lagrangian points. The stability and periodic orbits of collinear points and the stability and trajectories of the triangular points are studied in stellar binary systems Kepler-34, Kepler-35, Kepler-413 and Kepler-16 systems. A detailed comparison is made among periodic orbits and trajectories.

Keywords: exoplanetary systems, lagrangian points, periodic orbit, restricted three body problem, stability

Procedia PDF Downloads 403
3624 Stability Optimization of NABH₄ via PH and H₂O:NABH₄ Ratios for Large Scale Hydrogen Production

Authors: Parth Mehta, Vedasri Bai Khavala, Prabhu Rajagopal, Tiju Thomas

Abstract:

There is an increasing need for alternative clean fuels, and hydrogen (H₂) has long been considered a promising solution with a high calorific value (142MJ/kg). However, the storage of H₂ and expensive processes for its generation have hindered its usage. Sodium borohydride (NaBH₄) can potentially be used as an economically viable means of H₂ storage. Thus far, there have been attempts to optimize the life of NaBH₄ (half-life) in aqueous media by stabilizing it with sodium hydroxide (NaOH) for various pH values. Other reports have shown that H₂ yield and reaction kinetics remained constant for all ratios of H₂O to NaBH₄ > 30:1, without any acidic catalysts. Here we highlight the importance of pH and H₂O: NaBH₄ ratio (80:1, 40:1, 20:1 and 10:1 by weight), for NaBH₄ stabilization (half-life reaction time at room temperature) and corrosion minimization of H₂ reactor components. It is interesting to observe that at any particular pH>10 (e.g., pH = 10, 11 and 12), the H₂O: NaBH₄ ratio does not have the expected linear dependence with stability. On the contrary, high stability was observed at the ratio of 10:1 H₂O: NaBH₄ across all pH>10. When the H₂O: NaBH₄ ratio is increased from 10:1 to 20:1 and beyond (till 80:1), constant stability (% degradation) is observed with respect to time. For practical usage (consumption within 6 hours of making NaBH₄ solution), 15% degradation at pH 11 and NaBH₄: H₂O ratio of 10:1 is recommended. Increasing this ratio demands higher NaOH concentration at the same pH, thus requiring a higher concentration or volume of acid (e.g., HCl) for H₂ generation. The reactions are done with tap water to render the results useful from an industrial standpoint. The observed stability regimes are rationalized based on complexes associated with NaBH₄ when solvated in water, which depend sensitively on both pH and NaBH₄: H₂O ratio.

Keywords: hydrogen, sodium borohydride, stability optimization, H₂O:NaBH₄ ratio

Procedia PDF Downloads 95
3623 Influence of Different Thicknesses on Mechanical and Corrosion Properties of a-C:H Films

Authors: S. Tunmee, P. Wongpanya, I. Toda, X. L. Zhou, Y. Nakaya, N. Konkhunthot, S. Arakawa, H. Saitoh

Abstract:

The hydrogenated amorphous carbon films (a-C:H) were deposited on p-type Si (100) substrates at different thicknesses by radio frequency plasma enhanced chemical vapor deposition technique (rf-PECVD). Raman spectra display asymmetric diamond-like peaks, representative of the a-C:H films. The decrease of intensity ID/IG ratios revealed the sp3 content arise at different thicknesses of the a-C:H films. In terms of mechanical properties, the high hardness and elastic modulus values show the elastic and plastic deformation behaviors related to sp3 content in amorphous carbon films. Electro chemical properties showed that the a-C:H films exhibited excellent corrosion resistance in air-saturated 3.5 wt% NaCl solution for pH 2 at room temperature. Thickness increasing affected the small sp2 clusters in matrix, restricting the velocity transfer and exchange of electrons. The deposited a-C:H films exhibited excellent mechanical properties and corrosion resistance.

Keywords: thickness, mechanical properties, electrochemical corrosion properties, a-C:H film

Procedia PDF Downloads 423
3622 Fracture Strength of Carbon Nanotube Reinforced Plasma Sprayed Aluminum Oxide Coating

Authors: Anup Kumar Keshri, Arvind Agarwal

Abstract:

Carbon nanotube (CNT) reinforced aluminum oxide (Al2O3) composite coating was synthesized on the steel substrate using plasma spraying technique. Three different compositions of coating such as Al2O3, Al2O¬3-4 wt. % CNT and Al2O3-8 wt. % CNT were synthesized and the fracture strength was determined using the four point bend test. Uniform dispersion of CNTs over Al2O3 powder particle was successfully achieved. With increasing CNT content, porosity in the coating showed decreasing trend and hence contributed towards enhanced mechanical properties such as hardness (~12% increased) and elastic modulus (~34 % increased). Fracture strength of the coating was found to be increasing with the CNT additions. By reinforcement of 8 wt. % of CNT, fracture strength increased by ~2.5 times. The improvement in fracture strength of Al2O3-CNT coating was attributed to three competitive phenomena viz. (i) lower porosity (ii) higher hardness and elastic modulus (iii) CNT bridging between splats.

