Search results for: airway segmentation
167 Smartphone Based Wound Assessment System for Diabetes Patients
Authors: Vaibhav V. Dixit, Shubham Ajay Karwa
Abstract:
Diabetic foot ulcers speak to a critical medical problem. Right now, clinicians and medical caretakers primarily construct their injury evaluation in light of visual examination of wound size and mending status, while the patients themselves rarely have a chance to play a dynamic part. Henceforth, love quantitative and practical examination technique that empowers the patients and their parental figures to take a more dynamic part in every day wound care possibly can quicken wound recuperating, spare travel cost and diminish human services costs. Considering the commonness of cell phones with a high-determination computerized camera, evaluating wounds by breaking down pictures of ceaseless foot ulcers is an alluring choice. In this paper, we propose a novel injury picture examination framework actualized using feature extraction and color segmentation. Here we are using the Normalized minimum distance classifier for classifying the output.Keywords: diabetic, Gabor wavelet, normalized minimum distance classifier, quantiable parameters
Procedia PDF Downloads 270166 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format
Authors: Maryam Fallahpoor, Biswajeet Pradhan
Abstract:
Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format
Procedia PDF Downloads 88165 Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space
Authors: Vahid Anari, Mina Bakhshi
Abstract:
Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.Keywords: positive cell, color segmentation, HSV color space, immunohistochemistry, meningioma, thresholding, fuzzy c-means
Procedia PDF Downloads 210164 Small Text Extraction from Documents and Chart Images
Authors: Rominkumar Busa, Shahira K. C., Lijiya A.
Abstract:
Text recognition is an important area in computer vision which deals with detecting and recognising text from an image. The Optical Character Recognition (OCR) is a saturated area these days and with very good text recognition accuracy. However the same OCR methods when applied on text with small font sizes like the text data of chart images, the recognition rate is less than 30%. In this work, aims to extract small text in images using the deep learning model, CRNN with CTC loss. The text recognition accuracy is found to improve by applying image enhancement by super resolution prior to CRNN model. We also observe the text recognition rate further increases by 18% by applying the proposed method, which involves super resolution and character segmentation followed by CRNN with CTC loss. The efficiency of the proposed method shows that further pre-processing on chart image text and other small text images will improve the accuracy further, thereby helping text extraction from chart images.Keywords: small text extraction, OCR, scene text recognition, CRNN
Procedia PDF Downloads 125163 FISCEAPP: FIsh Skin Color Evaluation APPlication
Authors: J. Urban, Á. S. Botella, L. E. Robaina, A. Bárta, P. Souček, P. Císař, Š. Papáček, L. M. Domínguez
Abstract:
Skin coloration in fish is of great physiological, behavioral and ecological importance and can be considered as an index of animal welfare in aquaculture as well as an important quality factor in the retail value. Currently, in order to compare color in animals fed on different diets, biochemical analysis, and colorimetry of fished, mildly anesthetized or dead body, are very accurate and meaningful measurements. The noninvasive method using digital images of the fish body was developed as a standalone application. This application deals with the computation burden and memory consumption of large input files, optimizing piece wise processing and analysis with the memory/computation time ratio. For the comparison of color distributions of various experiments and different color spaces (RGB, CIE L*a*b*) the comparable semi-equidistant binning of multi channels representation is introduced. It is derived from the knowledge of quantization levels and Freedman-Diaconis rule. The color calibrations and camera responsivity function were necessary part of the measurement process.Keywords: color distribution, fish skin color, piecewise transformation, object to background segmentation
Procedia PDF Downloads 262162 Detection and Classification of Rubber Tree Leaf Diseases Using Machine Learning
Authors: Kavyadevi N., Kaviya G., Gowsalya P., Janani M., Mohanraj S.
