Search results for: engine fuel consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5113

Search results for: engine fuel consumption

1273 Effect of Fat Percentage and Prebiotic Composition on Proteolysis, ACE-Inhibitory and Antioxidant Activity of Probiotic Yogurt

Authors: Mohammad B. HabibiNajafi, Saeideh Sadat Fatemizadeh, Maryam Tavakoli

Abstract:

In recent years, the consumption of functional foods, including foods containing probiotic bacteria, has come to notice. Milk proteins have been identified as a source of angiotensin-I-converting enzyme )ACE( inhibitory peptides and are currently the best-known class of bioactive peptides. In this study, the effects of adding prebiotic ingredients (inulin and wheat fiber) and fat percentage (0%, 2% and 3.5%) in yogurt containing probiotic Lactobacillus casei on physicochemical properties, degree of proteolysis, antioxidant and ACE-inhibitory activity within 21 days of storage at 5 ± 1 °C were evaluated. The results of statistical analysis showed that the application of prebiotic compounds led to a significant increase in water holding capacity, proteolysis and ACE-inhibitory of samples. The degree of proteolysis in yogurt increases as storage time elapses (P < 0.05) but when proteolysis exceeds a certain threshold, this trend begins to decline. Also, during storage time, water holding capacity reduced initially but increased thereafter. Moreover, based on our findings, the survival of Lactobacillus casei in samples treated with inulin and wheat fiber increased significantly in comparison to the control sample (P < 0.05) whereas the effect of fat percentage on the survival of probiotic bacteria was not significant (P = 0.095). Furthermore, the effect of prebiotic ingredients and the presence of probiotic cultures on the antioxidant activity of samples was significant (P < 0.05).

Keywords: probiotic yogurt, proteolysis, ACE-inhibitory, antioxidant activity

Procedia PDF Downloads 239
1272 Large Scale Production of Polyhydroxyalkanoates (PHAs) from Waste Water: A Study of Techno-Economics, Energy Use, and Greenhouse Gas Emissions

Authors: Cora Fernandez Dacosta, John A. Posada, Andrea Ramirez

Abstract:

The biodegradable family of polymers polyhydroxyalkanoates are interesting substitutes for convectional fossil-based plastics. However, the manufacturing and environmental impacts associated with their production via intracellular bacterial fermentation are strongly dependent on the raw material used and on energy consumption during the extraction process, limiting their potential for commercialization. Industrial wastewater is studied in this paper as a promising alternative feedstock for waste valorization. Based on results from laboratory and pilot-scale experiments, a conceptual process design, techno-economic analysis and life cycle assessment are developed for the large-scale production of the most common type of polyhydroxyalkanoate, polyhydroxbutyrate. Intracellular polyhydroxybutyrate is obtained via fermentation of microbial community present in industrial wastewater and the downstream processing is based on chemical digestion with surfactant and hypochlorite. The economic potential and environmental performance results help identifying bottlenecks and best opportunities to scale-up the process prior to industrial implementation. The outcome of this research indicates that the fermentation of wastewater towards PHB presents advantages compared to traditional PHAs production from sugars because the null environmental burdens and financial costs of the raw material in the bioplastic production process. Nevertheless, process optimization is still required to compete with the petrochemicals counterparts.

Keywords: circular economy, life cycle assessment, polyhydroxyalkanoates, waste valorization

Procedia PDF Downloads 441
1271 Risk Analysis in Off-Site Construction Manufacturing in Small to Medium-Sized Projects

Authors: Atousa Khodadadyan, Ali Rostami

Abstract:

The objective of off-site construction manufacturing is to utilise the workforce and machinery in a controlled environment without external interference for higher productivity and quality. The usage of prefabricated components can save up to 14% of the total energy consumption in comparison with the equivalent number of cast-in-place ones. Despite the benefits of prefabrication construction, its current project practices encompass technical and managerial issues. Building design, precast components’ production, logistics, and prefabrication installation processes are still mostly discontinued and fragmented. Furthermore, collaboration among prefabrication manufacturers, transportation parties, and on-site assemblers rely on real-time information such as the status of precast components, delivery progress, and the location of components. From the technical point of view, in this industry, geometric variability is still prevalent, which can be caused during the transportation or production of components. These issues indicate that there are still many aspects of prefabricated construction that can be developed using disruptive technologies. Practical real-time risk analysis can be used to address these issues as well as the management of safety, quality, and construction environment issues. On the other hand, the lack of research about risk assessment and the absence of standards and tools hinder risk management modeling in prefabricated construction. It is essential to note that no risk management standard has been established explicitly for prefabricated construction projects, and most software packages do not provide tailor-made functions for this type of projects.

Keywords: project risk management, risk analysis, risk modelling, prefabricated construction projects

Procedia PDF Downloads 163
1270 Algorithms for Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs

Authors: M. K. Benhaoua, A. K. Singh, A. E. Benyamina, P. Boulet

Abstract:

Mapping parallelized tasks of applications onto these MPSoCs can be done either at design time (static) or at run-time (dynamic). Static mapping strategies find the best placement of tasks at design-time, and hence, these are not suitable for dynamic workload and seem incapable of runtime resource management. The number of tasks or applications executing in MPSoC platform can exceed the available resources, requiring efficient run-time mapping strategies to meet these constraints. This paper describes a new Spiral Dynamic Task Mapping heuristic for mapping applications onto NoC-based Heterogeneous MPSoC. This heuristic is based on packing strategy and routing Algorithm proposed also in this paper. Heuristic try to map the tasks of an application in a clustering region to reduce the communication overhead between the communicating tasks. The heuristic proposed in this paper attempts to map the tasks of an application that are most related to each other in a spiral manner and to find the best possible path load that minimizes the communication overhead. In this context, we have realized a simulation environment for experimental evaluations to map applications with varying number of tasks onto an 8x8 NoC-based Heterogeneous MPSoCs platform, we demonstrate that the new mapping heuristics with the new modified dijkstra routing algorithm proposed are capable of reducing the total execution time and energy consumption of applications when compared to state-of-the-art run-time mapping heuristics reported in the literature.