Keywords: aluminum oxide, carbon nanotube, fracture strength, plasma spraying

Procedia PDF Downloads 373
3621 Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability

Authors: Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang

Abstract:

Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach.

Keywords: power system small-signal angular stability, power system low-frequency oscillations, electromechanical oscillation modes, wind farms, double fed induction generator (DFIG)

Procedia PDF Downloads 459
3620 Comparative Study of Compressive Strength of Triangular Polyester Fiber with Fly Ash Roller Compacted Concrete Using Ultrasonic Pulse Velocity Method

Authors: Pramod Keshav Kolase, Atul K. Desai

Abstract:

This paper presents the experimental investigation results of Ultrasonic Pulse Velocity (UPV) tests conducted on roller compacted concrete pavement (RCCP) material containing Class F fly ash of as mineral admixture and triangular polyester fiber as a secondary reinforcement. The each mix design series fly ash content is varied from 0% to 45 % and triangular polyester fiber 0% to 0.75% by volume fraction. In each series and for different ages of curing (i.e. 7, 28 and 90 days) forty-eight cube specimens are cast and tested for compressive strength and UPV. The UPV of fly ash was found to be lower for all mixtures at 7 days in comparison with control mix concrete. But at 28, 56 days and 90 days the UPV were significantly improved for all the mixes. Relationships between compressive strength of RCCP and UPV and Dynamic Elastic Modulus are proposed for all series mixes.

Keywords: compressive strength, dynamic elastic modulus, fly ash, fiber, roller compacted concrete, ultrasonic pulse velocity

Procedia PDF Downloads 195
3619 Rheological Properties of Thermoresponsive Poly(N-Vinylcaprolactam)-g-Collagen Hydrogel

Authors: Serap Durkut, A. Eser Elcin, Y. Murat Elcin

Abstract:

Stimuli-sensitive polymeric hydrogels have received extensive attention in the biomedical field due to their sensitivity to physical and chemical stimuli (temperature, pH, ionic strength, light, etc.). This study describes the rheological properties of a novel thermoresponsive poly(N-vinylcaprolactam)-g-collagen hydrogel. In the study, we first synthesized a facile and novel synthetic carboxyl group-terminated thermo-responsive poly(N-vinylcaprolactam)-COOH (PNVCL-COOH) via free radical polymerization. Further, this compound was effectively grafted with native collagen, by utilizing the covalent bond between the carboxylic acid groups at the end of the chains and amine groups of the collagen using cross-linking agent (EDC/NHS), forming PNVCL-g-Col. Newly-formed hybrid hydrogel displayed novel properties, such as increased mechanical strength and thermoresponsive characteristics. PNVCL-g-Col showed low critical solution temperature (LCST) at 38ºC, which is very close to the body temperature. Rheological studies determine structural–mechanical properties of the materials and serve as a valuable tool for characterizing. The rheological properties of hydrogels are described in terms of two dynamic mechanical properties: the elastic modulus G′ (also known as dynamic rigidity) representing the reversible stored energy of the system, and the viscous modulus G″, representing the irreversible energy loss. In order to characterize the PNVCL-g-Col, the rheological properties were measured in terms of the function of temperature and time during phase transition. Below the LCST, favorable interactions allowed the dissolution of the polymer in water via hydrogen bonding. At temperatures above the LCST, PNVCL molecules within PNVCL-g-Col aggregated due to dehydration, causing the hydrogel structure to become dense. When the temperature reached ~36ºC, both the G′ and G″ values crossed over. This indicates that PNVCL-g-Col underwent a sol-gel transition, forming an elastic network. Following temperature plateau at 38ºC, near human body temperature the sample displayed stable elastic network characteristics. The G′ and G″ values of the PNVCL-g-Col solutions sharply increased at 6-9 minute interval, due to rapid transformation into gel-like state and formation of elastic networks. Copolymerization with collagen leads to an increase in G′, as collagen structure contains a flexible polymer chain, which bestows its elastic properties. Elasticity of the proposed structure correlates with the number of intermolecular cross-links in the hydrogel network, increasing viscosity. However, at 8 minutes, G′ and G″ values sharply decreased for pure collagen solutions due to the decomposition of the elastic and viscose network. Complex viscosity is related to the mechanical performance and resistance opposing deformation of the hydrogel. Complex viscosity of PNVCL-g-Col hydrogel was drastically changed with temperature and the mechanical performance of PNVCL-g-Col hydrogel network increased, exhibiting lesser deformation. Rheological assessment of the novel thermo-responsive PNVCL-g-Col hydrogel, exhibited that the network has stronger mechanical properties due to both permanent stable covalent bonds and physical interactions, such as hydrogen- and hydrophobic bonds depending on temperature.