Abstract:
Hevea brasiliensis, also known as the rubber tree, is one of the foremost assets of crops in the world. One of the most significant advantages of the Rubber Plant in terms of air oxygenation is its capacity to reduce the likelihood of an individual developing respiratory allergies like asthma. To construct such a system that can properly identify crop diseases and pests and then create a database of insecticides for each pest and disease, we must first give treatment for the illness that has been detected. We shall primarily examine three major leaf diseases since they are economically deficient in this article, which is Bird's eye spot, algal spot and powdery mildew. And the recommended work focuses on disease identification on rubber tree leaves. It will be accomplished by employing one of the superior algorithms. Input, Preprocessing, Image Segmentation, Extraction Feature, and Classification will be followed by the processing technique. We will use time-consuming procedures that they use to detect the sickness. As a consequence, the main ailments, underlying causes, and signs and symptoms of diseases that harm the rubber tree are covered in this study.Keywords: image processing, python, convolution neural network (CNN), machine learning
Procedia PDF Downloads 76161 Comparison of Classical Computer Vision vs. Convolutional Neural Networks Approaches for Weed Mapping in Aerial Images
Authors: Paulo Cesar Pereira Junior, Alexandre Monteiro, Rafael da Luz Ribeiro, Antonio Carlos Sobieranski, Aldo von Wangenheim
Abstract:
In this paper, we present a comparison between convolutional neural networks and classical computer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical models.Keywords: convolutional neural networks, deep learning, digital image processing, precision agriculture, semantic segmentation, unmanned aerial vehicles
Procedia PDF Downloads 260160 Study of Machinability for Titanium Alloy Ti-6Al-4V through Chip Formation in Milling Process
Authors: Moaz H. Ali, Ahmed H. Al-Saadi
Abstract:
Most of the materials used in the industry of aero-engine components generally consist of titanium alloys. Advanced materials, because of their excellent combination of high specific strength, lightweight, and general corrosion resistance. In fact, chemical wear resistance of aero-engine alloy provide a serious challenge for cutting tool material during the machining process. The reduction in cutting temperature distributions leads to an increase in tool life and a decrease in wear rate. Hence, the chip morphology and segmentation play a predominant role in determining machinability and tool wear during the machining process. The result of low thermal conductivity and diffusivity of this alloy in the concentration of high temperatures at the tool-work-piece and tool-chip interface. Consequently, the chip morphology is very important in the study of machinability of metals as well as the study of cutting tool wear. Otherwise, the result will be accelerating tool wear, increasing manufacturing cost and time consuming.Keywords: machinability, titanium alloy (ti-6al-4v), chip formation, milling process
Procedia PDF Downloads 450159 Ethnic Militias and Insecurity in Democratic Nigeria
Authors: Adeyemi Kamil Hamzah, Abayomi Nathaniel Oyesikun
Abstract:
Throughout modern history internal strife has burdened Africa most populous nation, Nigeria. The country encompassed more than four hundred ethnic and sub ethnic groups with the different background and identities. This group has not fussed themselves together to emerge as a nation what we have are mere ethnic and religious groups i.e. Hausa/Fulani Igbo Yoruba Ijaw, Ibibio, christian, and Muslim. The source of problematic Nigeria is linked to colonial policy of segmentation, discontent to religion, faith, and ethnicity. The wave of spiral killing among the major ethnic entities with different religious affiliation has brought the process of good governance in the country to its kneel. This paper will place insecurity in Nigeria in context by reviewing the root and rise of ethnic militia. In doing so it will evaluate how the West Africa power house arrive at the point where it is today with all unprecedented unrest from regions that formed Nigeria. Both primary and secondary sources were applied for the quality of this paper. The effects of ethnic militia in realizing and actualizing political stability are equally discussed, recommendations proffered and conclusion given.Keywords: ethnic, militia, violence, insecurity, democracy
Procedia PDF Downloads 338158 Early and Mid-Term Results of Anesthetic Management of Minimal Invasive Coronary Artery Bypass Grafting Using One Lung Ventilation
Authors: Devendra Gupta, S. P. Ambesh, P. K Singh
Abstract:
