Search results for: bacteria
1158 Active Exopolysaccharides Based Edible Coating Enriched with Red Seaweed (Gracilaria gracilis) Extract for Improved Preservation of Shrimp Quality during Refrigerated Storage
Authors: Rafik Balti, Mohamed Ben Mansour, Abdellah Arhaliass, Anthony Masse
Abstract:
Unfortunately, shrimps are highly perishable and they start deteriorating immediately after death owing to their high water content and nutritional components. Currently, there has been an increasing interest in bioactive edible films and coatings to preserve the freshness and quality of foods. In this study, active edible coatings from microalgal exopolysaccharides (EPS) enriched with different concentrations of Red Seaweed Extract (RSE) (0.5, 1 and 1.5 % (w/v)) were developed and their effects on the quality changes of white shrimp during refrigerated storage (4 ± 1 °C) were examined over a period of 8 days. The control and the coated shrimp samples were analyzed periodically for microbiological (total viable bacteria, psychrotrophic bacteria, and enterobacteriaceae counts), chemical (pH, TVB-N, TMA-N, PV, TBARS), textural and sensory characteristics. The results indicated that the coating with a mixture of EPS and RSE could significantly decrease the total volatile basic nitrogen (TVB-N), trimethylamine (TMA) and thiobarbituric acid reactive substances (TBARS) (p < 0.05). With storage, EPS coatings containing RSE at both levels (1 and 1.5 %) were more effective in inhibiting the microbial species studied, specially psychrotrophic bacteria. Also, EPS + RSE coated samples had lower polyphenol oxidase (PPO) activity and lipid oxidation (p < 0.05) toward the end of storage. Textural and color properties of coated shrimp were generally more acceptable. Sensory scores indicated no significant changes in all samples during storage. The obtained results indicate that the edible EPS coating solutions enriched with RSE have noticeable effects on the quality and shelf life of shrimps when compared to control group. Finally, the present work demonstrates the effectiveness of EPS enriched coatings, offering a promising alternative to preserve more better the quality characteristics and to extend the shelf life of shrimp during the refrigerated storageKeywords: active coating, exopolysaccharides, red seaweed, refrigerated storage, white shrimp
Procedia PDF Downloads 2111157 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Their Antibacterial Effects on Negative Bacillus Bacteria Causing Urinary Tract Infection
Authors: F. Madani, M. Doudi, L. Rahimzadeh Torabi
Abstract:
The irregular consumption of current antibiotics contributes to an escalation in antibiotic resistance among urinary pathogens on a global scale. The objective of this research was to investigate the process of biologically synthesized silver nanoparticles through the utilization of Zataria multiflora extract. Additionally, the study aimed to evaluate the efficacy of these synthesized nanoparticles in inhibiting the growth of multi-drug resistant negative bacillus bacteria, which commonly contribute to urinary tract infections. The botanical specimen utilized in the current research investigation was Z. multiflora, and its extract was produced employing the Soxhlet extraction technique. The study examined the green synthesis conditions of silver nanoparticles by considering three key parameters: the quantity of extract used, the concentration of silver nitrate salt, and the temperature. The particle dimensions were ascertained using the Zetasizer technique. In order to identify synthesized Silver nanoparticles TEM, XRD, and FTIR methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through a biological method, different concentrations of silver nanoparticles were studied on 140 cases of Multiple drug resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections, for identification of bacteria were used of PCR test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were subjected to analysis using the statistical software SPSS, specifically employing nonparametric Kruskal-Wallis and Mann-Whitney tests. This study yielded noteworthy findings regarding the impacts of varying concentrations of silver nitrate, different quantities of Z. multiflora extract, and levels of temperature on nanoparticles. Specifically, it was observed that an increase in the concentration of silver nitrate, extract amount, and temperature resulted in a reduction in the size of the nanoparticles synthesized. However, the impact of the aforementioned factors on the index of particle diffusion was found to be statistically non-significant. According to the transmission electron microscopy (TEM) findings, the particles exhibited predominantly spherical morphology, with a diameter spanning from 25 to 50 nanometers. Nanoparticles in the examined sample. Nanocrystals of silver. FTIR method illustrated that the spectrums of Z. multiflora and synthesized nanoparticles had clear peaks in the ranges of 1500-2000, and 3500 - 4000. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E. coli, A. bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125 mg/ml and for A. bumanii 250 mg/ml. Comparing the growth inhibitory effect of chemically synthesized the results obtained from the experiment indicated that both nanoparticles and biologically synthesized nanoparticles exhibit a notable growth inhibition effect. Specifically, the chemical method of synthesizing nanoparticles demonstrated the highest level of growth inhibition at a concentration of 62.5 mg/mL The present study demonstrated an inhibitory effect on bacterial growth, facilitating the causative factors of urine infection and multidrug resistance (MDR).Keywords: multiple drug resistance, negative bacillus bacteria, urine infection, Zataria multiflora
Procedia PDF Downloads 1021156 Bacterial Exposure and Microbial Activity in Dental Clinics during Cleaning Procedures
Authors: Atin Adhikari, Sushma Kurella, Pratik Banerjee, Nabanita Mukherjee, Yamini M. Chandana Gollapudi, Bushra Shah
Abstract:
Different sharp instruments, drilling machines, and high speed rotary instruments are routinely used in dental clinics during dental cleaning. Therefore, these cleaning procedures release a lot of oral microorganisms including bacteria in clinic air and may cause significant occupational bioaerosol exposure risks for dentists, dental hygienists, patients, and dental clinic employees. Two major goals of this study were to quantify volumetric airborne concentrations of bacteria and to assess overall microbial activity in this type of occupational environment. The study was conducted in several dental clinics of southern Georgia and 15 dental cleaning procedures were targeted for sampling of airborne bacteria and testing of overall microbial activity in settled dusts over clinic floors. For air sampling, a Biostage viable cascade impactor was utilized, which comprises an inlet cone, precision-drilled 400-hole impactor stage, and a base that holds an agar plate (Tryptic soy agar). A high-flow Quick-Take-30 pump connected to this impactor pulls microorganisms in air at 28.3 L/min flow rate through the holes (jets) where they are collected on the agar surface for approx. five minutes. After sampling, agar plates containing the samples were placed in an ice chest with blue ice and plates were incubated at 30±2°C for 24 to 72 h. Colonies were counted and converted to airborne concentrations (CFU/m3) followed by positive hole corrections. Most abundant bacterial colonies (selected by visual screening) were identified by PCR amplicon sequencing of 16S rRNA genes. For understanding overall microbial activity in clinic floors and estimating a general cleanliness of the clinic surfaces during or after dental cleaning procedures, ATP levels were determined in swabbed dust samples collected from 10 cm2 floor surfaces. Concentration of ATP may indicate both the cell viability and the metabolic status of settled microorganisms in this situation. An ATP measuring kit was used, which utilized standard luciferin-luciferase fluorescence reaction and a luminometer, which quantified ATP levels as relative light units (RLU). Three air and