Keywords: poly(N-vinylcaprolactam)-g-collagen, thermoresponsive polymer, rheology, elastic modulus, stimuli-sensitive

Procedia PDF Downloads 221
3618 Artificial Intelligence Impact on Strategic Stability

Authors: Darius Jakimavicius

Abstract:

Artificial intelligence is the subject of intense debate in the international arena, identified both as a technological breakthrough and as a component of the strategic stability effect. Both the kinetic and non-kinetic development of AI and its application in the national strategies of the great powers may trigger a change in the security situation. Artificial intelligence is generally faster, more capable and more efficient than humans, and there is a temptation to transfer decision-making and control responsibilities to artificial intelligence. Artificial intelligence, which, once activated, can select and act on targets without further intervention by a human operator, blurs the boundary between human or robot (machine) warfare, or perhaps human and robot together. Artificial intelligence acts as a force multiplier that speeds up decision-making and reaction times on the battlefield. The role of humans is increasingly moving away from direct decision-making and away from command and control processes involving the use of force. It is worth noting that the autonomy and precision of AI systems make the process of strategic stability more complex. Deterrence theory is currently in a phase of development in which deterrence is undergoing further strain and crisis due to the complexity of the evolving models enabled by artificial intelligence. Based on the concept of strategic stability and deterrence theory, it is appropriate to develop further research on the development and impact of AI in order to assess AI from both a scientific and technical perspective: to capture a new niche in the scientific literature and academic terminology, to clarify the conditions for deterrence, and to identify the potential uses, impacts and possibly quantities of AI. The research problem is the impact of artificial intelligence developed by great powers on strategic stability. This thesis seeks to assess the impact of AI on strategic stability and deterrence principles, with human exclusion from the decision-making and control loop as a key axis. The interaction between AI and human actions and interests can determine fundamental changes in great powers' defense and deterrence, and the development and application of AI-based great powers strategies can lead to a change in strategic stability.

Keywords: artificial inteligence, strategic stability, deterrence theory, decision making loop

Procedia PDF Downloads 13
3617 The Stability Study of Large-Scale Grid-Tied Photovoltaic System Containing Different Types of Inverter

Authors: Chen Zheng, Lin Zhou, Bao Xie, Xiao Du, Nianbin Shao

Abstract:

Power generated by large-scale photovoltaic plants (LSPVPs) is usually transmitted to the grid through several transformers and long distance overhead lines. Impedance of transformers and transmission lines results in complex interactions between the plant and the grid and among different inverters. In accordance with the topological structure of LSPV in reality, an equivalent model containing different inverters was built and then interactions between the plant and the grid and among different inverters were studied. Based on the vector composition principle of voltage at the point of common coupling (PCC), the mathematic function of PCC voltage in regard to the total power and grid impedance was deduced, from which the uttermost total power to guarantee the system stable is obtained. Taking the influence of different inverters numbers and the length of transmission lines to the system stability into account, the stability criterion of LSPV containing different inverters was derived. The result of simulation validated the theory analysis in the paper.

Keywords: LSPVPs, stability analysis, grid impedance, different types of inverter, PCC voltage

Procedia PDF Downloads 283
3616 C Vibration Analysis of a Beam on Elastic Foundation with Elastically Restrained Ends Using Spectral Element Method

Authors: Hamioud Saida, Khalfallah Salah

Abstract:

In this study, a spectral element method is employed to predict the free vibration of a Euler-Bernoulli beam resting on a Winkler foundation with elastically restrained ends. The formulation of the dynamic stiffness matrix has been established by solving the differential equation of motion, which was transformed to frequency domain. Non-dimensional natural frequencies and shape modes are obtained by solving the partial differential equations, numerically. Numerical comparisons and examples are performed to show the effectiveness of the SEM and to investigate the effects of various parameters, such as the springs at the boundaries and the elastic foundation parameter on the vibration frequencies. The obtained results demonstrate that the present method can also be applied to solve the more general problem of the dynamic analysis of structures with higher order precision.