Introduction: Minimally invasive coronary artery bypass grafting (MICABG) is a less invasive method of performing surgical revascularization. Minimally invasive direct coronary artery bypass (MIDCAB) provides many anesthetic challenges including one lung ventilation (OLV), managing myocardial ischemia, and pain. We present an early and midterm result of the use of this technique with OLV. Method: We enrolled 62 patients for analysis operated between 2008 and 2012. Patients were anesthetized and left endobronchial tube was placed. During the procedure left lung was isolated and one lung ventilation was maintained through right lung. Operation was performed utilizing off pump technique of coronary artery bypass grafting through a minimal invasive incision. Left internal mammary artery graft was done for single vessel disease and radial artery was utilized for other grafts if required. Postoperative ventilation was done with single lumen endotracheal tube. Median follow-up is 2.5 years (6 months to 4 years). Results: Median age was 58.5 years (41-77) and all were male. Single vessel disease was present in 36, double vessel in 24 and triple vessel disease in 2 patients. All the patients had normal left ventricular size and function. In 2 cases difficulty were encounter in placement of endobronchial tube. In 1 case cuff of endobronchial tube was ruptured during intubation. High airway pressure was developed on OLV in 1 case and surgery was accomplished with two lung anesthesia with low tidal volume. Mean postoperative ventilation time was 14.4 hour (11-22). There was no perioperative and 30 day mortality. Conversion to median sternotomy to complete the operation was done in 3.23% (2 out of 62 patients). One patient had acute myocardial infarction postoperatively and there were no deaths during follow-up. Conclusion: MICABG is a safe and effective method of revascularization with OLV in low risk candidates for coronary artery bypass grafting.Keywords: MIDCABG, one lung ventilation, coronary artery bypass grafting, endobronchial tube
Procedia PDF Downloads 425157 Local Boundary Analysis for Generative Theory of Tonal Music: From the Aspect of Classic Music Melody Analysis
Authors: Po-Chun Wang, Yan-Ru Lai, Sophia I. C. Lin, Alvin W. Y. Su
Abstract:
The Generative Theory of Tonal Music (GTTM) provides systematic approaches to recognizing local boundaries of music. The rules have been implemented in some automated melody segmentation algorithms. Besides, there are also deep learning methods with GTTM features applied to boundary detection tasks. However, these studies might face constraints such as a lack of or inconsistent label data. The GTTM database is currently the most widely used GTTM database, which includes manually labeled GTTM rules and local boundaries. Even so, we found some problems with these labels. They are sometimes discrepancies with GTTM rules. In addition, since it is labeled at different times by multiple musicians, they are not within the same scope in some cases. Therefore, in this paper, we examine this database with musicians from the aspect of classical music and relabel the scores. The relabeled database - GTTM Database v2.0 - will be released for academic research usage. Despite the experimental and statistical results showing that the relabeled database is more consistent, the improvement in boundary detection is not substantial. It seems that we need more clues than GTTM rules for boundary detection in the future.Keywords: dataset, GTTM, local boundary, neural network
Procedia PDF Downloads 145156 Assisted Video Colorization Using Texture Descriptors
Authors: Andre Peres Ramos, Franklin Cesar Flores
Abstract:
Colorization is the process of add colors to a monochromatic image or video. Usually, the process involves to segment the image in regions of interest and then apply colors to each one, for videos, this process is repeated for each frame, which makes it a tedious and time-consuming job. We propose a new assisted method for video colorization; the user only has to colorize one frame, and then the colors are propagated to following frames. The user can intervene at any time to correct eventual errors in color assignment. The method consists of to extract intensity and texture descriptors from the frames and then perform a feature matching to determine the best color for each segment. To reduce computation time and give a better spatial coherence we narrow the area of search and give weights for each feature to emphasize texture descriptors. To give a more natural result, we use an optimization algorithm to make the color propagation. Experimental results in several image sequences, compared to others existing methods, demonstrates that the proposed method perform a better colorization with less time and user interference.Keywords: colorization, feature matching, texture descriptors, video segmentation
Procedia PDF Downloads 162155 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique
Authors: Saumya Srivastava, Rina Maiti
Abstract:
In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine
Procedia PDF Downloads 124154 Enhancement of X-Rays Images Intensity Using Pixel Values Adjustments Technique
Authors: Yousif Mohamed Y. Abdallah, Razan Manofely, Rajab M. Ben Yousef
