Search results for: crystalline waterproofing materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6997

Search results for: crystalline waterproofing materials

6637 Finite Element Analysis of Dental Implant for Prosthesis

Authors: Mayur Chaudhari, Ashutosh Gaikwad, Shubham Kavathale, Aditya Mule, Dilip Panchal, Puja Verma

Abstract:

The purpose of this investigation was to locate restorative bio-materials for the manufacture of implants and crowns. A three-dimensional (3D) finite element analysis (FEA) was carried out to evaluate the stress distribution in the implant and abutment with several types of bio-materials and various prosthetic crowns. While the dental implant, abutment, and screw were subjected to a vertical impact force, the effects of mechanical characteristics such as Young's modulus and Poisson's ratio were evaluated and contrasted. Crowns are made from zirconia, cobalt, ceramic, acrylic resin, and porcelain materials. Implants are made from materials such as titanium, zirconia, PEEK, and CFR-PEEK. SolidWorks was used to create the 3D geometry, and Ansys Software was used to analyze it. The results show that using CFR-PEEK implants and an acrylic resin crown resulted in less bone stress than using alternative materials. In order to reduce the amount of stress on the bone and possibly prevent implant failure, the study's findings support the use of a CFR PEEK implant, abutment, and crown in bruxism patients.

Keywords: biomaterials, implant, crown, abutment

Procedia PDF Downloads 34
6636 Property of Diamond Coated Tools for Lapping Single-Crystal Sapphire Wafer

Authors: Feng Wei, Lu Wenzhuang, Cai Wenjun, Yu Yaping, Basnet Rabin, Zuo Dunwen

Abstract:

Diamond coatings were prepared on cemented carbide by hot filament chemical vapor deposition (HFCVD) method. Lapping experiment of single-crystal sapphire wafer was carried out using the prepared diamond coated tools. The diamond coatings and machined surface of the sapphire wafer were evaluated by SEM, laser confocal microscope and Raman spectrum. The results indicate that the lapping sapphire chips are small irregular debris and long thread-like debris. There is graphitization of diamond crystal during the lapping process. A low surface roughness can be obtained using a spherical grain diamond coated tool.

Keywords: lapping, nano-micro crystalline diamond coating, Raman spectrum, sapphire

Procedia PDF Downloads 464
6635 Sol-Gel Synthesis and Optical Characterisation of TiO2 Thin Films for Photovoltaic Application

Authors: Arabi Nour El Houda, Iratni Aicha, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui

Abstract:

TiO2 thin films have been prepared by the sol-gel dip-coating technique in order to elaborate antireflective thin films for monocrystalline silicon (mono-Si). The titanium isopropoxyde was chosen as a precursor with hydrochloric acid as a catalyser for preparing a stable solution. The optical properties have been tailored with varying the solution concentration, the withdrawn speed, and the heat-treatment. We showed that using a TiO2 single layer with 64.5 nm in thickness, heat-treated at 450°C or 300°C reduces the mono-Si reflection at a level lower than 3% over the broadband spectral do mains [669-834] nm and [786-1006] nm respectively. Those latter performances are similar to the ones obtained with double layers of low and high refractive index glasses respectively.

Keywords: thin film, dip-coating, mono-crystalline silicon, titanium oxide

Procedia PDF Downloads 410
6634 Silicon Nanostructure Based on Metal-Nanoparticle-Assisted Chemical Etching for Photovoltaic Application

Authors: B. Bouktif, M. Gaidi, M. Benrabha

Abstract:

Metal-nano particle-assisted chemical etching is an extraordinary developed wet etching method of producing uniform semiconductor nanostructure (nanowires) from the patterned metallic film on the crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs). Creation of different SiNWs morphologies by changing the etching time and its effects on optical and optoelectronic properties was investigated. Combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and optoelectronic properties are presented in this paper.

Keywords: semiconductor nanostructure, chemical etching, optoelectronic property, silicon surface

Procedia PDF Downloads 363
6633 Photoluminescence Spectroscopy to Probe Mixed Valence State in Eu-Doped Nanocrystalline Glass-Ceramics

Authors: Ruchika Bagga, Mauro Falconieri, Venu Gopal Achanta, José M. F. Ferreira, Ashutosh Goel, Gopi Sharma

Abstract:

Mixed valence Eu-doped nanocrystalline NaAlSiO4/NaY9Si6O26 glass-ceramics have been prepared by controlled crystallization of melt quenched bulk glasses. XRD and SEM techniques were employed to characterize the crystallization process of the precursor glass and their resultant glass-ceramics. Photoluminescence spectroscopy was used to analyze the formation of divalent europium (Eu2+) from Eu3+ ions during high temperature synthesis under ambient atmosphere and is explained on the basis of optical basicity model. The observed luminescence properties of Eu: NaY9Si6O26 are compared with that of well explored Eu: β-PbF2 nanocrystals and their marked differences are discussed.