Keywords: multiprocessor system on chip, MPSoC, network on chip, NoC, heterogeneous architectures, run-time mapping heuristics, routing algorithm

Procedia PDF Downloads 480
1269 Significance of Water Saving through Subsurface Drip Irrigation for Date Palm Trees

Authors: Ahmed I. Al-Amoud

Abstract:

A laboratory and field study were conducted on subsurface drip irrigation systems. In the first laboratory study, eight subsurface drip irrigation lines available locally, were selected and a number of experiments were made to evaluate line hydraulic characteristics to insure it's suitability for drip irrigation design requirements and high performance to select the best for field experiments. The second study involves field trials on mature date palm trees to study the effect of subsurface drip irrigation system on the yield and water consumption of date palms, and to compare that with the traditional surface drip irrigation system. Experiments were conducted in Alwatania Agricultural Project, on 50 mature palm trees (17 years old) of Helwa type with 10 meters spacing between rows and between trees. A high efficiency subsurface line (Techline) was used based on the results of the first study. Irrigation scheduling was made through a soil moisture sensing device to ensure enough soil water levels in the soil. Experiment layouts were installed during 2001 season, measurements continued till end of 2008 season. Results have indicated that there is an increase in the yield and a considerable saving in water compared to the conventional drip irrigation method. In addition there were high increases in water use efficiency using the subsurface system. The subsurface system proves to be durable and highly efficient for irrigating date palm trees.

Keywords: drip irrigation, subsurface drip irrigation, date palm trees, date palm water use, date palm yield

Procedia PDF Downloads 419
1268 Unified Power Quality Conditioner Presentation and Dimensioning

Authors: Abderrahmane Kechich, Othmane Abdelkhalek

Abstract:

Static converters behave as nonlinear loads that inject harmonic currents into the grid and increase the consumption of the inactive power. On the other hand, the increased use of sensitive equipment requires the application of sinusoidal voltages. As a result, the electrical power quality control has become a major concern in the field of power electronics. In this context, the active power conditioner (UPQC) was developed. It combines both serial and parallel structures; the series filter can protect sensitive loads and compensate for voltage disturbances such as voltage harmonics, voltage dips or flicker when the shunt filter compensates for current disturbances such as current harmonics, reactive currents and imbalance. This double feature is that it is one of the most appropriate devices. Calculating parameters is an important step and in the same time it’s not easy for that reason several researchers based on trial and error method for calculating parameters but this method is not easy for beginners researchers especially what about the controller’s parameters, for that reason this paper gives a mathematical way to calculate of almost all of UPQC parameters away from trial and error method. This paper gives also a new approach for calculating of PI regulators parameters for purpose to have a stable UPQC able to compensate for disturbances acting on the waveform of line voltage and load current in order to improve the electrical power quality.

Keywords: UPQC, Shunt active filer, series active filer, PI controller, PWM control, dual-loop control

Procedia PDF Downloads 392
1267 Examining the Relationship Between Depression and Drug and Alcohol Use in Iran

Authors: Masoumeh Kazemi

Abstract:

Depression is one of the most common mental disorders that damage mental health. In addition to mental distress, mental health damage affects other dimensions of human health, including physical and social health. According to the national study of diseases and injuries in Iran, the third health problem of the country is depression. The purpose of this study was to measure the level of depression in people referred to Karaj psychiatric treatment centers, and to investigate the relationship between depression and drug and alcohol consumption. The statistical population included 5000 people. Morgan table was used to determine the sample size. The research questions sought to identify the relationship between depression and factors such as drug and alcohol use, employment and marital status, and gender. Beck standard questionnaire was used to collect complete information. Cronbach's alpha coefficient was used to confirm the reliability of the questionnaire. To test research hypotheses, non-parametric methods of correlation coefficient, Spearman's rank, Mann-Whitney and Kruskal-Wallis tests were used. The results of using SPSS statistical software showed that there is a direct relationship between depression and drug and alcohol use. Also, the rate of depression was higher in women, widows and unemployed people. Finally, by conducting the present study, it is suggested that people use the following treatments in combination for effective recovery: 1. Cognitive Behavioral Therapy (CBT) 2. Interpersonal Therapy (IPT) 3. Treatment with appropriate medication 4. Special light therapy 5. Electric shock treatment (in acute and exceptional cases) 6. Self-help

Keywords: alcohol, depression, drug, Iran

Procedia PDF Downloads 51
1266 Microwave Dielectric Properties and Microstructures of Nd(Ti₀.₅W₀.₅)O₄ Ceramics for Application in Wireless Gas Sensors

Authors: Yih-Chien Chen, Yue-Xuan Du, Min-Zhe Weng

Abstract:

Carbon monoxide is a substance produced by the incomplete combustion. It is toxic even at concentrations of less than 100ppm. Since it is colorless and odorless, it is difficult to detect. CO sensors have been developed using a variety of physical mechanisms, including semiconductor oxides, solid electrolytes, and organic semiconductors. Many works have focused on using semiconducting sensors composed of sensitive layers such as ZnO, TiO₂, and NiO with high sensitivity for gases. However, these sensors working at high temperatures increased their power consumption. On the other hand, the dielectric resonator (DR) is attractive for gas detection due to its large surface area and sensitivity for external environments. Materials that are to be employed in sensing devices must have a high-quality factor. Numerous researches into the fergusonite-type structure and related ceramic systems have explored. Extensive research into RENbO₄ ceramics has explored their potential application in resonators, filters, and antennas in modern communication systems, which are operated at microwave frequencies. Nd(Ti₀.₅W₀.₅)O₄ ceramics were synthesized herein using the conventional mixed-oxide method. The Nd(Ti₀.₅W₀.₅)O₄ ceramics were prepared using the conventional solid-state method. Dielectric constants (εᵣ) of 15.4-19.4 and quality factor (Q×f) of 3,600-11,100 GHz were obtained at sintering temperatures in the range 1425-1525°C for 4 h. The dielectric properties of the Nd(Ti₀.₅W₀.₅)O₄ ceramics at microwave frequencies were found to vary with the sintering temperature. For a further understanding of these microwave dielectric properties, they were analyzed by densification, X-ray diffraction (XRD), and by making microstructural observations.