Keywords: elastically supported Euler-Bernoulli beam, free-vibration, spectral element method, Winkler foundation

Procedia PDF Downloads 110
3615 Spin-Polarized Investigation of Ferromagnetism on Magnetic Semiconductors MnxCa1-xS in the Rock-salt Phase

Authors: B. Ghebouli, M. A. Ghebouli, H. Choutri, M. Fatmi, L. Louail

Abstract:

The structural, elastic, electronic and magnetic properties of the diluted magnetic semiconductors MnxCa1-xS in the rock-salt phase have been investigated using first-principles calculations. Features such as lattice constant, bulk modulus, elastic constants, spin-polarized band structure, total and local densities of states have been computed. We predict the values of the exchange constants and the band edge spin splitting of the valence and conduction bands. The hybridization between S-3p and Mn-3d produces small local magnetic moment on the nonmagnetic Ca and S sites. The ferromagnetism is induced due to the exchange splitting of S-3p and Mn-3d hybridized bands. The total magnetic moment per Mn of MnxCa1-xS is 4.4µB and is independent of the Mn concentration. The unfilled Mn -3d levels reduce the local magnetic moment of Mn from its free space charge value of 5µB to 4.4µB due to 3p–3d hybridization.

Keywords: semiconductors, Ab initio calculations, band-structure, magnetic properties

Procedia PDF Downloads 329
3614 Effect of Gas Boundary Layer on the Stability of a Radially Expanding Liquid Sheet

Authors: Soumya Kedia, Puja Agarwala, Mahesh Tirumkudulu

Abstract:

Linear stability analysis is performed for a radially expanding liquid sheet in the presence of a gas medium. A liquid sheet can break up because of the aerodynamic effect as well as its thinning. However, the study of the aforementioned effects is usually done separately as the formulation becomes complicated and is difficult to solve. Present work combines both, aerodynamic effect and thinning effect, ignoring the non-linearity in the system. This is done by taking into account the formation of the gas boundary layer whilst neglecting viscosity in the liquid phase. Axisymmetric flow is assumed for simplicity. Base state analysis results in a Blasius-type system which can be solved numerically. Perturbation theory is then applied to study the stability of the liquid sheet, where the gas-liquid interface is subjected to small deformations. The linear model derived here can be applied to investigate the instability for sinuous as well as varicose modes, where the former represents displacement in the centerline of the sheet and the latter represents modulation in sheet thickness. Temporal instability analysis is performed for sinuous modes, which are significantly more unstable than varicose modes, for a fixed radial distance implying local stability analysis. The growth rates, measured for fixed wavenumbers, predicated by the present model are significantly lower than those obtained by the inviscid Kelvin-Helmholtz instability and compare better with experimental results. Thus, the present theory gives better insight into understanding the stability of a thin liquid sheet.

Keywords: boundary layer, gas-liquid interface, linear stability, thin liquid sheet

Procedia PDF Downloads 204
3613 Mechanical Performances and Viscoelastic Behaviour of Starch-Grafted-Polypropylene/Kenaf Fibres Composites

Authors: A. Hamma, A. Pegoretti

Abstract:

The paper focuses on the evaluation of mechanical performances and viscoelastic behaviour of starch-grafted-PP reinforced with kenaf fibres. Investigations were carried out on composites prepared by melt compounding and compression molding. Two aspects have been taken into account, the effects of various fibres loading rates (10, 20 and 30 wt.%) and the fibres aspect ratios (L/D=30 and 160). Good fibres/matrix interaction has been evidenced by SEM observations. However, processing induced variation of fibre length quantified by optical microscopy observations. Tensile modulus and ultimate properties, hardness and tensile impact stress, were found to remarkably increase with fibre loading. Moreover, short term tensile creep tests have proven that kenaf fibres improved considerably the creep stability. Modelling of creep behaviour by a four parameter Burger model was successfully used. An empirical equation involving Halpin-Tsai semi empirical model was also used to predict the elastic modulus of composites.