Keywords: rare earth, oxyfluoride glasses, nano-crystalline glass-ceramics, photoluminescence spectroscopy

Procedia PDF Downloads 317
6632 Analyzing Sociocultural Factors Shaping Architects’ Construction Material Choices: The Case of Jordan

Authors: Maiss Razem

Abstract:

The construction sector is considered a major consumer of materials that undergoes processes of extraction, processing, transportation, and maintaining when used in buildings. Several metrics have been devised to capture the environmental impact of the materials consumed during construction using lifecycle thinking. Rarely has the materiality of this sector been explored qualitatively and systemically. This paper aims to explore socio-cultural forces that drive the use of certain materials in the Jordanian construction industry, using practice theory as a heuristic method of analysis, more specifically Shove et al. three-element model. By conducting semi-structured interviews with architects, the results unravel contextually embedded routines when determining qualities of three materialities highlighted herein; stone, glass and spatial openness. The study highlights the inadequacy of only using efficiency as a quantitative metric of sustainable materials and argues for the need to link material consumption with socio-economic, cultural, and aesthetic driving forces. The operationalization of practice theory by tracing materials’ lifetimes as they integrate with competencies and meanings captures dynamic engagements through the analyzed routines of actors in the construction practice. This study can offer policymakers better-nuanced representation to green this sector beyond efficiency rhetoric and quantitative metrics.

Keywords: architects' practices, construction materials, Jordan, practice theory

Procedia PDF Downloads 149
6631 Water Absorption Studies on Natural Fiber Reinforced Polymer Composites

Authors: G. L. Devnani, Shishir Sinha

Abstract:

In the recent years, researchers have drawn their focus on natural fibers reinforced composite materials because of their excellent properties like low cost, lower weight, better tensile and flexural strengths, biodegradability etc. There is little concern however that when these materials are put in moist conditions for long duration, their mechanical properties degrade. Therefore, in order to take maximum advantage of these novel materials, one should have a complete understanding of their moisture or water absorption phenomena. Various fiber surface treatment methods like alkaline treatment, acetylation etc. have also been suggested for reduction in water absorption of these composites. In the present study, a detailed review is done for water absorption behavior of natural fiber reinforced polymer composites, and experiments also have been performed on these composites with varying the parameters like fiber loading etc. for understanding the water absorption kinetics. Various surface treatment methods also performed to reduce the water absorption behavior of these materials and effort is made to develop a proper understanding of water absorption mechanism mathematically and experimentally for full potential utilization of natural fiber reinforced polymer composite materials.

Keywords: alkaline treatment, composites, natural fiber, water absorption

Procedia PDF Downloads 247
6630 Thermodynamic Performance Tests for 3D Printed Steel Slag Powder Concrete Walls

Authors: Li Guoyou, Zhang Tao, Ji Wenzhan, Huo Liang, Lin Xiqiang, Zhang Nan

Abstract:

The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is possible to print engineering structures. 3D printing buildings use wastes from constructions, industries and mine tailings as “ink”, and mix it with property improved materials, such as cement, fiber etc. This paper presents a study of the Thermodynamic performance of 3D printed walls using cement and steel slag powder. Analyses the thermal simulation regarding 3D printed walls and solid brick wall by the way of the hot-box methods and the infrared technology, and the results were contrasted with theoretical calculation. The results show that the excellent thermodynamic performance of 3D printed concrete wall made it suitable as the partial materials for self-thermal insulation walls in residential buildings. The thermodynamic performance of 3D printed concrete walls depended on the density of materials, distribution of holes, and the filling materials. Decreasing the density of materials, increasing the number of holes or replacing the filling materials with foamed concrete could improve its thermodynamic performance significantly. The average of heat transfer coefficient and thermal inertia index of 3D printed steel slag powder concrete wall all better than the traditional solid brick wall with a thickness of 240mm.

Keywords: concrete, 3D printed walls, thermodynamic performance, steel slag powder

Procedia PDF Downloads 161
6629 Regenerated Cellulose Prepared by Using NaOH/Urea

Authors: Lee Chiau Yeng, Norhayani Othman

Abstract:

Regenerated cellulose fiber is fabricated in the NaOH/urea aqueous solution. In this work, cellulose is dissolved in 7 .wt% NaOH/12 .wt% urea in the temperature of -12 °C to prepare regenerated cellulose. Thermal and structure properties of cellulose and regenerated cellulose was compared and investigated by Field Emission Scanning Electron Microscopy (FeSEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric analysis (TGA), and Differential Scanning Calorimetry. Results of FeSEM revealed that the regenerated cellulose fibers showed a more circular shape with irregular size due to fiber agglomeration. FTIR showed the difference in between the structure of cellulose and the regenerated cellulose fibers. In this case, regenerated cellulose fibers have a cellulose II crystalline structure with lower degree of crystallinity. Regenerated cellulose exhibited better thermal stability than the cellulose.