Keywords: dielectric constant, dielectric resonators, sensors, quality factor

Procedia PDF Downloads 249
1265 Composition and Acaricidal Activity of Elettaria cardamomum Essential Oil Against Oligonychus afrasiaticus

Authors: Abid Hussain, Muhammad Rizwan-ul-Haq, Hassan Al-Ayedh, Ahmed M. Al-Jabr

Abstract:

Oligonychus afrasiaticus, is an important pest that devastates date palms (Phoenix dactylifera). They caused serious damage to date palm fruits. They start feeding on dates at Kimri stage (greenish color dates with high sugar and moisture level) resulting severe fruit losses and rendering them unfit for human consumption. Currently, acaricides are the only tool available to Saudi growers to prevent O. afrasiaticus damage. Many acaricides are available in the Saudi markets in order to control the mites on date palm trees but their efficacy against O. afrasiaticus is questionable. The intensive use of acaricides has led to resistance in many mite species around the globe and their control becomes exceedingly challenging. The current investigation explored for the first time the acaricidal potential of Elettaria cardamomum essential oil for the environmentally safe management of date mites in the laboratory. E. cardamomum exhibited acaricidal activities in a dose dependent manner. GC-MS fractionation of E. cardamomum detected numerous compounds. Among the identified compounds, Guaniol caused 100% mortality compared to other identified compounds including (+)-α-Pinene, Camphene, (-)-B-Pinene, 3-Carene, (R)-(+)-Limonene, and Citral. Our laboratory results showed that E. cardamomum and its constituents especially Guaniol are promising for the eco-friendly management of date mites, O. afrasiaticus, although their field efficacy remains to be evaluated.

Keywords: cardamom, old world date mite, natural acaricide, toxicity

Procedia PDF Downloads 305
1264 The Effects of Blanching, Boiling and Steaming on Ascorbic Acid Content, Total Phenolic Content, and Colour in Cauliflowers (Brassica oleracea var. Botrytis)

Authors: Huei Lin Lee, Wee Sim Choo

Abstract:

The effects of blanching, boiling and steaming on the ascorbic acid content, total phenolic content and colour in cauliflower (Brassica oleraceavar. Botrytis) was investigated. It was found that blanching was the best thermal processing to be applied on cauliflower compared to boiling and steaming processes. Blanching and steaming processes on cauliflower retained most of the ascorbic acid content (AAC) compared to those of boiling. As for the total phenolic content (TPC), blanching process retained a higher TPC in cauliflower compared to those of boiling and steaming processes. There were no significant differences between the TPC of boiled and steamed cauliflowers. As for the colour measurement, there were no significant differences in the colour of the cauliflower at different lead time (after processing to the point of consumption) of 30 minutes interval up to 3 hours but there were slight variations in L*, a*, and b* values among the thermal processed cauliflowers (blanched, boiled and steamed). The cauliflowers in this study were found to give a desirable white colour (L* value in the range of 77-83) in all the three thermal processes (blanching, boiling and steaming). There was no significant difference on the effect of lead time (30-minutes interval up to 3 hours) in raw and all the three thermal processed (blanched, boiled and steamed) cauliflowers.

Keywords: ascorbic acid, cauliflower, colour, phenolics

Procedia PDF Downloads 305
1263 Optimal Beam for Accelerator Driven Systems

Authors: M. Paraipan, V. M. Javadova, S. I. Tyutyunnikov

Abstract:

The concept of energy amplifier or accelerator driven system (ADS) involves the use of a particle accelerator coupled with a nuclear reactor. The accelerated particle beam generates a supplementary source of neutrons, which allows the subcritical functioning of the reactor, and consequently a safe exploitation. The harder neutron spectrum realized ensures a better incineration of the actinides. The almost generalized opinion is that the optimal beam for ADS is represented by protons with energy around 1 GeV (gigaelectronvolt). In the present work, a systematic analysis of the energy gain for proton beams with energy from 0.5 to 3 GeV and ion beams from deuteron to neon with energies between 0.25 and 2 AGeV is performed. The target is an assembly of metallic U-Pu-Zr fuel rods in a bath of lead-bismuth eutectic coolant. The rods length is 150 cm. A beryllium converter with length 110 cm is used in order to maximize the energy released in the target. The case of a linear accelerator is considered, with a beam intensity of 1.25‧10¹⁶ p/s, and a total accelerator efficiency of 0.18 for proton beam. These values are planned to be achieved in the European Spallation Source project. The energy gain G is calculated as the ratio between the energy released in the target to the energy spent to accelerate the beam. The energy released is obtained through simulation with the code Geant4. The energy spent is calculating by scaling from the data about the accelerator efficiency for the reference particle (proton). The analysis concerns the G values, the net power produce, the accelerator length, and the period between refueling. The optimal energy for proton is 1.5 GeV. At this energy, G reaches a plateau around a value of 8 and a net power production of 120 MW (megawatt). Starting with alpha, ion beams have a higher G than 1.5 GeV protons. A beam of 0.25 AGeV(gigaelectronvolt per nucleon) ⁷Li realizes the same net power production as 1.5 GeV protons, has a G of 15, and needs an accelerator length 2.6 times lower than for protons, representing the best solution for ADS. Beams of ¹⁶O or ²⁰Ne with energy 0.75 AGeV, accelerated in an accelerator with the same length as 1.5 GeV protons produce approximately 900 MW net power, with a gain of 23-25. The study of the evolution of the isotopes composition during irradiation shows that the increase in power production diminishes the period between refueling. For a net power produced of 120 MW, the target can be irradiated approximately 5000 days without refueling, but only 600 days when the net power reaches 1 GW (gigawatt).