dust samples were collected during each cleaning procedure (at the beginning, during cleaning, and immediately after the procedure was completed (n = 45). Concentrations at the beginning, during, and after dental cleaning procedures were 671±525, 917±1203, and 899±823 CFU/m3, respectively for airborne bacteria and 91±101, 243±129, and 139±77 RLU/sample, respectively for ATP levels. The concentrations of bacteria were significantly higher than typical indoor residential environments. Although an increasing trend for airborne bacteria was observed during cleaning, the data collected at three different time points were not significantly different (ANOVA: p = 0.38) probably due to high standard deviations of data. The ATP levels, however, demonstrated a significant difference (ANOVA: p <0.05) in this scenario indicating significant change in microbial activity on floor surfaces during dental cleaning. The most common bacterial genera identified were: Neisseria sp., Streptococcus sp., Chryseobacterium sp., Paenisporosarcina sp., and Vibrio sp. in terms of frequencies of occurrences, respectively. The study concluded that bacterial exposure in dental clinics could be a notable occupational biohazard, and appropriate respiratory protections for the employees are urgently needed.Keywords: bioaerosols, hospital hygiene, indoor air quality, occupational biohazards
Procedia PDF Downloads 3101155 Microbial and Meiofaunal Dynamics in the Intertidal Sediments of the Northern Red Sea
Authors: Hamed A. El-Serehy, Khaled A. Al-Rasheid, Fahad A Al-Misned
Abstract:
The meiofaunal population fluctuation, microbial dynamic and the composition of the sedimentary organic matter were investigated seasonally in the Egyptian shores along the northern part of Red Sea. Total meiofaunal population densities were extremely low with an annual average of 109 ±26 ind./10 cm2 and largely dominated by nematodes (on annual average from 52% to 94% of total meiofaunal density). The benthic microbial population densities ranged from 0.26±0.02 x 108 to 102.67±18.62 x 108/g dry sediment. Total sedimentary organic matter concentrations varied between 5.8 and 11.6 mg/g and the organic carbon, which was measured as summation of the carbohydrates, proteins and lipids, accounted for only a small fraction of being 32 % of the total organic matter. Chlorophyll a attained very low values and fluctuated between 2 and 11 µg/g. The very low chlorophyll a concentration in the Egyptian coasts along the Red Sea can suggest that the sedimentary organic matter along the Egyptian coasts is dominated by organic detrital and heterotrophic bacteria on one hand, and do not promote carbon transfer towards the higher trophic level on the other hand. However, the present study indicates that the existing of well diversified meiofaunal group, with a total of ten meiofaunal taxa, can serve as food for higher trophic levels in the Red Sea marine ecosystem.Keywords: bacteria, meiofauna, intertidal sediments, Red Sea
Procedia PDF Downloads 4221154 Comparative Evaluation on in vitro Bioactivity, Proliferation and Antibacterial Efficiency of Sol-Gel Derived Bioactive Glass Substituted by Li and Mg
Authors: Amirhossein Moghanian, Morteza Elsa, Mehrnaz Aminitabar
Abstract:
Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO2–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂ –(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, the substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well as significant antibacterial activity against methicillin-resistant staphylococcus aureus (MRSA) bacteria.Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes
Procedia PDF Downloads 1481153 Recovery of Helicobacter Pylori from Stagnant and Moving Water Biofilms
Authors: Maryam Zafar, Sajida Rasheed, Imran Hashmi
Abstract:
Water as an environmental reservoir is reported to act as a habitat and transmission route to microaerophilic bacteria such as Heliobacter pylori. It has been studied that in biofilms are the predominant dwellings for the bacteria to grow in water and protective reservoir for numerous pathogens by protecting them against harsh conditions, such as shear stress, low carbon concentration and less than optimal temperature. In this study, influence of these and many other parameters was studied on H. pylori in stagnant and moving water biofilms both in surface and underground aquatic reservoirs. H. pylori were recovered from pipe of different materials such as Polyvinyl Chloride, Polypropylene and Galvanized iron pipe cross sections from an urban water distribution network. Biofilm swabbed from inner cross section was examined by molecular biology methods coupled with gene sequencing and H. pylori 16S rRNA peptide nucleic acid probe showing positive results for H. pylori presence. Studies showed that pipe material affect growth of biofilm which in turn provide additional survival mechanism for pathogens like H. pylori causing public health concerns.Keywords: biofilm, gene sequencing, heliobacter pylori, pipe materials
Procedia PDF Downloads 3591152 Production of Poly-β-Hydroxybutyrate (PHB) by a Thermophilic Strain of Bacillus and Pseudomonas Species
Authors: Patience Orobosa Olajide
Abstract:
Five hydrocarbon degrading bacterial strains isolated from contaminated environment were investigated with respect to polyhydroxybutyrate (PHB) biosynthesis. Screening for bioplastic production was done on assay mineral salts agar medium containing 0.2% poly (3-hydroxybutyrate) as the sole carbon source. Two of the test bacteria were positive for PHB biosynthesis and were identified based on gram staining, biochemical tests, 16S rRNA gene sequence analysis as Pseudomonas aeruginosa and Bacillus licheniformis which grew at 37 and up to 65 °C respectively, thus suggesting the later to be thermotolerant. In this study, the effects of different carbon and nitrogen sources on PHB production in these strains were investigated. Maximum PHB production was obtained in 48 hr for the two strains and amounted to yields of 72.86 and 62.22 percentages for Bacillus licheniformis and Pseudomonas aeruginosa respectively. In these strains, glycine was the most efficient carbon sources for the production of PHB compared with other carbon (glucose, lactose, sucrose, Arabinose) and nitrogen (L- glycine, L-cysteine, DL-Tryptophan, and Potassium Nitrate) sources. The screening of microbial strains for industrial PHB production should be based on several factors including the cell’s capability to mineralize an inexpensive substrate, rate of growth and the extent of polymer accumulation.Keywords: bacteria, poly-3-hydroxybutyrate (PHB), hydrocarbon, thermotolerant
Procedia PDF Downloads 1971151 Biodegradation of Chlorophenol Derivatives Using Macroporous Material
Authors: Dmitriy Berillo, Areej K. A. Al-Jwaid, Jonathan L. Caplin, Andrew Cundy, Irina Savina
Abstract:
Chlorophenols (CPs) are used as a precursor in the production of higher CPs and dyestuffs, and as a preservative. Contamination by CPs of the ground water is located in the range from 0.15-100mg/L. The EU has set maximum concentration limits for pesticides and their degradation products of 0.1μg/L and 0.5μg/L, respectively. People working in industries which produce textiles, leather products, domestic preservatives, and petrochemicals are most heavily exposed to CPs. The International Agency for Research on Cancers categorized CPs as potential human carcinogens. Existing multistep water purification processes for CPs such as hydrogenation, ion exchange, liquid-liquid extraction, adsorption by activated carbon, forward and inverse osmosis, electrolysis, sonochemistry, UV irradiation, and chemical oxidation are not always cost effective and can cause the formation of even more toxic or mutagenic derivatives. Bioremediation of CPs derivatives utilizing microorganisms results in 60 to 100% decontamination efficiency and the process is more environmentally-friendly compared with existing physico-chemical methods. Microorganisms immobilized onto a substrate show many advantages over free bacteria systems, such as higher biomass density, higher metabolic activity, and resistance to toxic chemicals. They also enable