Keywords: regenerated cellulose, cellulose, NaOH, urea

Procedia PDF Downloads 393
6628 Wear Map for Cu-Based Friction Materials with Different Contents of Fe Reinforcement

Authors: Haibin Zhou, Pingping Yao, Kunyang Fan

Abstract:

Copper-based sintered friction materials are widely used in the brake system of different applications such as engineering machinery or high-speed train, due to the excellent mechanical, thermal and tribological performance. Considering the diversity of the working conditions of brake system, it is necessary to identify well and understand the tribological performance and wear mechanisms of friction materials for different conditions. Fe has been a preferred reinforcement for copper-based friction materials, due to its ability to improve the wear resistance and mechanical properties of material. Wear map is well accepted as a useful research method for evaluation of wear performances and wear mechanisms over a wider range of working conditions. Therefore, it is significantly important to construct a wear map which can give out the effects of work condition and Fe reinforcement on tribological performance of Cu-based friction materials. In this study, the copper-based sintered friction materials with the different addition of Fe reinforcement (0-20 vol. %) were studied. The tribological tests were performed against stainless steel in a ring-on-ring braking tester with varying braking energy density (0-5000 J/cm2). The linear wear and friction coefficient were measured. The worn surface, cross section and debris were analyzed to determine the dominant wear mechanisms for different testing conditions. On the basis of experimental results, the wear map and wear mechanism map were established, in terms of braking energy density and the addition of Fe. It was found that with low contents of Fe and low braking energy density, adhesive wear was the dominant wear mechanism of friction materials. Oxidative wear and abrasive wear mainly occurred under moderate braking energy density. In the condition of high braking energy density, with both high and low addition of Fe, delamination appeared as the main wear mechanism.

Keywords: Cu-based friction materials, Fe reinforcement, wear map, wear mechanism

Procedia PDF Downloads 247
6627 Multi-Walled Carbon Nanotubes as Nucleating Agents

Authors: Rabindranath Jana, Plabani Basu, Keka Rana

Abstract:

Nucleating agents are widely used to modify the properties of various polymers. The rate of crystallization and the size of the crystals have a strong impact on mechanical and optical properties of a polymer. The addition of nucleating agents to the semi-crystalline polymers provides a surface on which the crystal growth can start easily. As a consequence, fast crystal formation will result in many small crystal domains so that the cycle times for injection molding may be reduced. Moreover, the mechanical properties e.g., modulus, tensile strength, heat distortion temperature and hardness may increase. In the present work, multi-walled carbon nanotubes (MWNTs) as nucleating agents for the crystallization of poly (e-caprolactone)diol (PCL). Thus nanocomposites of PCL filled with MWNTs were prepared by solution blending. Differential scanning calorimetry (DSC) tests were carried out to study the effect of CNTs on on-isothermal crystallization of PCL. The polarizing optical microscopy (POM), and wide-angle X-ray diffraction (WAXD) were used to study the morphology and crystal structure of PCL and its nanocomposites. It is found that MWNTs act as effective nucleating agents that significantly shorten the induction period of crystallization and however, decrease the crystallization rate of PCL, exhibiting a remarkable decrease in the Avrami exponent n, surface folding energy σe and crystallization activation energy ΔE. The carbon-based fillers act as templates for hard block chains of PCL to form an ordered structure on the surface of nanoparticles during the induction period, bringing about some increase in equilibrium temperature. The melting process of PCL and its nanocomposites are also studied; the nanocomposites exhibit two melting peaks at higher crystallization temperature which mainly refer to the melting of the crystals with different crystal sizes however, PCL shows only one melting temperature.

Keywords: poly(e-caprolactone)diol, multiwalled carbon nanotubes, composite materials, nonisothermal crystallization, crystal structure, nucleation

Procedia PDF Downloads 463
6626 Microstructure, Mechanical and Tribological Properties of (TiTaZrNb)Nx Medium Entropy Nitride Coatings: Influence of Nitrogen Content and Bias Voltage

Authors: Mario Alejandro Grisales, M. Daniela Chimá, Gilberto Bejarano Gaitán

Abstract:

High entropy alloys (HEA) and nitride (HEN) are currently very attractive to the automotive, aerospace, metalworking and materials forming manufacturing industry, among others, for exhibiting higher mechanical properties, wear resistance, and thermal stability than binary and ternary alloys. In this work medium-entropy coatings of TiTaZrNb and the nitrides of (TiTaZrNb)Nx were synthesized on to AISI 420 and M2 steel samples by the direct current magnetron sputtering technique. The influence of the bias voltage supplied to the substrate on the microstructure, chemical- and phase composition of the matrix coating was evaluated, and the effect of nitrogen flow on the microstructural, mechanical and tribological properties of the corresponding nitrides was studied. A change in the crystalline structure from BCC for TiTaZrNb coatings to FCC for (TiTaZrNb)Nx was observed, that is associated with the incorporation of nitrogen into the matrix and the consequent formation of a solid solution of (TiTaZrNb)Nx. An increase in hardness and residual stresses was observed with increasing bias voltage for TiTaZrNb, reaching 12.8 GPa for the coating deposited with a bias of -130V. In the case of (TiTaZrNb)Nx nitride, a greater hardness of 23 GPa is achieved for the coating deposited with a N2 flow of 12 sccm, which slightly drops to 21.7 GPa for that deposited with N2 flow of 15 sccm. The slight reduction in hardness could be associated with the precipitation of the TiN and ZrN phases that are formed at higher nitrogen flows. The specific wear rate of the deposited coatings ranged between 0.5xexp13 and 0.6xexp13 N/m2. The steel substrate exhibited an average hardness of 2.0 GPa and a specific wear rate of 203.2exp13 N/m2. Both the hardness and the specific wear rate of the synthesized nitride coatings were higher than that of the steel substrate, showing a protective effect of the steel against wear.