Keywords: accelerator driven system, ion beam, electrical power, energy gain

Procedia PDF Downloads 129
1262 A Fast Method for Graphene-Supported Pd-Co Nanostructures as Catalyst toward Ethanol Oxidation in Alkaline Media

Authors: Amir Shafiee Kisomi, Mehrdad Mofidi

Abstract:

Nowadays, fuel cells as a promising alternative for power source have been widely studied owing to their security, high energy density, low operation temperatures, renewable capability and low environmental pollutant emission. The nanoparticles of core-shell type could be widely described in a combination of a shell (outer layer material) and a core (inner material), and their characteristics are greatly conditional on dimensions and composition of the core and shell. In addition, the change in the constituting materials or the ratio of core to the shell can create their special noble characteristics. In this study, a fast technique for the fabrication of a Pd-Co/G/GCE modified electrode is offered. Thermal decomposition reaction of cobalt (II) formate salt over the surface of graphene/glassy carbon electrode (G/GCE) is utilized for the synthesis of Co nanoparticles. The nanoparticles of Pd-Co decorated on the graphene are created based on the following method: (1) Thermal decomposition reaction of cobalt (II) formate salt and (2) the galvanic replacement process Co by Pd2+. The physical and electrochemical performances of the as-prepared Pd-Co/G electrocatalyst are studied by Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Cyclic Voltammetry (CV), and Chronoamperometry (CHA). Galvanic replacement method is utilized as a facile and spontaneous approach for growth of Pd nanostructures. The Pd-Co/G is used as an anode catalyst for ethanol oxidation in alkaline media. The Pd-Co/G not only delivered much higher current density (262.3 mAcm-2) compared to the Pd/C (32.1 mAcm-2) catalyst, but also demonstrated a negative shift of the onset oxidation potential (-0.480 vs -0.460 mV) in the forward sweep. Moreover, the novel Pd-Co/G electrocatalyst represents large electrochemically active surface area (ECSA), lower apparent activation energy (Ea), higher levels of durability and poisoning tolerance compared to the Pd/C catalyst. The paper demonstrates that the catalytic activity and stability of Pd-Co/G electrocatalyst are higher than those of the Pd/C electrocatalyst toward ethanol oxidation in alkaline media.

Keywords: thermal decomposition, nanostructures, galvanic replacement, electrocatalyst, ethanol oxidation, alkaline media

Procedia PDF Downloads 142
1261 Embracing Circular Economy: Unlocking Sustainable Growth in Emerging Markets

Authors: Mario Jose Paillacho Silva, José Ángel Pérez López

Abstract:

This article delves into the critical role of circular economy principles in unlocking sustainable growth and addressing environmental inequalities in emerging markets. Circular economy practices, rooted in regenerative systems and resource conservation, offer a transformative pathway for dynamic economies to achieve prosperity while minimizing environmental impact. The article comprehensively explores the understanding of the circular economy in emerging markets, emphasizing its economic benefits, social implications, and environmental advantages. It highlights key challenges and opportunities faced by these markets and emphasizes the crucial role of governments in creating supportive policy frameworks. It emphasizes how circular economy practices empower local communities and promote social inclusion and equality. Furthermore, the article underscores how the adoption of circular economy practices can mitigate waste, pollution, and resource scarcity, thus contributing to climate change mitigation and adaptation. Integrating circular economy principles with the United Nations' sustainable development goals (SDGs), the article showcases the potential of circularity in fostering responsible consumption and production, sustainable economic growth, and environmental protection. Overall, the article advocates for cross-sector collaboration and knowledge sharing to overcome barriers and scale circular economy practices in emerging markets, ultimately leading to a more equitable, prosperous, and environmentally sustainable future.

Keywords: circular economy, sustainability, emerging markets, circularity

Procedia PDF Downloads 61
1260 Pros and Cons of Different Types of Irrigation Systems for Date Palm Production in Sebha, Libya

Authors: Ahmad Aridah, Maria Fay Rola-Rubzen, Zora Singh

Abstract:

This study investigated the effectiveness of various types of irrigation systems in regards to the impact that these have on the productivity of date palms in the semi-arid and arid region of Sebha, Southwest Libya. The date palm is an economically important crop in Libya and contributes to the agriculture industry, foreign exchange earnings, farmers’ income, and employment in the country. The date palm industry relies on large amounts of water for growing the crop. Farmers in Southwest Libya use a variety of irrigation systems, but the quality and quantity of water varies between systems and this affects the productivity and income of farmers. Using survey data from 210 farmers, this study estimated and assessed the pros and cons of different types of irrigation systems for date palm production under various irrigation systems currently used in Sebha, Libya. The number of years farmers have used irrigation, the area, irrigation water consumption, time of irrigation, number of farm workers (including family labour) and inputs used were measured for surface, sprinkler and drip irrigation methods. Findings from this research provide new insights into the advantages and disadvantages of the various irrigation systems, problems encountered by farmers and the factors that affect the quality and quantity of the irrigation system. The paper discussed proposed solutions to deal with the problems including timing of irrigation, canal maintenance, repair of wells and water control.