Keywords: mechanical properties, creep, fibres, thermoplastic composites, starch-grafted-PP

Procedia PDF Downloads 235
3612 Nanoindentation Studies of Metallic Cu-CuZr Composites Synthesized by Accumulative Roll Bonding

Authors: Ehsan Alishahi, Chuang Deng

Abstract:

Materials with microstructural heterogeneity have recently attracted dramatic attention in the materials science community. Although most of the metals are identified as crystalline, the new class of amorphous alloys, sometimes are known as metallic glasses (MGs), exhibited remarkable properties, particularly high mechanical strength and elastic limit. The unique properties of MGs led to the wide range of studies in developing and characterizing of new alloys or composites which met the commercial desires. In spite of applicable properties of MGs, commercializing of metallic glasses was limited due to a major drawback, the lack of ductility and sudden brittle failure mode. Hence, crystalline-amorphous (C-A) composites were introduced almost in 2000s as a toughening strategy to improve the ductility of MGs. Despite the considerable progress reported in previous studies, there are still challenges in both synthesis and characterization of metallic C-A composites. In this study, accumulative roll bonding (ARB) was used to synthesize bulk crystalline-amorphous composites starting from crystalline Cu-Zr multilayers. Due to the severe plastic deformation state, new CuZr phases were formed during the rolling process which was reflected in SEM-EDS analysis. EDS elemental analysis showed the variation in the composition of CuZr phases such as 38-62, 50-50 to 68-32 at Cu-Zr % respectively. Moreover, TEM with electron diffraction analysis indicated the presence of both crystalline and amorphous structures for the new formed CuZr phases. In addition to the microstructural analysis, the mechanical properties of the synthesized composites were studied using the nanoindentation technique. Hysitron Nanoindentation instrument was used to conduct nanoindentation tests with cube corner tip. The maximum load of 5000 µN was applied in load control mode to measure the elastic modulus and hardness of different phases. The trend of results indicated three distinct regimes of hardness and elastic modulus including pure Cu, pure Zr, and new formed CuZr phases. More specifically, pure Cu regions showed the lowest values for both nanoindentation hardness and elastic modulus while the CuZr phases take the highest values. Consequently, pure Zr was placed in the intermediate range which is harder than pure Cu but softer than CuZr phases. In overall, it was found that CuZr phases with higher hardness were nucleated during ARB process as a result of mechanical alloying phenomenon.

Keywords: ARB, crystalline-amorphous composites, mechanical alloying, nanoindentation hardness

Procedia PDF Downloads 526
3611 Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback

Authors: M. A. Sohaly, M. A. Elfouly

Abstract:

Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used.

Keywords: Parkinson's disease, stability, simulation, two delay differential equation

Procedia PDF Downloads 105
3610 A Criterion for Evaluating Plastic Loads: Plastic Work-Tangent Criterion

Authors: Ying Zhang

Abstract:

In ASME Boiler and Pressure Vessel Code, the plastic load is defined by applying the twice elastic slope (TES) criterion of plastic collapse to a characteristic load-deformation curve for the vessel. Several other plastic criterion such as tangent intersection (TI) criterion, plastic work (PW) criterion have been proposed in the literature, but all exhibit a practical limitation: difficult to define the load parameter for vessels subject to several combined loads. An alternative criterion: plastic work-tangent (PWT) criterion for evaluating plastic load in pressure vessel design by analysis is presented in this paper. According to the plastic work-load curve, when the tangent variation is less than a given value in the plastic phase, the corresponding load is the plastic load. Application of the proposed criterion is illustrated by considering the elastic-plastic response of the lower head of reactor pressure vessel (RPV) and nozzle intersection of (RPV). It is proposed that this is because the PWT criterion more fully represents the constraining effect of material strain hardening on the spread of plastic deformation and more efficiently ton evaluating the plastic load.

Keywords: plastic load, plastic work, strain hardening, plastic work-tangent criterion

Procedia PDF Downloads 331
3609 Assessment of Slope Stability by Continuum and Discontinuum Methods

Authors: Taleb Hosni Abderrahmane, Berga Abdelmadjid

Abstract:

The development of numerical analysis and its application to geomechanics problems have provided geotechnical engineers with extremely powerful tools. One of the most important problems in geotechnical engineering is the slope stability assessment. It is a very difficult task due to several aspects such the nature of the problem, experimental consideration, monitoring, controlling, and assessment. The main objective of this paper is to perform a comparative numerical study between the following methods: The Limit Equilibrium (LEM), Finite Element (FEM), Limit Analysis (LAM) and Distinct Element (DEM). The comparison is conducted in terms of the safety factors and the critical slip surfaces. Through the results, we see the feasibility to analyse slope stability by many methods.

Keywords: comparison, factor of safety, geomechanics, numerical methods, slope analysis, slip surfaces

Procedia PDF Downloads 506