Keywords: medium entropy coatings, hard coatings, magnetron sputtering, tribology, wear resistance

Procedia PDF Downloads 46
6625 Study of the Effect of Using Corn-Cob Ash on Mortar and Concrete Properties: Case Study of Sudan

Authors: Taghried I. M. Abdel-Magid, Gheida T. A. Al-Khelifa, Ahmed O. Adam, Esra G. A. Mohamed, Saeed M. S. Saeed

Abstract:

The use of pozzolanic materials in concrete industry is facing challenges due to unpredictable behavior of natural materials. Corncob ash (CCA) is considered to be one of the promising plant-based materials that possess cementitious properties. Corn is one of the major planted crops in Sudan. Corncob is considered as waste and normally thrown away or burnt. The main purpose of this research was to test the hypothesis that CCA can sufficiently replace cement in a concrete mixture or a cement mortar. In this study, CCA was used to replace cement in mortar in three percentages: 0, 20, and 25%. The effect of this replacement was found to be positive in terms of long-term compressive strength, while not as such in short-term compressive strength. In the concrete mix, the introduction of CCA was found to have a positive impact on the slump test characteristics, whereas the early and late compressive strengths deteriorated by approximately 30%. More research is needed in this area to upgrade the efficient use of CCA in cement mortar and concrete properties.

Keywords: cementitious materials, compressive strength, corncob ash, pozzolanic materials

Procedia PDF Downloads 213
6624 Recovery of Local Materials in Pavements in Areas with an Arid Climate

Authors: Hocini Yousra, Medjnoun Amal, Khiatine Mohamed, Bahar Ramdane

Abstract:

The development of the regions of southern Algeria require the construction of numerous road, rail, and airport infrastructures. However, this development is very expensive given the very severe climatic conditions, the difficulty of reusing local materials, and the unavailability of water on the project sites; these regions are characterized by an arid or semi-arid climate, which means that water sources are very limited. The climatic conditions and the scarcity of water make soil compaction work very difficult and excessively expensive. These constraints related to the supply of water for irrigation of these construction sites make it necessary to examine the solution of compaction with low water content. This work studies the possibility of improving the compaction with a low water content of the soils of southern Algeria and this by using natural or recycled ecological materials. Local soils are first subjected to a series of laboratory characterization tests, then mixed with varying amounts of natural additives. The new materials are, in turn, subjected to road tests.

Keywords: compaction, low water content, sand, natural materials

Procedia PDF Downloads 90
6623 Mineral Thermal Insulation Materials Based on Sodium Liquid Glass

Authors: Zin Min Htet, Tikhomirova Irina Nikolaevna, Karpenko Marina A.

Abstract:

In this paper, thermal insulation materials based on sodium liquid glass with light fillers as foam glass granules with different sizes and wollastonite - M325 (U.S.A production) were studied. Effective mineral thermal insulation materials are in demand in many industries because of their incombustibility and durability. A method for the preparation of such materials based on mechanically foamed sodium liquid glass and light mineral fillers is proposed. The thermal insulation properties depend on the type, amount of filler and on the foaming factor, which is determined by the concentration of the foaming agent. The water resistance of the material is provided by using an additive to neutralize the glass and transfer it to the silica gel.

Keywords: thermal insulation material, sodium liquid glass, foam glass granules, foaming agent, hardener, thermal conductivity, apparent density, compressive strength

Procedia PDF Downloads 165
6622 Diagonal Crack Width of RC Members with High Strength Materials

Authors: J. Y. Lee, H. S. Lim, S. H. Yoon

Abstract:

This paper presents an analysis of the diagonal crack widths of RC members with various types of materials by simulating a compatibility-aided truss model. The analytical results indicated that the diagonal crack width was influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. The yield strength of shear reinforcement and the compressive strength of concrete decreased the diagonal shear crack width of RC members for the same shear force because of the change of shear failure modes. However, regarding the maximum shear crack width at shear failure, the shear crack width of the beam with high strength materials was greater than that of the beam with normal strength materials.

Keywords: diagonal crack width, high strength stirrups, high strength concrete, RC members, shear behavior

Procedia PDF Downloads 285
6621 Recycled Use of Solid Wastes in Building Material: A Review

Authors: Oriyomi M. Okeyinka, David A. Oloke, Jamal M. Khatib

Abstract:

Large quantities of solid wastes being generated worldwide from sources such as household, domestic, industrial, commercial and construction demolition activities, leads to environmental concerns. Utilization of these wastes in making building construction materials can reduce the magnitude of the associated problems. When these waste products are used in place of other conventional materials, natural resources and energy are preserved and expensive and/or potentially harmful waste disposal is avoided. Recycling which is regarded as the third most preferred waste disposal option, with its numerous environmental benefits, stand as a viable option to offset the environmental impact associated with the construction industry. This paper reviews the results of laboratory tests and important research findings, and the potential of using these wastes in building construction materials with focus on sustainable development. Research gaps, which includes; the need to develop standard mix design for solid waste based building materials; the need to develop energy efficient method of processing solid waste use in concrete; the need to study the actual behavior or performance of such building materials in practical application and the limited real life application of such building materials have also been identified. Therefore a research is being proposed to develop an environmentally friendly, lightweight building block from recycled waste paper, without the use of cement, and with properties suitable for use as walling unit. This proposed research intends to incorporate, laboratory experimentation and modeling to address the identified research gaps.