Keywords: Libya, factors, irrigation method, date palm

Procedia PDF Downloads 329
1259 Simultaneous Determination of Six Characterizing/Quality Parameters of Biodiesels via 1H NMR and Multivariate Calibration

Authors: Gustavo G. Shimamoto, Matthieu Tubino

Abstract:

The characterization and the quality of biodiesel samples are checked by determining several parameters. Considering a large number of analysis to be performed, as well as the disadvantages of the use of toxic solvents and waste generation, multivariate calibration is suggested to reduce the number of tests. In this work, hydrogen nuclear magnetic resonance (1H NMR) spectra were used to build multivariate models, from partial least squares (PLS) regression, in order to determine simultaneously six important characterizing and/or quality parameters of biodiesels: density at 20 ºC, kinematic viscosity at 40 ºC, iodine value, acid number, oxidative stability, and water content. Biodiesels from twelve different oils sources were used in this study: babassu, brown flaxseed, canola, corn, cottonseed, macauba almond, microalgae, palm kernel, residual frying, sesame, soybean, and sunflower. 1H NMR reflects the structures of the compounds present in biodiesel samples and showed suitable correlations with the six parameters. The PLS models were constructed with latent variables between 5 and 7, the obtained values of r(cal) and r(val) were greater than 0.994 and 0.989, respectively. In addition, the models were considered suitable to predict all the six parameters for external samples, taking into account the analytical speed to perform it. Thus, the alliance between 1H NMR and PLS showed to be appropriate to characterize and evaluate the quality of biodiesels, reducing significantly analysis time, the consumption of reagents/solvents, and waste generation. Therefore, the proposed methods can be considered to adhere to the principles of green chemistry.

Keywords: biodiesel, multivariate calibration, nuclear magnetic resonance, quality parameters

Procedia PDF Downloads 527
1258 Nourishing the Hive: The Interplay of Nutrition, Gene Expression, and Queen Egg-Laying in Honeybee Colonies

Authors: Damien P. Fevre, Peter K. Dearden

Abstract:

Honeybee population sustainability is a critical concern for environmental stability and human food security. The success of a colony relies heavily on the egg-laying capacity of the queen, as it determines the production of thousands of worker bees who, in turn, perform essential functions in foraging and transforming food to make it digestible for the colony. The main sources of nutrition for honeybees are nectar, providing carbohydrates, and pollen, providing protein. This study delves into the impact of the proportion of these macronutrients on the food consumption patterns of nurse bees responsible for feeding the queen and how it affects the characteristics of the eggs produced. Using nutritional geometry, qRT-PCR, and RNA-seq analysis, this study sheds light on the pivotal role of nutrition in influencing gene expression in nurse bees, honeybee queen egg-laying capacity and embryonic development. Interestingly, while nutrition is crucial, the queen's genotype plays an even more significant role in this complex relationship, highlighting the importance of genotype-by-environment interactions. Understanding the interplay between genotype and nutrition is key to optimizing beekeeping management and strategic queen breeding practices. The findings from this study have significant implications for beekeeping practices, emphasizing the need for an appropriate nutrition to support the social nutrition of Apis mellifera. Implementing these insights can lead to improved colony health, increased productivity, and sustainable honeybee conservation efforts.

Keywords: honeybee, egg-laying, nutrition, transcriptomics

Procedia PDF Downloads 75
1257 Providing Reliability, Availability and Scalability Support for Quick Assist Technology Cryptography on the Cloud

Authors: Songwu Shen, Garrett Drysdale, Veerendranath Mannepalli, Qihua Dai, Yuan Wang, Yuli Chen, David Qian, Utkarsh Kakaiya

Abstract:

Hardware accelerator has been a promising solution to reduce the cost of cloud data centers. This paper investigates the QoS enhancement of the acceleration of an important datacenter workload: the webserver (or proxy) that faces high computational consumption originated from secure sockets layer (SSL) or transport layer security (TLS) procession in the cloud environment. Our study reveals that for the accelerator maintenance cases—need to upgrade driver/firmware or hardware reset due to hardware hang; we still can provide cryptography services by switching to software during maintenance phase and then switching back to accelerator after maintenance. The switching is seamless to server application such as Nginx that runs inside a VM on top of the server. To achieve this high availability goal, we propose a comprehensive fallback solution based on Intel® QuickAssist Technology (QAT). This approach introduces an architecture that involves the collaboration between physical function (PF) and virtual function (VF), and collaboration among VF, OpenSSL, and web application Nginx. The evaluation shows that our solution could provide high reliability, availability, and scalability (RAS) of hardware cryptography service in a 7x24x365 manner in the cloud environment.

Keywords: accelerator, cryptography service, RAS, secure sockets layer/transport layer security, SSL/TLS, virtualization fallback architecture

Procedia PDF Downloads 136
1256 Factors That Determine International Competitiveness of Agricultural Products in Latin America 1990-2020

Authors: Oluwasefunmi Eunice Irewole, Enrique Armas Arévalos

Abstract:

Agriculture has played a crucial role in the economy and the development of many countries. Moreover, the basic needs for human survival are; food, shelter, and cloth are link on agricultural production. Most developed countries see that agriculture provides them with food and raw materials for different goods such as (shelter, medicine, fuel and clothing) which has led to an increase in incomes, livelihoods and standard of living. This study aimed at analysing the relationship between International competitiveness of agricultural products, with the area, fertilizer, labour force, economic growth, foreign direct investment, exchange rate and inflation rate in Latin America during the period of 1991-to 2019. In this study, panel data econometric methods were used, as well as cross-section dependence (Pesaran test), unit root (cross-section Augumented Dickey Fuller and Cross-sectional Im, Pesaran, and Shin tests), cointergration (Pedroni and Fisher-Johansen tests), and heterogeneous causality (Pedroni and Fisher-Johansen tests) (Hurlin and Dumitrescu test). The results reveal that the model has cross-sectional dependency and that they are integrated at one I. (1). The "fully modified OLS and dynamic OLS estimators" were used to examine the existence of a long-term relationship, and it was found that a long-term relationship existed between the selected variables. The study revealed a positive significant relationship between International Competitiveness of the agricultural raw material and area, fertilizer, labour force, economic growth, and foreign direct investment, while international competitiveness has a negative relationship with the advantages of the exchange rate and inflation. The economy policy recommendations deducted from this investigation is that Foreign Direct Investment and the labour force have a positive contribution to the increase of International Competitiveness of agricultural products.