continuous operation, avoiding the requirement for biomass-liquid separation. The immobilized bacteria can be reused several times, which opens the opportunity for developing cost-effective processes for wastewater treatment. In this study, we develop a bioremediation system for CPs based on macroporous materials, which can be efficiently used for wastewater treatment. Conditions for the preparation of the macroporous material from specific bacterial strains (Pseudomonas mendocina and Rhodococus koreensis) were optimized. The concentration of bacterial cells was kept constant; the difference was only the type of cross-linking agents used e.g. glutaraldehyde, novel polymers, which were utilized at concentrations of 0.5 to 1.5%. SEM images and rheology analysis of the material indicated a monolithic macroporous structure. Phenol was chosen as a model system to optimize the function of the cryogel material and to estimate its enzymatic activity, since it is relatively less toxic and harmful compared to CPs. Several types of macroporous systems comprising live bacteria were prepared. The viability of the cross-linked bacteria was checked using Live/Dead BacLight kit and Laser Scanning Confocal Microscopy, which revealed the presence of viable bacteria with the novel cross-linkers, whereas the control material cross-linked with glutaraldehyde(GA), contained mostly dead cells. The bioreactors based on bacteria were used for phenol degradation in batch mode at an initial concentration of 50mg/L, pH 7.5 and a temperature of 30°C. Bacterial strains cross-linked with GA showed insignificant ability to degrade phenol and for one week only, but a combination of cross-linking agents illustrated higher stability, viability and the possibility to be reused for at least five weeks. Furthermore, conditions for CPs degradation will be optimized, and the chlorophenol degradation rates will be compared to those for phenol. This is a cutting-edge bioremediation approach, which allows the purification of waste water from sustainable compounds without a separation step to remove free planktonic bacteria. Acknowledgments: Dr. Berillo D. A. is very grateful to Individual Fellowship Marie Curie Program for funding of the research.Keywords: bioremediation, cross-linking agents, cross-linked microbial cell, chlorophenol degradation
Procedia PDF Downloads 2121150 Developing a Set of Primers Targeting Chondroitin Ac Lyase Gene for Specific and Sensitive Detection of Flavobacterium Columnare, a Causative Agent of Freshwater Columnaris
Authors: Mahmoud Mabrok, Channarong Rodkhum
Abstract:
Flavobacterium columanre is one of the devastating pathogen that causes noticeable economic losses in freshwater cultured fish. Like other filamentous bacteria, F. columanre tends to aggregate and fluctuate to all kind of media, thus revealing obstacles in recognition of its colonies. Since the molecular typing is the only fundamental tool for rapid and precise detection of this pathgen. The present study developed a species-specific PCR assay based on cslA unique gene of F. columnare. The cslA gene sequences of 13 F. columnare, strains retrieved from gene bank database, were aligned to identify a conserved homologous segment prior to primers design. The new primers yielded amplicons of 287 bp from F. columnare strains but not from relevant or other pathogens, unlike to other published set that showed no specificity and cross-reactivity with F. indicum. The primers were sensitive and detected as few as 7 CFUs of bacteria and 3 pg of gDNA template. The sensitivity was reduced ten times when using tissue samples. These primers precisely defined all field isolates in a double-blind study, proposing their applicable use for field detection.Keywords: Columnaris infection, cslA gene, Flavobacterium columnare, PCR
Procedia PDF Downloads 1251149 Deproteination and Demineralization of Shrimp Waste Using Lactic Acid Bacteria for the Production of Crude Chitin and Chitosan
Authors: Farramae Francisco, Rhoda Mae Simora, Sharon Nunal
Abstract:
Deproteination and demineralization efficiencies of shrimp waste using two Lactobacillus species treated with different carbohydrate sources for chitin production, its chemical conversion to chitosan and the quality of chitin and chitosan produced were determined. Using 5% glucose and 5% cassava starch as carbohydrate sources, pH slightly increased from the initial pH of 6.0 to 6.8 and 7.2, respectively after 24 h and maintained their pH at 6.7 to 7.3 throughout the treatment period. Demineralization (%) in 5 % glucose and 5 % cassava was highest during the first day of treatment which was 82% and 83%, respectively. Deproteination (%) was highest in 5% cassava starch on the 3rd day of treatment at 84.4%. The obtained chitin from 5% cassava and 5% glucose had a residual ash and protein below 1% and solubility of 59% and 44.3%, respectively. Chitosan produced from 5% cassava and 5% glucose had protein content below 0.05%; residual ash was 1.1% and 0.8%, respectively. Chitosan solubility and degree of deacetylation were 56% and 33% in 5% glucose and 48% and 29% in 5% cassava, respectively. The advantage this alternative technology offers over that of chemical extraction is large reduction in chemicals needed thus less effluent production and generation of a protein-rich liquor, although the demineralization process should be improved to achieve greater degree of deacetylation.Keywords: alternative carbon source, bioprocessing, lactic acid bacteria, waste utilization
Procedia PDF Downloads 4841148 Adaptative Metabolism of Lactic Acid Bacteria during Brewers' Spent Grain Fermentation
Authors: M. Acin-Albiac, P. Filannino, R. Coda, Carlo G. Rizzello, M. Gobbetti, R. Di Cagno
Abstract:
Demand for smart management of large amounts of agro-food by-products has become an area of major environmental and economic importance worldwide. Brewers' spent grain (BSG), the most abundant by-product generated in the beer-brewing process, represents an example of valuable raw material and source of health-promoting compounds. To the date, the valorization of BSG as a food ingredient has been limited due to poor technological and sensory properties. Tailored bioprocessing through lactic acid bacteria (LAB) fermentation is a versatile and sustainable means for the exploitation of food industry by-products. Indigestible carbohydrates (e.g., hemicelluloses and celluloses), high phenolic content, and mostly lignin make of BSG a hostile environment for microbial survival. Hence, the selection of tailored starters is required for successful fermentation. Our study investigated the metabolic strategies of Leuconostoc pseudomesenteroides and Lactobacillus plantarum strains to exploit BSG as a food ingredient. Two distinctive BSG samples from different breweries (Italian IT- and Finish FL-BSG) were microbially and chemically characterized. Growth kinetics, organic acid profiles, and the evolution of phenolic profiles during the fermentation in two BSG model media were determined. The results were further complemented with gene expression targeting genes involved in the degradation cellulose, hemicelluloses building blocks, and the metabolism of anti-nutritional factors. Overall, the results were LAB genus dependent showing distinctive metabolic capabilities. Leuc. pseudomesenteroides DSM 20193 may degrade BSG xylans while sucrose metabolism could be furtherly exploited for extracellular polymeric substances (EPS) production to enhance BSG pro-technological properties. Although L. plantarum strains may follow the same metabolic strategies during BSG fermentation, the mode of action to pursue such strategies was strain-dependent. L. plantarum PU1 showed a great preference for β-galactans compared to strain WCFS1, while the preference for arabinose occurred at different metabolic phases. Phenolic compounds profiling highlighted a novel metabolic route for lignin metabolism. These findings will allow an improvement of understanding of how lactic acid bacteria transform BSG into economically valuable food ingredients.Keywords: brewery by-product valorization, metabolism of plant phenolics, metabolism of lactic acid bacteria, gene expression