Abstract:
X-Ray images are very popular as a first tool for diagnosis. Automating the process of analysis of such images is important in order to help physician procedures. In this practice, teeth segmentation from the radiographic images and feature extraction are essential steps. The main objective of this study was to study correction preprocessing of x-rays images using local adaptive filters in order to evaluate contrast enhancement pattern in different x-rays images such as grey color and to evaluate the usage of new nonlinear approach for contrast enhancement of soft tissues in x-rays images. The data analyzed by using MatLab program to enhance the contrast within the soft tissues, the gray levels in both enhanced and unenhanced images and noise variance. The main techniques of enhancement used in this study were contrast enhancement filtering and deblurring images using the blind deconvolution algorithm. In this paper, prominent constraints are firstly preservation of image's overall look; secondly, preservation of the diagnostic content in the image and thirdly detection of small low contrast details in diagnostic content of the image.Keywords: enhancement, x-rays, pixel intensity values, MatLab
Procedia PDF Downloads 485153 Recurrent Wheezing and Associated Factors among 6-Year-Old Children in Adama Comprehensive Specialized Hospital Medical College
Authors: Samrawit Tamrat Gebretsadik
Abstract:
Recurrent wheezing is a common respiratory symptom among children, often indicative of underlying airway inflammation and hyperreactivity. Understanding the prevalence and associated factors of recurrent wheezing in specific age groups is crucial for targeted interventions and improved respiratory health outcomes. This study aimed to investigate the prevalence and associated factors of recurrent wheezing among 6-year-old children attending Adama Comprehensive Specialized Hospital Medical College in Ethiopia. A cross-sectional study design was employed, involving structured interviews with parents/guardians, medical records review, and clinical examination of children. Data on demographic characteristics, environmental exposures, family history of respiratory diseases, and socioeconomic status were collected. Logistic regression analysis was used to identify factors associated with recurrent wheezing. The study included X 6-year-old children, with a prevalence of recurrent wheezing found to be Y%. Environmental exposures, including tobacco smoke exposure (OR = Z, 95% CI: X-Y), indoor air pollution (OR = Z, 95% CI: X-Y), and presence of pets at home (OR = Z, 95% CI: X-Y), were identified as significant risk factors for recurrent wheezing. Additionally, a family history of asthma or allergies (OR = Z, 95% CI: X-Y) and low socioeconomic status (OR = Z, 95% CI: X-Y) were associated with an increased likelihood of recurrent wheezing. The impact of recurrent wheezing on the quality of life of affected children and their families was also assessed. Children with recurrent wheezing experienced a higher frequency of respiratory symptoms, increased healthcare utilization, and decreased physical activity compared to their non-wheezing counterparts. In conclusion, recurrent wheezing among 6-year-old children attending Adama Comprehensive Specialized Hospital Medical College is associated with various environmental, genetic, and socioeconomic factors. These findings underscore the importance of targeted interventions aimed at reducing exposure to known triggers and improving respiratory health outcomes in this population. Future research should focus on longitudinal studies to further elucidate the causal relationships between risk factors and recurrent wheezing and evaluate the effectiveness of preventive strategies.Keywords: wheezing, inflammation, respiratory, crucial
Procedia PDF Downloads 53152 Micro-sovereignty Dynamics: Property Management and Biopolitics
Authors: Sibo Lu, Zhongkai Qian, Haotian Zhang
Abstract:
This article examines the phenomenon of micro-sovereignty in the context of property management and its implications for biopolitics and urban governance in mainland China. It explores the transformation of urban spaces into privatized communities managed by property companies, leading to the reterritorialization of urban areas and the segmentation of urban populations. Drawing on legal frameworks, we analyze how commercial real estate development and property management have reshaped the urban landscape, placing nearly all urban residents within service areas of property management firms, thus establishing micro-sovereign entities that exercise control over residential spaces. Through a critique of property management's sovereign effects on social organization and the exploration of autonomous, democratic alternatives in community governance, this article contributes to the broader discourse on sovereignty, governance, and resistance within the urban milieu of contemporary China. It underscores the urgent need for more democratic forms of community management that can transcend the capitalist logic of property management companies and foster genuine participatory governance at the grassroots level.Keywords: biopolitic, critical theory, political sociology, political philosophy