Keywords: revealed comparative advantage, agricultural products, area, fertilizer, economic growth, granger causality, panel unit root

Procedia PDF Downloads 91
1255 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building

Authors: Aaditya U. Jhamb

Abstract:

Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.

Keywords: energy efficient buildings, heating load, cooling load, machine learning models

Procedia PDF Downloads 85
1254 A Laboratory–Designed Activity in Ecology to Demonstrate the Allelopathic Property of the Philippine Chromolaena odorata L. (King and Robinson) Leaf Extracts

Authors: Lina T. Codilla

Abstract:

This study primarily designed a laboratory activity in ecology to demonstrate the allelopathic property of the Philippine Chromolaena odorata L. (hagonoy) leaf extracts to Lycopersicum esculentum (M), commonly known as tomatoes. Ethanol extracts of C. odorata leaves were tested on seed germination and seedling growth of L. esculentum in 7-day and 14-day observation periods. Analysis of variance and Tukey’s HSD post hoc test was utilized to determine differences among treatments while Pre–test – Post–test experimental design was utilized in the determination of the effectiveness of the designed laboratory activity. Results showed that the 0.5% concentration level of ethanol leaf extracts significantly inhibited germination and seedling growth of L. esculentum in both observation periods. These results were used as the basis in the development of instructional material in ecology. The laboratory activity underwent face validation by five (5) experts in various fields of specialization, namely, Biological Sciences, Chemistry and Science Education. The readability of the designed laboratory activity was determined using a Cloze Test. Pilot testing was conducted and showed that the laboratory activity developed is found to be a very effective tool in supplementing learning about allelopathy in ecology class. Thus, it is recommended for use among ecology classes but modification will be made in a small – scale basis to minimize time consumption.

Keywords: allelopathy, chromolaena odorata l. (hagonoy), designed-laboratory activity, organic herbicide students’ performance

Procedia PDF Downloads 280
1253 Building Information Modeling Acting as Protagonist and Link between the Virtual Environment and the Real-World for Efficiency in Building Production

Authors: Cristiane R. Magalhaes

Abstract:

Advances in Information and Communication Technologies (ICT) have led to changes in different sectors particularly in architecture, engineering, construction, and operation (AECO) industry. In this context, the advent of BIM (Building Information Modeling) has brought a number of opportunities in the field of the digital architectural design process bringing integrated design concepts that impact on the development, elaboration, coordination, and management of ventures. The project scope has begun to contemplate, from its original stage, the third dimension, by means of virtual environments (VEs), composed of models containing different specialties, substituting the two-dimensional products. The possibility to simulate the construction process of a venture in a VE starts at the beginning of the design process offering, through new technologies, many possibilities beyond geometrical digital modeling. This is a significant change and relates not only to form, but also to how information is appropriated in architectural and engineering models and exchanged among professionals. In order to achieve the main objective of this work, the Design Science Research Method will be adopted to elaborate an artifact containing strategies for the application and use of ICTs from BIM flows, with pre-construction cut-off to the execution of the building. This article intends to discuss and investigate how BIM can be extended to the site acting as a protagonist and link between the Virtual Environments and the Real-World, as well as its contribution to the integration of the value chain and the consequent increase of efficiency in the production of the building. The virtualization of the design process has reached high levels of development through the use of BIM. Therefore it is essential that the lessons learned with the virtual models be transposed to the actual building production increasing precision and efficiency. Thus, this paper discusses how the Fourth Industrial Revolution has impacted on property developments and how BIM could be the propellant acting as the main fuel and link between the virtual environment and the real production for the structuring of flows, information management and efficiency in this process. The results obtained are partial and not definite up to the date of this publication. This research is part of a doctoral thesis development, which focuses on the discussion of the impact of digital transformation in the construction of residential buildings in Brazil.

Keywords: building information modeling, building production, digital transformation, ICT

Procedia PDF Downloads 115
1252 Investigating the Critical Drivers of Behavior: The Case of Online Taxi Services

Authors: Rosa Hendijani, Mohammadhesam Hajighasemi

Abstract:

As of late, the sharing economy has become an important type of business model. Online taxi services are one example that has grown rapidly around the world. This study examines the factors influencing the use of online taxis as one form of IT-enabled sharing services based on the theory of planned behavior (TPB). Based on the theory of planned behavior, these factors can be divided into three categories, including the ones related to attitude (e.g., image and perceived usefulness), normative believes (e.g., subjective norms), and behavioral control (e.g., technology facilitating conditions and self-efficacy). Three other factors were also considered based on the literature, including perceived economic benefits, openness towards using shared services, and perceived availability. The effect of all these variables was tested both directly and indirectly through intention as the mediating variable. A survey method was used to test the research hypotheses. In total, 361 individuals partook in the study. The results of a multiple regression analysis on behavior showed that perceived economic benefits, compatibility, and subjective norms were important factors influencing behavior among online taxi users. In addition, intention partially mediated the effect of perceived economic benefits and compatibility on behavior. It can be concluded that perceived economic benefits, compatibility, and subjective norms are the three main factors that influence behavior among online taxi users.