Procedia PDF Downloads 1271147 A Microcosm Study on the Response of Phytoplankton and Bacterial Community of the Subarctic Northeast Atlantic Ocean to Oil Pollution under Projected Atmospheric CO₂ Conditions
Authors: Afiq Mohd Fahmi, Tony Gutierrez, Sebastian Hennige
Abstract:
Increasing amounts of CO₂ entering the marine environment, also known as ocean acidification, is documented as having harmful impacts on a variety of marine organisms. When considering the future risk of hydrocarbon pollution, which is generally detrimental to marine life as well, this needs to consider how OA-induced changes to microbial communities will compound this since hydrocarbon degradation is influenced by the community-level microbial response. This study aims to evaluate the effects of increased atmospheric CO₂ conditions and oil enrichment on the phytoplankton-associated bacterial communities. Faroe Shetland Channel (FSC) is a subarctic region in the northeast Atlantic where crude oil extraction has recently been expanded. In the event of a major oil spill in this region, it is vital that we understand the response of the bacterial community and its consequence on primary production within this region—some phytoplankton communities found in the ocean harbor hydrocarbon-degrading bacteria that are associated with its psychosphere. Surface water containing phytoplankton and bacteria from FSC were cultured in ambient and elevated atmospheric CO₂ conditions for 4 days of acclimation in microcosms before introducing 1% (v/v) of crude oil into the microcosms to simulate oil spill conditions at sea. It was found that elevated CO₂ conditions do not significantly affect the chl a concentration, and exposure to crude oil detrimentally affected chl a concentration up to 10 days after exposure to crude oil. The diversity and richness of the bacterial community were not significantly affected by both CO₂ treatment and oil enrichment. The increase in the relative abundance of known hydrocarbon degraders such as Oleispira, Marinobacter and Halomonas indicates potential for biodegradation of crude oil, while the resilience of dominant taxa Colwellia, unclassified Gammaproteobacteria, unclassified Rnodobacteria and unclassified Halomonadaceae could be associated with the recovery of microalgal community 13 days after oil exposure. Therefore, the microbial community from the subsurface of FSC has the potential to recover from crude oil pollution even under elevated CO₂ (750 ppm) conditions.Keywords: phytoplankton, bacteria, crude oil, ocean acidification
Procedia PDF Downloads 2361146 Effectiveness of the Flavonoids Isolated from Thymus inodorus by Different Solvents against Some Pathogenis Microorganisms
Authors: N. Behidj, K. Benyounes, T. Dahmane, A. Allem
Abstract:
The aim of this study was to investigate the antimicrobial activity of flavonoids isolated from the aerial part of a medicinal plant which is Thymus inodorusby the middle agar diffusion method on following microorganisms. We have Staphylococcus aureus, Escherichia coli, Pseudomonas fluorescens, AspergillusNiger, Aspergillus fumigatus and Candida albicans. During this study, flavonoids extracted by stripping with steam are performed. The yields of flavonoids is 7.242% for the aqueous extract and 28.86% for butanol extract, 29.875% for the extract of ethyl acetate and 22.9% for the extract of di - ethyl. The evaluation of the antibacterial effect shows that the diameter of the zone of inhibition varies from one microorganism to another. The operation values obtained show that the bacterial strain P fluoresces, and 3 yeasts and molds; A. Niger, A. fumigatus and C. albicansare the most resistant. But it is noted that, S. aureus is shown more sensitive to crude extracts, the stock solution and the various dilutions. Finally for the minimum inhibitory concentration is estimated only with the crude extract of Thymus inodorus flavonoid.Indeed, these extracts inhibit the growth of Gram + bacteria at a concentration varying between 0.5% and 1%. While for bacteria to Gram -, it is limited to a concentration of 0.5%.Keywords: antimicrobial activity, organic extracts, aqueous extracts, Thymus numidicus
Procedia PDF Downloads 1841145 Effect of PGPB Inoculation, Addition of Biochar and Mineral N Fertilization on Mycorrhizal Colonization
Authors: Irina Mikajlo, Jaroslav Záhora, Helena Dvořáčková, Jaroslav Hynšt, Jakub Elbl
Abstract:
Strong anthropogenic impact has uncontrolled consequences on the nature of the soil. Hence, up-to-date sustainable methods of soil state improvement are essential. Investigators provide the evidence that biochar can positively effects physical, chemical and biological soil properties and the abundance of mycorrhizal fungi which are in the focus of this study. The main aim of the present investigation is to demonstrate the effect of two types of plant growth promoting bacteria (PGPB) inoculums along with the beech wood biochar and mineral N additives on mycorrhizal colonization. Experiment has been set up in laboratory conditions with containers filled with arable soil from the protection zone of the main water source ‘Brezova nad Svitavou’. Lactuca sativa (lettuce) has been selected as a model plant. Based on the obtained data, it can be concluded that mycorrhizal colonization increased as the result of combined influence of biochar and PGPB inoculums amendment. In addition, correlation analyses showed that the numbers of main groups of cultivated bacteria were dependent on the degree of mycorrhizal colonization.Keywords: Arbuscular mycorrhiza, biochar, PGPB inoculum, soil microorganisms
Procedia PDF Downloads 2501144 Sol-Gel Derived 58S Bioglass Substituted by Li and Mg: A Comparative Evaluation on in vitro Bioactivity, MC3T3 Proliferation and Antibacterial Efficiency
Authors: Amir Khaleghipour, Amirhossein Moghanian, Elhamalsadat Ghaffari
Abstract:
Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO₂–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂–(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well enhanced antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) bacteria among all of the synthesized L-BGs and M-BGs.Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes
Procedia PDF Downloads 1881143 Speciation of Bacteria Isolated from Clinical Canine and Feline Urine Samples by Using ChromID CPS Elite Agar: A Preliminary Study
Authors: Delsy Salinas, Andreia Garcês, Augusto Silva, Paula Brilhante Simões
Abstract:
Urinary tract infection (UTI) is a common disease affecting dogs and cats in both community and hospital environment. Bacteria is the most frequent agent isolated, fewer than 1% of infections are due to parasitic, fungal, or viral agents. Common symptoms and laboratory abnormalities includeabdominal pain, pyrexia, renomegaly, and neutrophilia with left shift. A rapid and precise identification of the bacterial agent is still a challenge in veterinarian laboratories. Therefore, this cross-sectional study aims to describe bacterial colony patterns of urine samples by using chromID™ CPS® EliteAgar (BioMérieux, France) from canine and feline specimens submitted to a veterinary laboratory in Portugal (INNO Veterinary Laboratory, Braga)from January to March2022. All urine samples were cultivated in CPS Elite Agar with calibrated 1 µL inoculating loop and incubated at 37ºC for 18-24h. Color,size, and shape (regular or irregular outline)were recorded for all samples. All colonies were classified as Gram-negative or Gram-positive bacteriausing Gram stain (PREVI® Color BioMérieux, France) and determined if they were pure colonies. Identification of bacteria species was performed using GP and GN cards inVitek 2® Compact(BioMérieux, France). A total of 256/1003 submitted urine samples presented bacterial growth, from which 172 isolates were included in this study. The sample’s population included 111 dogs (n=45 males and n=66 females) and 61 cats (n=35 males and n=26 females). The most frequent isolated bacteria wasEscherichia coli (44,7%), followed by Proteus mirabilis (13,4%). All Escherichia coli isolates presented red to burgundy colonies, a colony diameter between 2 to 6 mm, and regular or irregular