Procedia PDF Downloads 47151 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation
Authors: Ksenia Meshkova
Abstract:
With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.Keywords: neural networks, computer vision, representation learning, autoencoders
Procedia PDF Downloads 127150 Color Fusion of Remote Sensing Images for Imparting Fluvial Geomorphological Features of River Yamuna and Ganga over Doon Valley
Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, Rebecca K. Rossi, Yanmin Yuan, Xianpei Li
Abstract:
The fiscal growth of any country hinges on the prudent administration of water resources. The river Yamuna and Ganga are measured as the life line of India as it affords the needs for life to endure. Earth observation over remote sensing images permits the precise description and identification of ingredients on the superficial from space and airborne platforms. Multiple and heterogeneous image sources are accessible for the same geographical section; multispectral, hyperspectral, radar, multitemporal, and multiangular images. In this paper, a taxonomical learning of the fluvial geomorphological features of river Yamuna and Ganga over doon valley using color fusion of multispectral remote sensing images was performed. Experimental results exhibited that the segmentation based colorization technique stranded on pattern recognition, and color mapping fashioned more colorful and truthful colorized images for geomorphological feature extraction.Keywords: color fusion, geomorphology, fluvial processes, multispectral images, pattern recognition
Procedia PDF Downloads 306149 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction
Procedia PDF Downloads 263148 Content-Based Mammograms Retrieval Based on Breast Density Criteria Using Bidimensional Empirical Mode Decomposition
Authors: Sourour Khouaja, Hejer Jlassi, Nadia Feddaoui, Kamel Hamrouni
Abstract:
Most medical images, and especially mammographies, are now stored in large databases. Retrieving a desired image is considered of great importance in order to find previous similar cases diagnosis. Our method is implemented to assist radiologists in retrieving mammographic images containing breast with similar density aspect as seen on the mammogram. This is becoming a challenge seeing the importance of density criteria in cancer provision and its effect on segmentation issues. We used the BEMD (Bidimensional Empirical Mode Decomposition) to characterize the content of images and Euclidean distance measure similarity between images. Through the experiments on the MIAS mammography image database, we confirm that the results are promising. The performance was evaluated using precision and recall curves comparing query and retrieved images. Computing recall-precision proved the effectiveness of applying the CBIR in the large mammographic image databases. We found a precision of 91.2% for mammography with a recall of 86.8%.Keywords: BEMD, breast density, contend-based, image retrieval, mammography
Procedia PDF Downloads 232147 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World
Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber
Abstract:
Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.Keywords: semantic segmentation, urban environment, deep learning, urban building, classification
Procedia PDF Downloads 191146 CNN-Based Compressor Mass Flow Estimator in Industrial Aircraft Vapor Cycle System
Authors: Justin Reverdi, Sixin Zhang, Saïd Aoues, Fabrice Gamboa, Serge Gratton, Thomas Pellegrini
Abstract:
In vapor cycle systems, the mass flow sensor plays a key role for different monitoring and control purposes. However, physical sensors can be inaccurate, heavy, cumbersome, expensive, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor, based on other standard sensors, is a good alternative. This paper has two main objectives. Firstly, a data-driven model using a convolutional neural network is proposed to estimate the mass flow of the compressor. We show that it significantly outperforms the standard polynomial regression model (thermodynamic maps) in terms of the standard MSE metric and engineer performance metrics. Secondly, a semi-automatic segmentation method is proposed to compute the engineer performance metrics for real datasets, as the standard MSE metric may pose risks in analyzing the dynamic behavior of vapor cycle systems.Keywords: deep learning, convolutional neural network, vapor cycle system, virtual sensor
Procedia PDF Downloads 61145 Obstacle Classification Method Based on 2D LIDAR Database
Authors: Moohyun Lee, Soojung Hur, Yongwan Park
Abstract:
In this paper is proposed a method uses only LIDAR system to classification an obstacle and determine its type by establishing database for classifying obstacles based on LIDAR. The existing LIDAR system, in determining the recognition of obstruction in an autonomous vehicle, has an advantage in terms of accuracy and shorter recognition time. However, it was difficult to determine the type of obstacle and therefore accurate path planning based on the type of obstacle was not possible. In order to overcome this problem, a method of classifying obstacle type based on existing LIDAR and using the width of obstacle materials was proposed. However, width measurement was not sufficient to improve accuracy. In this research, the width data was used to do the first classification; database for LIDAR intensity data by four major obstacle materials on the road were created; comparison is made to the LIDAR intensity data of actual obstacle materials; and determine the obstacle type by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that data declined in quality in comparison to 3D LIDAR and it was possible to classify obstacle materials using 2D LIDAR.Keywords: obstacle, classification, database, LIDAR, segmentation, intensity
Procedia PDF Downloads 349144 The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events
Authors: Jaqueline Maria Ribeiro Vieira
Abstract:
Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). Previously we developed and proposed a novel strategy capable of detecting patterns at borehole images that may point to regions that have tension and breakout characteristics, based on segmented images. In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge data set configurations.Keywords: image segmentation, oil well visualization, classifiers, data-mining, visual computer
Procedia PDF Downloads 303143 Market Illiquidity and Pricing Errors in the Term Structure of CDS
Authors: Lidia Sanchis-Marco, Antonio Rubia, Pedro Serrano
Abstract:
This paper studies the informational content of pricing errors in the term structure of sovereign CDS spreads. The residuals from a non-arbitrage model are employed to construct a Price discrepancy estimate, or noise measure. The noise estimate is understood as an indicator of market distress and reflects frictions such as illiquidity. Empirically, the noise measure is computed for an extensive panel of CDS spreads. Our results reveal an important fraction of systematic risk is not priced in default swap contracts. When projecting the noise measure onto a set of financial variables, the panel-data estimates show that greater price discrepancies are systematically related to a higher level of offsetting transactions of CDS contracts. This evidence suggests that arbitrage capital flows exit the marketplace during time of distress, and this consistent with a market segmentation among investors and arbitrageurs where professional arbitrageurs are particularly ineffective at bringing prices to their fundamental values during turbulent periods. Our empirical findings are robust for the most common CDS pricing models employed in the industry.Keywords: credit default swaps, noise measure, illiquidity, capital arbitrage
Procedia PDF Downloads 569142 Comparison of the Efficacy of Ketamine-Propofol versus Thiopental Sodium-Fentanyl in Procedural Sedation in the Emergency Department: A Randomized Double-Blind Clinical Trial
Authors: Maryam Bahreini, Mostafa Talebi Garekani, Fatemeh Rasooli, Atefeh Abdollahi
Abstract:
Introduction: Procedural sedation and analgesia have been desirable to handle painful procedures. The trend to find the agent with more efficacy and less complications is still controversial; thus, many sedative regimens have been studied. This study tried to assess the effectiveness and adverse effects of thiopental sodium-fentanyl with the known medication, ketamine-propofol for procedural sedation in the emergency department. Methods: Consenting patients were enrolled in this randomized double-blind trial to receive either 1:1 ketamine-propofol (KP) or thiopental-fentanyl (TF) 1:1 mg: Mg proportion on a weight-based dosing basis to reach the sedation level of American Society of Anesthesiologist class III/IV. The respiratory and hemodynamic complications, nausea and vomiting, recovery agitation, patient recall and satisfaction, provider satisfaction and recovery time were compared. The study was registered in Iranian randomized Control Trial Registry (Code: IRCT2015111325025N1). Results: 96 adult patients were included and randomized, 47 in the KP group and 49 in the TF group. 2.1% in the KP group and 8.1 % in the TF group experienced transient hypoxia leading to performing 4.2 % versus 8.1 % airway maneuvers for 2 groups, respectively; however, no statistically significant difference was observed between 2 combinations, and there was no report of endotracheal placement or further admission. Patient and physician satisfaction were significantly higher in the KP group. There was no difference in respiratory, gastrointestinal, cardiovascular and psychiatric adverse events, recovery time and patient recall of the procedure between groups. The efficacy and complications were not related to the type of procedure or patients’ smoking or addiction trends. Conclusion: Ketamine-propofol and thiopental-fentanyl combinations were effectively comparable although KP resulted in higher patient and provider satisfaction. It is estimated that thiopental fentanyl combination can be as potent and efficacious as ketofol with relatively similar incidence of adverse events in procedural sedation.Keywords: adverse effects, conscious sedation, fentanyl, propofol, ketamine, safety, thiopental