Keywords: collaborative consumption, IT-enabled sharing services model, online taxi, sharing economy, theory of planned behavior

Procedia PDF Downloads 124
1251 Analysis of the Role of Creative Tourism in Sustainable Tourism Development Case Study: Isfahan City

Authors: Saman Shafei

Abstract:

Tourism has improved for several reasons, with the main objective of producing economic benefits, including foreign exchange earnings, income generation, employment, rising government incomes, and contributing to the financing of tourism infrastructure, which also has public consumption. Although today the interests of the tourism industry are not overlooked by anyone, the expansion and development of tourism services and products can make it competitive, and in this competition, those who bring creativity and diversity are ahead of other competitors. Developing creative tourism as third-generation tourism can help to attract visitors, increasing demand and diversifying it, achieving new markets and boosting growth. Creative tourism is a journey aimed at achieving a brand –new experience and is along with collaborative learning of arts, cultural heritage, or specific features of a place, and provides useful communication with the inhabitants of the tourism destination who is creators of the living culture of that place. The present study aims to identify and introduce the capabilities of the city of Isfahan in IRAN for the development of creative tourism and the role of creative tourism on the destination and the local community of this city. The research method is descriptive-analytical and field method, interviewing tool and questionnaire have been applied to obtain research findings. The results indicate that the city of Isfahan has the potential to develop creative tourism in the field of traditional handicrafts and traditional foods, and developing this kind of tourism will lead to the development of sustainable tourism in this destination and will bring numerous benefits for the local community.

Keywords: creative tourism, tourism, Isfahan city, sustainable tourism development

Procedia PDF Downloads 204
1250 Income and Factor Analysis of Small Scale Broiler Production in Imo State, Nigeria

Authors: Ubon Asuquo Essien, Okwudili Bismark Ibeagwa, Daberechi Peace Ubabuko

Abstract:

The Broiler Poultry subsector is dominated by small scale production with low aggregate output. The high cost of inputs currently experienced in Nigeria tends to aggravate the situation; hence many broiler farmers struggle to break-even. This study was designed to examine income and input factors in small scale deep liter broiler production in Imo state, Nigeria. Specifically, the study examined; socio-economic characteristics of small scale deep liter broiler producing Poultry farmers; estimate cost and returns of broiler production in the area; analyze input factors in broiler production in the area and examined marketability, age and profitability of the enterprise. A multi-stage sampling technique was adopted in selecting 60 small scale broiler farmers who use deep liter system from 6 communities through the use of structured questionnaire. The socioeconomic characteristics of the broiler farmers and the profitability/ marketability age of the birds were described using descriptive statistical tools such as frequencies, means and percentages. Gross margin analysis was used to analyze the cost and returns to broiler production, while Cobb Douglas production function was employed to analyze input factors in broiler production. The result of the study revealed that the cost of feed (P<0.1), deep liter material (P<0.05) and medication (P<0.05) had a significant positive relationship with the gross return of broiler farmers in the study area, while cost of labour, fuel and day old chicks were not significant. Furthermore, Gross profit margin of the farmers who market their broiler at the 8th week of rearing was 80.7%; and 78.7% and 60.8% for farmers who market at the 10th week and 12th week of rearing, respectively. The business is, therefore, profitable but at varying degree. Government and Development partners should make deliberate efforts to curb the current rise in the prices of poultry feeds, drugs and timber materials used as bedding so as to widen the profit margin and encourage more farmers to go into the business. The farmers equally need more technical assistance from extension agents with regards to timely and profitable marketing.

Keywords: broilers, factor analysis, income, small scale

Procedia PDF Downloads 64
1249 Towards the Enhancement of Thermoelectric Properties by Controlling the Thermoelectrical Nature of Grain Boundaries in Polycrystalline Materials

Authors: Angel Fabian Mijangos, Jaime Alvarez Quintana

Abstract:

Waste heat occurs in many areas of daily life because world’s energy consumption is inefficient. In general, generating 1 watt of power requires about 3 watt of energy input and involves dumping into the environment the equivalent of about 2 watts of power in the form of heat. Therefore, an attractive and sustainable solution to the energy problem would be the development of highly efficient thermoelectric devices which could help to recover this waste heat. This work presents the influence on the thermoelectric properties of metallic, semiconducting, and dielectric nanoparticles added into the grain boundaries of polycrystalline antimony (Sb) and bismuth (Bi) matrixes in order to obtain p- and n-type thermoelectric materials, respectively, by hot pressing methods. Results show that thermoelectric properties are significantly affected by the electrical and thermal nature as well as concentration of nanoparticles. Nevertheless, by optimizing the amount of the nanoparticles on the grain boundaries, an oscillatory behavior in ZT as function of the concentration of the nanoscale constituents is present. This effect is due to energy filtering mechanism which module the quantity of charge transport in the system and affects thermoelectric properties. Accordingly, a ZTmax can be accomplished through the addition of the appropriate amount of nanoparticles into the grain boundaries region. In this case, till three orders of amelioration on ZT is reached in both systems compared with the reference sample of each one. This approach paves the way to pursuit high performance thermoelectric materials in a simple way and opens a new route towards the enhancement of the thermoelectric figure of merit.