outlines. Similarly, 100% of Proteus mirabilis isolates were dark yellow colonies with a diffuse pigment and the same size and shape as Escherichia coli. White and pink pale colonies where Staphylococcus species exclusively and S. pseudintermedius was the most frequent (8,2 %). Cian to blue colonies were mostly Enterococcusspp. (8,2%) and Streptococcus spp. (4,6%). Beige to brown colonies were Pseudomonas aeruginosa (2,9%) and Citrobacter spp. (1,2%).Klebsiella spp.,Serratia spp. and Enterobacter spp were green colonies. All Gram-positive isolates were 1 to 2 mm diameter long and had a regular outline, meanwhile, Gram-negative rods presented variable patterns. This results showed that theprevalence of E coli and P. mirabilis as uropathogenic agents follows the same trends in Europe as previously described in other studies. Both agents presented a particular color pattern in CPS Elite Agar to identify them without needing complementary tests. No other bacteria genus could be correlated strongly to a specific color pattern, and similar results have been observed instudies using human’s samples. Chromogenic media shows a great advantage for common urine bacteria isolation than traditional COS, McConkey, and CLEDAgar mediums in a routine context, especially when mixed fermentative Gram-negative agents grow simultaneously. In addition, CPS Elite Agar is versatile for Artificial Intelligent Reading Plates Systems. Routine veterinarian laboratories could use CPS Elite Agar for a rapid screening for bacteria identification,mainlyE coli and P.mirabilis, saving 6h to 10h of automatized identification.Keywords: cats, CPS elite agar, dogs, urine pathogens
Procedia PDF Downloads 1021142 The Effects of Nanoemulsions Based on Commercial Oils: Sunflower, Canola, Corn, Olive, Soybean, and Hazelnut Oils for the Quality of Farmed Sea Bass at 2±2°C
Authors: Yesim Ozogul, Mustafa Durmuş, Fatih Ozogul, Esmeray Kuley Boğa, Yılmaz Uçar, Hatice Yazgan
Abstract:
The effects of oil-in-water nanoemulsions on the sensory, chemical (total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA), peroxide value (PV) and free fatty acids (FFA), and microbiological qualities (total viable count (TVC), total psychrophilic bacteria, and total Enterbactericaea bacteria) of sea bream fillets stored at 2 ± 2°C were investigated. Physical properties of emulsions (viscosity, the particle size of droplet, thermodynamic stability, refractive index and surface tension) were determined. The results showed that the use of nanoemulsion extended the shelf life of fish 2 days when compared with the control. Treatment with nanoemulsions significantly (p<0.05) decreased the values of biochemical parameters during storage period. Bacterial growth was inhibited by the use of nanoemulsions. Based on the results, it can be concluded that nanoemulsions based on commercial oils extended the shelf life and improved the quality of sea bass fillets during storage period.Keywords: lipid oxidation, nanoemulsion, sea bass, quality parameters
Procedia PDF Downloads 4781141 Rapid, Direct, Real-Time Method for Bacteria Detection on Surfaces
Authors: Evgenia Iakovleva, Juha Koivisto, Pasi Karppinen, J. Inkinen, Mikko Alava
Abstract:
Preventing the spread of infectious diseases throughout the worldwide is one of the most important tasks of modern health care. Infectious diseases not only account for one fifth of the deaths in the world, but also cause many pathological complications for the human health. Touch surfaces pose an important vector for the spread of infections by varying microorganisms, including antimicrobial resistant organisms. Further, antimicrobial resistance is reply of bacteria to the overused or inappropriate used of antibiotics everywhere. The biggest challenges in bacterial detection by existing methods are non-direct determination, long time of analysis, the sample preparation, use of chemicals and expensive equipment, and availability of qualified specialists. Therefore, a high-performance, rapid, real-time detection is demanded in rapid practical bacterial detection and to control the epidemiological hazard. Among the known methods for determining bacteria on the surfaces, Hyperspectral methods can be used as direct and rapid methods for microorganism detection on different kind of surfaces based on fluorescence without sampling, sample preparation and chemicals. The aim of this study was to assess the relevance of such systems to remote sensing of surfaces for microorganisms detection to prevent a global spread of infectious diseases. Bacillus subtilis and Escherichia coli with different concentrations (from 0 to 10x8 cell/100µL) were detected with hyperspectral camera using different filters as visible visualization of bacteria and background spots on the steel plate. A method of internal standards was applied for monitoring the correctness of the analysis results. Distances from sample to hyperspectral camera and light source are 25 cm and 40 cm, respectively. Each sample is optically imaged from the surface by hyperspectral imaging system, utilizing a JAI CM-140GE-UV camera. Light source is BeamZ FLATPAR DMX Tri-light, 3W tri-colour LEDs (red, blue and green). Light colors are changed through DMX USB Pro interface. The developed system was calibrated following a standard procedure of setting exposure and focused for light with λ=525 nm. The filter is ThorLabs KuriousTM hyperspectral filter controller with wavelengths from 420 to 720 nm. All data collection, pro-processing and multivariate analysis was performed using LabVIEW and Python software. The studied human eye visible and invisible bacterial stains clustered apart from a reference steel material by clustering analysis using different light sources and filter wavelengths. The calculation of random and systematic errors of the analysis results proved the applicability of the method in real conditions. Validation experiments have been carried out with photometry and ATP swab-test. The lower detection limit of developed method is several orders of magnitude lower than for both validation methods. All parameters of the experiments were the same, except for the light. Hyperspectral imaging method allows to separate not only bacteria and surfaces, but also different types of bacteria, such as Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. Developed method allows skipping the sample preparation and the use of chemicals, unlike all other microbiological methods. The time of analysis with novel hyperspectral system is a few seconds, which is innovative in the field of microbiological tests.Keywords: Escherichia coli, Bacillus subtilis, hyperspectral imaging, microorganisms detection
Procedia PDF Downloads 2211140 In vivo Evaluation of LAB Probiotic Potential with the Zebrafish Animal Model
Authors: Iñaki Iturria, Pasquale Russo, Montserrat Nacher-Vázquez, Giuseppe Spano, Paloma López, Miguel Angel Pardo
Abstract:
Introduction: It is known that some Lactic Acid Bacteria (LAB) present an interesting probiotic effect. Probiotic bacteria stimulate host resistance to microbial pathogens and thereby aid in immune response, and modulate the host's immune responses to antigens with a potential to down-regulate hypersensitivity reactions. Therefore, probiotic therapy is valuable against intestinal infections and may be beneficial in the treatment of Inflammatory Bowel Disease (IBD). Several in vitro tests are available to evaluate the probiotic potential of a LAB strain. However, an in vivo model is required to understand the interaction between the host immune system and the bacteria. During the last few years, zebrafish (Danio rerio) has gained interest as a promising vertebrate model in this field. This organism has been extensively used to study the interaction between the host and the microbiota, as well as the host immune response under several microbial infections. In this work, we report on the use of the zebrafish model to investigate in vivo the colonizing ability and the immunomodulatory effect of probiotic LAB. Methods: Lactobacillus strains belonging to different LAB species were fluorescently tagged and used to colonize germ-free zebrafish larvae gastrointestinal