Keywords: recycling, solid wastes, construction, building materials

Procedia PDF Downloads 362
6620 Teaching Environment and Instructional Materials on Students’ Performance in English Language: Implications for Counselling

Authors: Rosemary Saidu, Taiyelolu Martins Ogunjirin

Abstract:

The study examines the teaching environment and instructional materials on the performance of students in the English Language in selected secondary schools in Ogun State and its implication for counselling. Two research questions guided the study were developed. The study adopted a descriptive survey design. A multi-stage sampling technique was employed for the study. Samples of 100 students of Senior Secondary School Two (SSS11) were drawn. Purposive sampling technique was to select the five schools. Additionally, the instruments known as Teaching Environment and Instructional Materials on Students Performance in English Inventory (TEIMEI) and Student Achievement Scores (SAS) were used to elicit information. Thereafter, inferential statistics and the non-parametric chi-square statistics at 0.05 alpha levels and 3 degree of freedom were adopted as analytical tools. From the study, it was discovered among others that teaching environment and instructional materials significantly contributed to the performance of students in the English language. From the findings, it was recommended that among others functional language laboratory in the schools, counselors to regularly give guidance talk on the importance of the subject.

Keywords: performance, English language, teaching environment, instructional materials

Procedia PDF Downloads 128
6619 Minimization of Seepage in Sandy Soil Using Different Grouting Types

Authors: Eng. M. Ahmed, A. Ibrahim, M. Ashour

Abstract:

One of the major concerns facing dam is the repair of their structures to prevent the seepage under them. In previous years, many existing dams have been treated by grouting, but with varying degrees of success. One of the major reasons for this erratic performance is the unsuitable selection of the grouting materials to reduce the seepage. Grouting is an effective way to improve the engineering properties of the soil and strengthen of the permeability of the soil to reduce the seepage. The purpose of this paper is to focus on the efficiency of current available grouting materials and techniques from construction, environmental and economical point of view. The seepage reduction usually accomplished by either chemical grouting or cementious grouting using ultrafine cement. In addition, the study shows a comparison between grouting materials according to their degree of permeability reduction and cost. The application of seepage reduction is based on the permeation grouting using grout curtain installation. The computer program (SEEP/W) is employed to model a dam rested on sandy soil, using grout curtain to reduce seepage quantity and hydraulic gradient by different grouting materials. This study presents a relationship that takes into account the permeability of the soil, grout curtain spacing and a new performance parameter that can be used to predict the best selection of grouting materials for seepage reduction.

Keywords: seepage, sandy soil, grouting, permeability

Procedia PDF Downloads 345
6618 Synthesis and Characterisations of Cordierite Bonded Porous SiC Ceramics by Sol Infiltration Technique

Authors: Sanchita Baitalik, Nijhuma Kayal, Omprakash Chakrabarti

Abstract:

Recently SiC ceramics have been a focus of interest in the field of porous materials due to their unique combination of properties and hence they are considered as an ideal candidate for catalyst supports, thermal insulators, high-temperature structural materials, hot gas particulate separation systems etc. in different industrial processes. Several processing methods are followed for fabrication of porous SiC at low temperatures but all these methods are associated with several disadvantages. Therefore processing of porous SiC ceramics at low temperatures is still challenging. Concerning that of incorporation of secondary bond phase additives by an infiltration technique should result in a homogenous distribution of bond phase in the final ceramics. Present work is aimed to synthesis cordierite (2MgO.2Al2O3.5SiO2) bonded porous SiC ceramics following incorporation of sol-gel bond phase precursor into powder compacts of SiC and heat treating the infiltrated body at 1400 °C. In this paper the primary aim was to study the effect of infiltration of a precursor sol of cordierite into a porous SiC powder compact prepared with pore former of different particle sizes on the porosity, pore size, microstructure and the mechanical properties of the porous SiC ceramics. Cordierite sol was prepared by mixing a solution of magnesium nitrate hexahydrate and aluminium nitrate nonahydrate in 2:4 molar ratio in ethanol another solution containing tetra-ethyl orthosilicate and ethanol in 1:3 molar ratio followed by stirring for several hours. Powders of SiC (α-SiC; d50 =22.5 μm) and 10 wt. % polymer microbead of two sizes 8 and 50µm as the pore former were mixed in a suitable liquid medium, dried and pressed in the form of bars (50×20×16 mm3) at 23 MPa pressure. The well-dried bars were heat treated at 1100° C for 4 h with a hold at 750 °C for 2 h to remove the pore former. Bars were evacuated for 2 hr upto 0.3 mm Hg pressure into a vacuum chamber and infiltrated with cordierite precursor sol. The infiltrated samples were dried and the infiltration process was repeated until the weight gain became constant. Finally the infiltrated samples were sintered at 1400 °C to prepare cordierite bonded porous SiC ceramics. Porous ceramics prepared with 8 and 50 µm sized microbead exhibited lower oxidation degrees of respectively 7.8 and 4.8 % than the sample (23 %) prepared with no microbead. Depending on the size of pore former, the porosity of the final ceramic varied in the range of 36 to 40 vol. % with a variation of flexural strength from 33.7 to 24.6 MPa. XRD analysis showed major crystalline phases of the ceramics as SiC, SiO2 and cordierite. Two forms of cordierite, α-(hexagonal) and µ-(cubic), were detected by the XRD analysis. The SiC particles were observed to be bonded both by cristobalite with fish scale morphology and cordierite with rod shape morphology and thereby formed a porous network. The material and mechanical properties of cordierite bonded porous SiC ceramics are good in agreement to carry out further studies like thermal shock, corrosion resistance etc.