Procedia PDF Downloads 218141 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8
Authors: Aysun Sezer
Abstract:
Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.Keywords: YOLOv8, object detection, humerus, scapula, IRM
Procedia PDF Downloads 66140 Sperm Flagellum Center-Line Tracing in 4D Stacks Using an Iterative Minimal Path Method
Authors: Paul Hernandez-Herrera, Fernando Montoya, Juan Manuel Rendon, Alberto Darszon, Gabriel Corkidi
Abstract:
Intracellular calcium ([Ca2+]i) regulates sperm motility. The analysis of [Ca2+]i has been traditionally achieved in two dimensions while the real movement of the cell takes place in three spatial dimensions. Due to optical limitations (high speed cell movement and low light emission) important data concerning the three dimensional movement of these flagellated cells had been neglected. Visualizing [Ca2+]i in 3D is not a simple matter since it requires complex fluorescence microscopy techniques where the resulting images have very low intensity and consequently low SNR (Signal to Noise Ratio). In 4D sequences, this problem is magnified since the flagellum oscillates (for human sperm) at least at an average frequency of 15 Hz. In this paper, a novel approach to extract the flagellum’s center-line in 4D stacks is presented. For this purpose, an iterative algorithm based on the fast-marching method is proposed to extract the flagellum’s center-line. Quantitative and qualitative results are presented in a 4D stack to demonstrate the ability of the proposed algorithm to trace the flagellum’s center-line. The method reached a precision and recall of 0.96 as compared with a semi-manual method.Keywords: flagellum, minimal path, segmentation, sperm
Procedia PDF Downloads 283139 Efficacy and Safety of Eucalyptus for Relief Cough Symptom: A Systematic Review and Meta-Analysis
Authors: Ladda Her, Juntip Kanjanasilp, Ratree Sawangjit, Nathorn Chaiyakunapruk
Abstract:
Cough is the common symptom of the respiratory tract infections or non-infections; the duration of cough indicates a classification and severity of disease. Herbal medicines can be used as the alternative to drugs for relief of cough symptoms from acute and chronic disease. Eucalyptus was used for reducing cough with evidences suggesting it has an active role in reduction of airway inflammation. The present study aims to evaluate efficacy and safety of eucalyptus for relief of cough symptom in respiratory disease. Method: The Cochrane Library, MEDLINE (PubMed), Scopus, CINAHL, Springer, Science direct, ProQuest, and THAILIS databases. From its inception until 01/02/2019 for randomized control trials. We follow for the efficacy and safety of eucalyptus for reducing cough. Methodological quality was evaluated by using the Cochrane risk of bias tool; two reviewers in our team screened eligibility and extracted data. Result: Six studies were included for the review and five studies were included in the meta-analysis, there were 1.911 persons including children (n: 1) and adult (n: 5) studies; for study in children and adult were between 1 and 80 years old, respectively. Eucalyptus was used as mono herb (n: 2) and in combination with other herbs form (n: 4). All of the studies with eucalyptus were compared for efficacy and safety with placebo or standard treatment, Eucalyptus dosage form in studies included capsules, spray, and syrup. Heterogeneity was 32.44 used random effect model (I² = 1.2%, χ² = 1.01; P-value = 0.314). The efficacy of eucalyptus was showed a reduced cough symptom statistically significant (n = 402, RR: 1.40, 95%CI [1.19, 1.65], P-value < 0.0001) when compared with placebo. Adverse events (AEs) were reported mild to moderate intensity with mostly gastrointestinal symptom. The methodological quality of the included trials was overall poor. Conclusion: Eucalyptus appears to be beneficial and safe for relieving in respiratory diseases focus on cough frequency. The evidence was inconclusive due to limited quality trial. Well-designed trials for evaluating the effectiveness in humans, the effectiveness for reducing cough symptom in human is needed. Eucalyptus had safety as monotherapy or in combination with other herbs.Keywords: cough, eucalyptus, cineole, herbal medicine, systematic review, meta-analysis
Procedia PDF Downloads 152138 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: active contour, Bayesian, echocardiographic image, feature vector
Procedia PDF Downloads 445