tract (GIT). Some of the strains had a well-documented probiotic effect (L. acidophilus LA5); while others presented an exopolysaccharide (EPS) producing phenotype, thus allowing evaluating the influence of EPS in the colonization and immunomodulatory effect. Bacteria colonization was monitored for 72 h by direct observation in real time using fluorescent microscopy. CFU count per larva was also evaluated at different times. The immunomodulatory effect was assessed analysing the differential expression of several innate immune system genes (MyD88, NF-κB, Tlr4, Il1β and Il10) by qRT- PCR. The anti-inflammatory effect was evaluated using a chemical enterocolitis zebrafish model. The protective effect against a pathogen was also studied. To that end, a challenge test was developed using a fluorescently tagged pathogen (Vibrio anguillarum-GFP+). The progression of the infection was monitored up to 3 days using a fluorescent stereomicroscope. Mortality rates and CFU counts were also registered. Results and conclusions: Larvae exposed to EPS-producing bacteria showed a higher fluorescence and CFU count than those colonized with no-EPS phenotype LAB. In the same way, qRT-PCR results revealed an immunomodulatory effect on the host after the administration of the strains with probiotic activity. A downregulation of proinflammatory cytoquines as well as other cellular mediators of inflammation was observed. The anti-inflammatory effect was found to be particularly marked following exposure to LA% strain, as well as EPS producing strains. Furthermore, the challenge test revealed a protective effect of probiotic administration. As a matter of fact, larvae fed with probiotics showed a decrease in the mortality rate ranging from 20 to 35%. Discussion: In this work, we developed a promising model, based on the use of gnotobiotic zebrafish coupled with a bacterial fluorescent tagging in order to evaluate the probiotic potential of different LAB strains. We have successfully used this system to monitor in real time the colonization and persistence of exogenous LAB within the gut of zebrafish larvae, to evaluate their immunomodulatory effect and for in vivo competition assays. This approach could bring further insights into the complex microbial-host interactions at intestinal level.Keywords: gnotobiotic, immune system, lactic acid bacteria, probiotics, zebrafish
Procedia PDF Downloads 3281139 Modelling and Simulation of a Commercial Thermophilic Biogas Plant
Authors: Jeremiah L. Chukwuneke, Obiora E. Anisiji, Chinonso H. Achebe, Paul C. Okolie
Abstract:
This paper developed a mathematical model of a commercial biogas plant for urban area clean energy requirement. It identified biodegradable waste materials like domestic/city refuse as economically viable alternative source of energy. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analyses were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500 m3 power gas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of bio gas production is essentially a function of the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.Keywords: energy and mass conservation, specific growth rate, thermophilic bacteria, temperature, rate of bio gas production
Procedia PDF Downloads 4401138 Developing Novel Bacterial Primase (DnaG) Inhibitors
Authors: Shanakr Bhattarai, V. S. Tiwari, Barak Akabayov
Abstract:
The plummeting number of infections and death is due to the development of drug-resistant bacteria. In addition, the number of approved antibiotic drugs by the Food and Drug Administration (FDA) is insufficient. Therefore, developing new drugs and finding novel targets for central metabolic pathways in bacteria is urgently needed. One of the promising targets is DNA replication machinery which consists of many essential proteins and enzymes. DnaG primase is an essential enzyme and a central part of the DNA replication machinery. DnaG primase synthesizes short RNA primers that initiate the Okazaki fragments by the lagging strand DNA polymerase. Therefore, it is reasonable to assume that inhibition of primase activity will stall DNA replication and prevent bacterial proliferation. We did the expression and purification of eight different bacterial DnaGs (Mycobacterium tuberculosis(Mtb), Bacillus anthracis (Ba), Mycobacterium smegmatis (Msmeg), Francisella tularencis (Ft), Vibrio cholerae (Vc) and Yersinia pestis (Yp), Staphylococcus aureus(Saureus), Escherichia coli(Ecoli)) followed by the radioactive activity assay. After obtaining the pure and active protein DnaG, we synthesized the inhibitors for them. The inhibitors were divided into five different groups, each containing five molecules, and the cocktail inhibition assay was performed against each DnaGs. The groups of molecules inhibiting the DnaGs were further tested with individual molecules belonging to inhibiting groups. Each molecule showing inhibition was titrated against the corresponding DnaGs to find IC50. We got a molecule(VS167) that acted as broad inhibitors, inhibiting all eight DnaGs. Molecules VS180 and VS186 inhibited seven DnaGs (except Saureus). Similarly, two molecules(VS 173, VS176) inhibited five DnaGs (Mtb, Ba, Ft, Yp, Ecoli). VS261 inhibited four DnaGs (Mtb, Ba, Ft, Vc). MS50 inhibited Ba and Vc DnaGs. And some of the inhibitors inhibited only one DnaGs. Thus we found the broad and specific inhibitors for different bacterial DnaGs, and their Structure-activity analysis(SAR) was done. Further, We tried to explain the similarities among the enzyme DnaGs from different bacteria based on their inhibition pattern.Keywords: DNA replication, DnaG, okazaki fragments, antibiotic drugs
Procedia PDF Downloads 891137 The Determination of Contamination Rate of Traditional White Cheese in Behbahan Markets to Coliforms and Pathogenic Escherichia Coli
Authors: Sana Mohammad Jafar, Hossaini Seyahi Zohreh
Abstract:
Infections and food intoxication caused by microbial contamination of food is of major issues in different countries, and diseases caused by the consumption of contaminated food included a large percentage of the country's health problems. Since traditional cheese for cultural reasons, good taste and smell in many parts of the area still has the important place in people's food basket, transmission of pathogenic bacteria could be at risk human health through the consumption of this food. In this study selected randomly 100 samples of 250 grams of traditional cheeses supplied in the city Behbahan market and adjacent to the ice was transferred to the laboratory and microbiological tests were performed immediately. According to the results, from 100 samples tested traditional cheese, 94 samples (94% of samples) were contaminated with coliforms, which of this number 75 samples (75% of samples) the contamination rate was higher than the limit (more than 100 cfu/g). Of the total samples, 36 samples (36% of samples) were contaminated with fecal coliform which of this number 30 samples (30% of samples) were contaminated with Escherichia.coli bacteria. Based on the results of agglutination test,no samples was found positive as pathogenic Escherichia.coli.Keywords: determination, traditional cheese, Behbahan, Escherichia coli
Procedia PDF Downloads 5021136 Obstructive Bronchitis and Pneumonia by a Mixed Infection of HPIV- 3, S. pneumoniae in an Immunocompromised 10M Infant: Case Report
Authors: Olga Smilevska Spasova, Katerina Boshkovska, Gorica Popova, Mirjana Popovska
Abstract:
Introduction: Pneumonia is an infection of the pulmonary parenchyma. HPIV 3 is one of four viruses that is a member of the Paramyxoviridae family designated types 1-4 that have a nonsegmented, single-stranded RNA genome with a lipid-containing envelope. They are spread from the respiratory tract by aerosolized secretions or by direct contact with secretions. Type 3 is endemic and can cause serious illness in immunocompromised patients. Illness caused by parainfluenza occurs shortly after inoculation with the virus. The level of immunoglobulin A antibody in serum is the best predictor of susceptibility to infection. Streptococcus pneumonia or pneumococcus is a Gram-positive, spherical bacteria, usually found in pairs and it is a member of the genus Streptococcus. Streptococcus pneumonia resides asymptomatically in healthy carriers typically colonizing the respiratory tract, sinuses, and nasal cavity. In individuals with weaker immune systems like young infants, pneumococcal bacterium is the most common cause of community-acquired pneumonia in the world. Case Report: The aim is to present a case of lower respiratory tract infection in an infant caused by parainfluenza virus 3, S. pneumonia and undifferentiated gram-negative bacteria that was successfully treated. The infant is with a history of recurrent episodes of wheezing in the past 3mounts.Infant of 10months presents 2weeks before admittance with high fever, runny nose, and cough. The primary pediatrician prescribed oral cefpodoxime for 10days and inhaled salbutamol. Two days before admittance in hospital the infant with high fever, cough, and difficulty breathing. At admittance, infant is pale, anxious with rapid respirations, cough, wheezing and tachycardia. On auscultation: vesicular breathing sounds with high pitched wheezing and on the right coarse crackles. Investigations: Blood analysis: RBC: 4, 7 x1012L, WBC: 8,3x109L: Neut: 42.73% Lym: 41.57%, Hgb: 9.38 g/dl MCV: 62.7fl, MCH: 20.0pg MCHC: 31.8 g/dl RDW: 18.7% Plt-307.9 x109LCRP: 2,5mg/l, serum iron-7.92umol/l, O2sat-97% on blood gas analysis, puls-125/min.X-ray of chest with hyperinflationand right pericardial consolidation. Microbiological analysis of sputum sample is positive for undifferentiated gram-negative bacteria (colonizer)–resistant to cefotaxime, ampicillin, cefoxitin, sulfamet.+trimetoprim and sensitive to amikacin, gentamicin, and ciprofloxacin. Molecular multiplex RT-PCR for 19 viruses and multiplex PCR for 7 bacteria test for respiratory pathogens positive for Parainfluenza virus 3(Ct=22.73), Streptococcus pneumonia (Ct=26.75).IED: IgG-9.31g/l, IgA-0.351g/l, IgM-0.86g/l. Therapy: Treatment was started with inhaled salbutamol, intravenous antibiotic cefotaxime as well as systemic corticosteroids. On day 7 because of slow clinical resolution of chest auscultation findings and an etiologic clue with a positive sputum sample for resistant undifferentiated gram negative bacteria, a second intravenous antibiotic was administered amikacin. The infant is discharged on day 14 with resolution of clinical findings. Conclusion: Mixed co-infections with respiratory viruses and bacteria in immunocompromised infants are likely to lead to a more severe form of community acquired pneumonia that will need hospitalization.Keywords: HPIV- 3, infant, pneumonia, S. pneumonia, x-ray chest
Procedia PDF Downloads 741135 Tomato Endophytes Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B Exhibits Plant Growth-Promotion and Fusarium Wilt Suppression
Authors: Bandana Saikia, Ashok Bhattacharyya
Abstract:
Endophytic microbes and their metabolites positively impact overall plant health, which may have a potential implication in agriculture. In the present study, 177 bacterial endophytes and 57 fungal endophytes were isolated, with the highest recovery rate from tomato roots. A maximum of 112 endophytes were isolated during monsoon, followed by 64 isolates and 58 isolates isolated during pre-monsoon and post-monsoon periods, respectively, indicating the rich diversity in bacterial and fungal endophytes of tomato crops from different locations of Assam, India. Further, the endophytes were evaluated for their antagonistic potential against Fusarium oxysporum f. sp. lycopersici. Fungal endophytic isolate AAUTLF (Endophytic Fungi of Tomato Leaf from Assam Agricultural University, Assam, India area) and bacterial endophyte D1B (Endophytic bacteria of tomato from Dhemiji, India district) showed the highest antifungal activity against the pathogen both in vitro and in vivo. Based on 5.8 rDNA sequence analysis of fungal and 16S rDNA sequence of bacteria endophytes, the most effective fungal and bacterial isolates against FOL were identified as Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B, respectively. The isolates showed an antagonistic effect against Fusarium oxysporum f.sp. lycopersici in-vitro and reduced the disease index of Fusarium wilt in tomatoes by 64.4% under pot conditions. Trichoderma asperellum AAUTLF produced an antifungal compound viz., 6-pentyl-2H-pyran-2-one, which also possesses growth-promoting characteristics. The bacteria Stenotrophomonas maltophilia D1B produced antifungal compounds, including benzothiazole, oleic acid, phenylacetic acid, and 3-(Hydroxy-phenyl-methyl)-2,3-dimethyl-octan-4-one. This would be of high importance for the source of antagonistic strains and biocontrol of tomato Fusarium wilt, as well as other plant fungal diseases.Keywords: root endophytes, Stemotrophomonas, Trichoderma, benzothiazole, 6-pentyl-2H-pyran-2-one
Procedia PDF Downloads 691134 Use of Fruit Beetles, Waxworms Larvae and Tiger Worms in Waste Conditioning for Composting
Authors: Waleed S. Alwaneen
Abstract:
In many countries, cow dung is used as farm manure and for biogas production. Several bacterial strains associated with cow dung such as Campylobacter, Salmonella sp. and Escherichia coli cause serious human diseases. The objective of the present study was to investigate the use of insect larvae including fruit beetle, waxworms and tiger worms to improve the breakdown of agricultural wastes and reduce their pathogen loads. Fresh cow faeces were collected from a cattle farm and distributed into plastic boxes (100 g/box). Each box was provided with 10 larvae of fruit beetle, Waxworms and Tiger worms, respectively. There were 3 replicates in each treatment including the control. Bacteria were isolated weekly from both control and cow faeces to which larvae were added to determine the bacterial populations. Results revealed that the bacterial load was higher in the cow faeces treated with fruit beetles than in the control, while the bacterial load was lower in the cow faeces treated with waxworms and tiger worms than in the control. The activities of the fruit beetle larvae led to the cow faeces being liquefied which provided a more conducive growing media for bacteria. Therefore, higher bacterial load in the cow faeces treated with fruit beetle might be attributed to the liquefaction of cow faeces.Keywords: fruit beetle, waxworms, tiger worms, waste conditioning, composting
Procedia PDF Downloads 2481133 Phenolic Analysis, Antioxidant Capacity and Antimicrobial Activity of Origanum glandulosum Desf Extract from Algeria
Authors: Abdelkader Basli, Jean-Claude Delaunay, Eric Pedrot, Jean-Michel Mérillon, Jean-Pierre Monti, Khodir Madani, Mohamed Chibane, Tristan Richard
Abstract:
The antioxidant and antimicrobial activities of Origanum glandulosum collected in Algeria have been studied. Extract was prepared from aerial part of endemic Algerian oregano. The produced extract has been characterized in terms of total phenols (using Folin method), total flavonoid, antioxidant activities (using the DPPH radical scavenging method and ORAC assay) and microbial activity against four bacteria: Streptococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae one yeast: Candida albicans and one fungi: Aspergillus niger. The results pointed the antioxidant activities of the extract of O. glandulosum and antimicrobial activities against all bacteria and C. Candida, but no effect on A. niger. High performance liquid chromatography combined with mass spectrometry (LC-MS) and nuclear magnetic resonance (LC-NMR) were used to separate and identify the major compounds present in the oregano extract. Rosmarinic acid, globoidnan A and B, lithospermic acid B and three flavonoids were identified.Keywords: origanum glandulosum, antioxidant, microbial activity, polyphenol, LC-MS, LC-NMR
Procedia PDF Downloads 6411132 Chemical Composition and Antimicrobial Activity of the Essential Oil of Thymus lanceolatus Desf. an Endemic Thyme from Algeria
Authors: Ahmed Nouasri, Tahar Dob, Toumi Mohamed, Dahmane Dahmane, Soumioa Krimat, Lynda Lamari, Chabane Chelghom
Abstract:
The aim of this study is to investigate the chemical composition for the first time, and antimicrobial activities of essential oil (EO) of Thymus lanceolatus Desf., an endemic thyme from Tiaret province of Algeria. The chemical composition of hydrodistilled essential oil from flowering aerial parts has been analyzed by GC and GC/MS techniques, the antimicrobial activity was realised by agar disc diffusion method and MIC was determined in solid medium by direct contact. Essential oil of T. lanceolataus has been yielded of 2.336 (w/w) based on dry weight, the analyses cited above, led to the identification of 29 components, which accounted for 97.34% of the total oil. Oxygenated monoterpenes was the main fraction (88.31%) dominated by thymol (80.2%) as major component of this oil, followed by carvacrol (6.25%). The oil was found effective against all tested strains especially fungus, except Pseudomonas aeruginosa were low activity observed, in addition Gram (+) bacteria found to be more sensitive to the EO than Gram (-) bacteria. This activity was ranging from12±2.65mm to 60.00±0.00mm Ø, with the lowest MIC value of under 0.06mg/ml to 12.53mg/ml. This results provided the evidence that the studied plant might indeed be potential sources of natural antimicrobial agentsKeywords: Thymus lanceolatus Desf., essential oil, chemical composition, antimicrobial activities
Procedia PDF Downloads 4721131 Antimicrobial and Antibiofilm Properties of Fatty Acids Against Streptococcus Mutans
Authors: A. Mulry, C. Kealey, D. B. Brady
Abstract:
Planktonic bacteria can form biofilms which are microbial aggregates embedded within a matrix of extracellular polymeric substances (EPS). They can be found attached to abiotic or biotic surfaces. Biofilms are responsible for oral diseases such as dental caries, gingivitis and the progression of periodontal disease. Biofilms can resist 500 to 1000 times the concentration of biocides and antibiotics used to kill planktonic bacteria. Biofilm development on oral surfaces involves four stages, initial attachment, early development, maturation and dispersal of planktonic cells. The Minimum Inhibitory Concentration (MIC) was determined using a range of saturated and unsaturated fatty acids using the resazurin assay, followed by serial dilution and spot plating on BHI agar plates to establish the Minimum Bactericidal Concentration (MBC). Log reduction of bacteria was also evaluated for each fatty acid. The Minimum Biofilm Inhibition Concentration (MBIC) was determined using crystal violet assay in 96 well plates on forming and pre-formed S. mutans biofilms using BHI supplemented with 1% sucrose. Saturated medium-chain fatty acids Octanoic (C8.0), Decanoic (C10.0) and Undecanoic acid (C11.0) do not display strong antibiofilm properties; however, Lauric (C12.0) and Myristic (C14.0) display moderate antibiofilm properties with 97.83% and 97.5% biofilm inhibition with 1000 µM respectively. Monounsaturated, Oleic acid (C18.1) and polyunsaturated large chain fatty acids, Linoleic acid (C18.2) display potent antibiofilm properties with biofilm inhibition of 99.73% at 125 µM and 100% at 65.5 µM, respectively. Long-chain polyunsaturated Omega-3 fatty acids α-Linoleic (C18.3), Eicosapentaenoic Acid (EPA) (C20.5), Docosahexaenoic Acid (DHA) (C22.6) have displayed strong antibiofilm efficacy from concentrations ranging from 31.25-250µg/ml. DHA is the most promising antibiofilm agent with an MBIC of 99.73% with 15.625µg/ml. This may be due to the presence of six double bonds and the structural orientation of the fatty acid. To conclude, fatty acids displaying the most antimicrobial activity appear to be medium or long-chain unsaturated fatty acids containing one or more double bonds. Most promising agents include Omega-3-fatty acids Linoleic, α-Linoleic, EPA and DHA, as well as Omega-9 fatty acid Oleic acid. These results indicate that fatty acids have the potential to be used as antimicrobials and antibiofilm agents against S. mutans. Future work involves further screening of the most potent fatty acids against a range of bacteria, including Gram-positive and Gram-negative oral pathogens. Future work will involve incorporating the most effective fatty acids onto dental implant devices to prevent biofilm formation.Keywords: antibiofilm, biofilm, fatty acids, S. mutans
Procedia PDF Downloads 1531130 Optimisation of Wastewater Treatment for Yeast Processing Effluent Using Response Surface Methodology
Authors: Shepherd Manhokwe, Sheron Shoko, Cuthbert Zvidzai
Abstract:
In the present study, the interactive effects of temperature and cultured bacteria on the performance of a biological treatment system of yeast processing wastewater were investigated. The main objective of this study was to investigate and optimize the operating parameters that reduce organic load and colour. Experiments were conducted based on a Central Composite Design (CCD) and analysed using Response Surface Methodology (RSM). Three dependent parameters were either directly measured or calculated as response. These parameters were total Chemical Oxygen Demand (COD) removal, colour reduction and total solids. COD removal efficiency of 26 % and decolourization efficiency of 44 % were recorded for the wastewater treatment. The optimized conditions for the biological treatment were found to be at 20 g/l cultured bacteria and 25 °C for COD reduction. For colour reduction optimum conditions were temperature of 30.35°C and bacterial formulation of 20g/l. Biological treatment of baker’s yeast processing effluent is a suitable process for the removal of organic load and colour from wastewater, especially when the operating parameters are optimized.Keywords: COD reduction, optimisation, response surface methodology, yeast processing wastewater
Procedia PDF Downloads 3421129 Sulfate Reducing Bacteria Based Bio-Electrochemical System: Towards Sustainable Landfill Leachate and Solid Waste Treatment
Authors: K. Sushma Varma, Rajesh Singh
Abstract:
Non-engineered landfills cause serious environmental damage due to toxic emissions and mobilization of persistent pollutants, organic and inorganic contaminants, as well as soluble metal ions. The available treatment technologies for landfill leachate and solid waste are not effective from an economic, environmental, and social standpoint. The present study assesses the potential of the bioelectrochemical system (BES) integrated with sulfate-reducing bacteria (SRB) in the sustainable treatment and decontamination of landfill wastes. For this purpose, solid waste and landfill leachate collected from different landfill sites were evaluated for long-term treatment using the integrated SRB-BES anaerobic designed bioreactors after pre-treatment. Based on periodic gas composition analysis, physicochemical characterization of the leachate and solid waste, and metal concentration determination, the present system demonstrated significant improvement in volumetric hydrogen production by suppressing methanogenesis. High reduction percentages of Be, Cr, Pb, Cd, Sb, Ni, Cr, COD, and sTOC removal were observed. This mineralization can be attributed to the synergistic effect of ammonia-assisted pre-treatment complexation and microbial sulphide formation. Despite being amended with 0.1N ammonia, the treated leachate level of NO³⁻ was found to be reduced along with SO₄²⁻. This integrated SRB-BES system can be recommended as an eco-friendly solution for landfill reclamation. The BES-treated solid waste was evidently more stabilized, as shown by a five-fold increase in surface area, and potentially useful for leachate immobilization and bio-fortification of agricultural fields. The vector arrangement and magnitude showed similar treatment with differences in magnitudes for both leachate and solid waste. These findings support the efficacy of SRB-BES in the treatment of landfill leachate and solid waste sustainably, inching a step closer to our sustainable development goals. It utilizes low-cost treatment, and anaerobic SRB adapted to landfill sites. This technology may prove to be a sustainable treatment strategy upon scaling up as its outcomes are two-pronged: landfill waste treatment and energy recovery.Keywords: bio-electrochemical system, leachate /solid waste treatment, landfill leachate, sulfate-reducing bacteria
Procedia PDF Downloads 101