Keywords: cordierite, infiltration technique, porous ceramics, sol-gel

Procedia PDF Downloads 242
6617 Seasonal Stirred Variations in Chemical Composition and Antifungal Activity of Medicinal Plants Turraea holstii and Clausena anisata

Authors: Francis Machumi, Ester Innocent, Pius Yanda, Philip C. Stevenson

Abstract:

Curative dependence of traditionally used medicinal plants on season of harvest is an alleged claim by traditional health practitioners. This study intended to verify these claims by investigating antifungal activity and chemical composition of traditionally used medicinal plants Turraea holstii and Clausena anisata harvested in rainy season and dry season. The antifungal activities were determined by broth microdilution method whereas chemical profiling of the extracts from the plant materials was done by gas chromatography (GC). Results indicated that extracts of plant materials harvested in dry season showed enhanced antifungal activity as compared to extracts of plant materials harvested in rainy season. GC chromatograms showed overalls increase in number and amount of chemical species for extracts of plant materials harvested in dry season as compared to extracts of plant materials harvested in rainy season.

Keywords: antifungal activity, chemical composition, medicinal plants, seasonal dependence

Procedia PDF Downloads 397
6616 2D Nanomaterials-Based Geopolymer as-Self-Sensing Buildings in Construction Industry

Authors: Maryam Kiani

Abstract:

The self-sensing capability opens up new possibilities for structural health monitoring, offering real-time information on the condition and performance of constructions. The synthesis and characterization of these functional 2D material geopolymers will be explored in this study. Various fabrication techniques, including mixing, dispersion, and coating methods, will be employed to ensure uniform distribution and integration of the 2D materials within the geopolymers. The resulting composite materials will be evaluated for their mechanical strength, electrical conductivity, and sensing capabilities through rigorous testing and analysis. The potential applications of these self-sensing geopolymers are vast. They can be used in infrastructure projects, such as bridges, tunnels, and buildings, to provide continuous monitoring and early detection of structural damage or degradation. This proactive approach to maintenance and safety can significantly improve the lifespan and efficiency of constructions, ultimately reducing maintenance costs and enhancing overall sustainability. In conclusion, the development of functional 2D material geopolymers as self-sensing materials presents an exciting advancement in the construction industry. By integrating these innovative materials into structures, we can create a new generation of intelligent, self-monitoring constructions that can adapt and respond to their environment.

Keywords: 2D materials, geopolymers, electrical properties, self-sensing

Procedia PDF Downloads 78
6615 The Influence of Microcapsulated Phase Change Materials on Thermal Performance of Geopolymer Concrete

Authors: Vinh Duy Cao, Shima Pilehvar, Anna M. Szczotok, Anna-Lena Kjøniksen

Abstract:

The total energy consumption is dramatically increasing on over the world, especially for building energy consumption where a significant proportion of energy is used for heating and cooling purposes. One of the solutions to reduce the energy consumption for the building is to improve construction techniques and enhance material technology. Recently, microcapsulated phase change materials (MPCM) with high energy storage capacity within the phase transition temperature of the materials is a potential method to conserve and save energy. A new composite materials with high energy storage capacity by mixing MPCM into concrete for passive building technology is the promising candidate to reduce the energy consumption. One of the most untilized building materials for mixing with MPCM is Portland cement concrete. However, the emission of carbon dioxide (CO2) due to producing cement which plays the important role in the global warming is the main drawback of PCC. Accordingly, an environmentally friendly building material, geopolymer, which is synthesized by the reaction between the industrial waste material (aluminosilicate) and a strong alkali activator, is a potential materials to mixing with MPCM. Especially, the effect of MPCM on the thermal and mechanical properties of geopolymer concrete (GPC) is very limited. In this study, high thermal energy storage capacity materials were fabricated by mixing MPCM into geopolymer concrete. This article would investigate the effect of MPCM concentration on thermal and mechanical properties of GPC. The target is to balance the effect of MPCM on improving the thermal performance and maintaining the compressive strength of the geopolymer concrete at an acceptable level for building application.

Keywords: microencapsulated phase change materials, geopolymer concrete, energy storage capacity, thermal performance

Procedia PDF Downloads 278
6614 Making Lightweight Concrete with Meerschaum

Authors: H. Gonen, M. Dogan

Abstract:

Meerschaum, which is found in the earth’s crust, is a white and clay like hydrous magnesium silicate. It has a wide area of use from production of carious ornaments to chemical industry. It has a white and irregular crystalline structure. It is wet and moist when extracted, which is a good form for processing. At drying phase, it gradually loses its moisture and becomes lighter and harder. In through-dry state, meerschaum is durable and floats on the water. After processing of meerschaum, A ratio between %15 to %40 of the amount becomes waste. This waste is usually kept in a dry-atmosphere which is isolated from environmental effects so that to be used right away when needed. In this study, use of meerschaum waste as aggregate in lightweight concrete is studied. Stress-strain diagrams for concrete with meerschaum aggregate are obtained. Then, stress-strain diagrams of lightweight concrete and concrete with regular aggregate are compared. It is concluded that meerschaum waste can be used in production of lightweight concrete.

Keywords: lightweight concrete, meerschaum, aggregate, sepiolite, stress-strain diagram

Procedia PDF Downloads 573
6613 The Effect of Randomly Distributed Polypropylene Fibers and Some Additive Materials on Freezing-Thawing Durability of a Fine-Grained Soil

Authors: A. Şahin Zaimoglu

Abstract:

A number of studies have been conducted recently to investigate the influence of randomly oriented fibers on some engineering properties of cohesive and cohesionless soils. However, few studies have been carried out on freezing-thawing behavior of fine-grained soils modified with discrete fiber inclusions and additive materials. This experimental study was performed to investigate the effect of randomly distributed polypropylene fibers (PP) and some additive materials [e.g.., borogypsum (BG), fly ash (FA) and cement (C)] on freezing-thawing durability (mass losses) of a fine-grained soil for 6,12 and 18 cycles. The Taguchi method was applied to the experiments and a standard L9 orthogonal array (OA) with four factors and three levels were chosen. A series of freezing-thawing tests were conducted on each specimen. 0-20 % BG, 0-20 % FA, 0-0.25 % PP and 0-3 % of C by total dry weight of mixture were used in the preparation of specimens. Experimental results showed that the most effective materials for the freezing-thawing durability (mass losses) of the samples were borogypsum and fly ash. The values of mass losses for 6, 12 and 18 cycles in optimum conditions were 16.1%, 5.1% and 3.6%, respectively.

Keywords: freezing-thawing, additive materials, reinforced soil, optimization

Procedia PDF Downloads 279
6612 Wet Polymeric Precipitation Synthesis for Monophasic Tricalcium Phosphate

Authors: I. Grigoraviciute-Puroniene, K. Tsuru, E. Garskaite, Z. Stankeviciute, A. Beganskiene, K. Ishikawa, A. Kareiva

Abstract:

Tricalcium phosphate (β-Ca3(PO4)2, β-TCP) powders were synthesized using wet polymeric precipitation method for the first time to our best knowledge. The results of X-ray diffraction analysis showed the formation of almost single a Ca-deficient hydroxyapatite (CDHA) phase of a poor crystallinity already at room temperature. With continuously increasing the calcination temperature up to 800 °C, the crystalline β-TCP was obtained as the main phase. It was demonstrated that infrared spectroscopy is very effective method to characterize the formation of β-TCP. The SEM results showed that β-TCP solids were homogeneous having a small particle size distribution. The β-TCP powders consisted of spherical particles varying in size from 100 to 300 nm. Fabricated β-TCP specimens were placed to the bones of the rats and maintained for 1-2 months.

Keywords: Tricalcium phosphate (β-Ca3(PO4)2, bone regeneration, wet chemical processing, polymeric precipitation

Procedia PDF Downloads 274
6611 Modification of Magneto-Transport Properties of Ferrimagnetic Mn₄N Thin Films by Ni Substitution and Their Magnetic Compensation

Authors: Taro Komori, Toshiki Gushi, Akihito Anzai, Taku Hirose, Kaoru Toko, Shinji Isogami, Takashi Suemasu

Abstract:

Ferrimagnetic antiperovskite Mn₄₋ₓNiₓN thin film exhibits both small saturation magnetization and rather large perpendicular magnetic anisotropy (PMA) when x is small. Both of them are suitable features for application to current induced domain wall motion devices using spin transfer torque (STT). In this work, we successfully grew antiperovskite 30-nm-thick Mn₄₋ₓNiₓN epitaxial thin films on MgO(001) and STO(001) substrates by MBE in order to investigate their crystalline qualities and magnetic and magneto-transport properties. Crystalline qualities were investigated by X-ray diffraction (XRD). The magnetic properties were measured by vibrating sample magnetometer (VSM) at room temperature. Anomalous Hall effect was measured by physical properties measurement system. Both measurements were performed at room temperature. Temperature dependence of magnetization was measured by VSM-Superconducting quantum interference device. XRD patterns indicate epitaxial growth of Mn₄₋ₓNiₓN thin films on both substrates, ones on STO(001) especially have higher c-axis orientation thanks to greater lattice matching. According to VSM measurement, PMA was observed in Mn₄₋ₓNiₓN on MgO(001) when x ≤ 0.25 and on STO(001) when x ≤ 0.5, and MS decreased drastically with x. For example, MS of Mn₃.₉Ni₀.₁N on STO(001) was 47.4 emu/cm³. From the anomalous Hall resistivity (ρAH) of Mn₄₋ₓNiₓN thin films on STO(001) with the magnetic field perpendicular to the plane, we found out Mr/MS was about 1 when x ≤ 0.25, which suggests large magnetic domains in samples and suitable features for DW motion device application. In contrast, such square curves were not observed for Mn₄₋ₓNiₓN on MgO(001), which we attribute to difference in lattice matching. Furthermore, it’s notable that although the sign of ρAH was negative when x = 0 and 0.1, it reversed positive when x = 0.25 and 0.5. The similar reversal occurred for temperature dependence of magnetization. The magnetization of Mn₄₋ₓNiₓN on STO(001) increases with decreasing temperature when x = 0 and 0.1, while it decreases when x = 0.25. We considered that these reversals were caused by magnetic compensation which occurred in Mn₄₋ₓNiₓN between x = 0.1 and 0.25. We expect Mn atoms of Mn₄₋ₓNiₓN crystal have larger magnetic moments than Ni atoms do. The temperature dependence stated above can be explained if we assume that Ni atoms preferentially occupy the corner sites, and their magnetic moments have different temperature dependence from Mn atoms at the face-centered sites. At the compensation point, Mn₄₋ₓNiₓN is expected to show very efficient STT and ultrafast DW motion with small current density. What’s more, if angular momentum compensation is found, the efficiency will be best optimized. In order to prove the magnetic compensation, X-ray magnetic circular dichroism will be performed. Energy dispersive X-ray spectrometry is a candidate method to analyze the accurate composition ratio of samples.

Keywords: compensation, ferrimagnetism, Mn₄N, PMA

Procedia PDF Downloads 111
6610 An Investigation about Rate Of Evaporation from the Water Surface and LNG Pool

Authors: Farokh Alipour, Ali Falavand, Neda Beit Saeid

Abstract:

The calculation of the effect of accidental releases of flammable materials such as LNG requires the use of a suitable consequence model. This study is due to providing a planning advice for developments in the vicinity of LNG sites and other sites handling flammable materials. In this paper, an applicable algorithm that is able to model pool fires on water is presented and applied to estimate pool fire damage zone. This procedure can be used to model pool fires on land and could be helpful in consequence modeling and domino effect zone measurements of flammable materials which is needed in site selection and plant layout.

Keywords: LNG, pool fire, spill, radiation

Procedia PDF Downloads 376
6609 Synthesis of SnO Novel Cabbage Nanostructure and Its Electrochemical Property as an Anode Material for Lithium Ion Battery

Authors: Yongkui Cui, Fengping Wang, Hailei Zhao, Muhammad Zubair Iqbal, Ziya Wang, Yan Li, Pengpeng LV

Abstract:

The novel 3D SnO cabbages self-assembled by nanosheets were successfully synthesized via template-free hydrothermal growth method under facile conditions.The XRD results manifest that the as-prepared SnO is tetragonal phase. The TEM and HRTEM results show that the cabbage nanosheets are polycrystalline structure consisted of considerable single-crystalline nanoparticles. Two typical Raman modes A1g=210 and Eg=112 cm-1 of SnO are observed by Raman spectroscopy. Moreover, galvanostatic cycling tests has been performed using the SnO cabbages as anode material of lithium ion battery and the electrochemical results suggest that the synthesized SnO cabbage structures are a promising anode material for lithium ion batteries.

Keywords: electrochemical property, hydrothermal synthesis, lithium ion battery, stannous oxide

Procedia PDF Downloads 432
6608 Selecting a Material for an Aircraft Diesel Engine Block

Authors: Ksenia Siadkowska, Tytus Tulwin, Rafał Sochaczewski

Abstract:

Selecting appropriate materials is presently a complex task as material databases cover tens of thousands of different types of materials. Product designing proceeds in numerous stages and in most of them there are open questions with not only one correct solution but better and worse ones. This paper overviews the Diesel engine body construction materials mentioned in the literature and discusses a certain practical method to select materials for a cylinder head and a Diesel engine block as a prototype. The engine body, depending on its purpose, is most frequently iron or aluminum. If it is important to optimize parts to achieve low weight, aluminum alloys are usually applied, especially in the automotive and aviation industries. In the latter case, weight is even more important so new types of magnesium alloys which are even lighter than aluminum ones are developed and used. However, magnesium alloys are, for example, more flammable and not enough strong so, for safety reasons, this type of material is not used solely in engine bodies. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aluminum alloy, cylinder head, Diesel engine, materials selection

Procedia PDF Downloads 371