Keywords: energy filtering, grain boundaries, thermoelectric, nanostructured materials

Procedia PDF Downloads 245
1248 Feasibility Study for Implementation of Geothermal Energy Technology as a Means of Thermal Energy Supply for Medium Size Community Building

Authors: Sreto Boljevic

Abstract:

Heating systems based on geothermal energy sources are becoming increasingly popular among commercial/community buildings as management of these buildings looks for a more efficient and environmentally friendly way to manage the heating system. The thermal energy supply of most European commercial/community buildings at present is provided mainly by energy extracted from natural gas. In order to reduce greenhouse gas emissions and achieve climate change targets set by the EU, restructuring in the area of thermal energy supply is essential. At present, heating and cooling account for approx... 50% of the EU primary energy supply. Due to its physical characteristics, thermal energy cannot be distributed or exchange over long distances, contrary to electricity and gas energy carriers. Compared to electricity and the gas sectors, heating remains a generally black box, with large unknowns to a researcher and policymaker. Ain literature number of documents address policies for promoting renewable energy technology to facilitate heating for residential/community/commercial buildings and assess the balance between heat supply and heat savings. Ground source heat pump (GSHP) technology has been an extremely attractive alternative to traditional electric and fossil fuel space heating equipment used to supply thermal energy for residential/community/commercial buildings. The main purpose of this paper is to create an algorithm using an analytical approach that could enable a feasibility study regarding the implementation of GSHP technology in community building with existing fossil-fueled heating systems. The main results obtained by the algorithm will enable building management and GSHP system designers to define the optimal size of the system regarding technical, environmental, and economic impacts of the system implementation, including payback period time. In addition, an algorithm is created to be utilized for a feasibility study for many different types of buildings. The algorithm is tested on a building that was built in 1930 and is used as a church located in Cork city. The heating of the building is currently provided by a 105kW gas boiler.

Keywords: GSHP, greenhouse gas emission, low-enthalpy, renewable energy

Procedia PDF Downloads 207
1247 The Impact Of The Covid-19 Lockdown On Solid Waste Pollution And Environmental Hazard. A Blessing In Disguise? A Case Of Liberia

Authors: Eric Berry White

Abstract:

The paper examines the causality between solid waste pollution and lockdown. Particularly in 2020, the world experiences the takeover of the Corona virus pandemic, and most countries decided to adopt lockdown measure as the best solution to curtail the spread of the virus. On March 20, 2020, the Government of Liberia implemented a curfew that starts from 3:00PM to 6:00AM. This means that no unauthorized person is allowed to be in the streets during this time. In most developing countries, the issue of public waste and environmental hazard pollution tend to have a high effect among the slum communities where there are markets. This research covers 6 slums communities around the two biggest market hubs within Monrovia, and the result shows that the lockdown measure significantly reduced public waste pollution by reducing the movement of marketers in slum communities , where limited educational and sensitization for young people is reflected on their job market exclusion, jobless circle, and youth workforce concentration in informal work market. The study discovered that with public awareness and sensitization with females, solid waste could be reduced by 13 percentage point. But there is no evidence that awareness among male conduce pollution. within affected communities, Despite the impact of the lockdown on food consumption, these results emphasized that with the right monitoring of waste and aware, pollution could be reduce. By understanding these results and implementing the best policy, the paper recommends that dump sites be close at certain hours.

Keywords: lockdown, environmental, pollution, waste

Procedia PDF Downloads 66
1246 Catalytic Pyrolysis of Barley Straw for the Production of Fuels and Chemicals

Authors: Funda Ates

Abstract:

Primary energy sources, such as petroleum, coal and natural gas are principle responsible of world’s energy consumption. However, the rapid worldwide increase in the depletion of these energy sources is remarkable. In addition to this, they have damaging environmentally effect. Renewable energy sources are capable of providing a considerable fraction of World energy demand in this century. Biomass is one of the most abundant and utilized sources of renewable energy in the world. It can be converted into commercial fuels, suitable to substitute for fossil fuels. A high number of biomass types can be converted through thermochemical processes into solid, liquid or gaseous fuels. Pyrolysis is the thermal decomposition of biomass in the absence of air or oxygen. In this study, barley straw has been investigated as an alternative feedstock to obtain fuels and chemicals via pyrolysis in fixed-bed reactor. The influence of pyrolysis temperature in the range 450–750 °C as well as the catalyst effects on the products was investigated and the obtained results were compared. The results indicated that a maximum oil yield of 20.4% was obtained at a moderate temperature of 550 °C. Oil yield decreased by using catalyst. Pyrolysis oils were examined by using instrumental analysis and GC/MS. Analyses revealed that the pyrolysis oils were chemically very heterogeneous at all temperatures. It was determined that the most abundant compounds composing the bio-oil were phenolics. Catalyst decreased the reaction temperature. Most of the components obtained using a catalyst at moderate temperatures was close to those obtained at high temperatures without using a catalyst. Moreover, the use of a catalyst also decreased the amount of oxygenated compounds produced.

Keywords: Barley straw, pyrolysis, catalyst, phenolics

Procedia PDF Downloads 214
1245 Direct Oxidation Synthesis for a Dual-Layer Silver/Silver Orthophosphate with Controllable Tetrahedral Structure as an Active Photoanode for Solar-Driven Photoelectrochemical Water Splitting

Authors: Wen Cai Ng, Saman Ilankoon, Meng Nan Chong

Abstract:

The vast increase in global energy demand, coupled with the growing concerns on environmental issues, has triggered the search for cleaner alternative energy sources. In view of this, the photoelectrochemical (PEC) water splitting offers a sustainable hydrogen (H2) production route that only requires solar energy, water, and PEC system operating in an ambient environment. However, the current advancement of PEC water splitting technologies is still far from the commercialization benchmark indicated by the solar-to-H2 (STH) efficiency of at least 10 %. This is largely due to the shortcomings of photoelectrodes used in the PEC system, such as the rapid recombination of photogenerated charge carriers and limited photo-responsiveness in the visible-light spectrum. Silver orthophosphate (Ag3PO4) possesses many desirable intrinsic properties for the fabrication into photoanode used in PEC systems, such as narrow bandgap of 2.4 eV and low valence band (VB) position. Hence, in this study, a highly efficient Ag3PO4-based photoanode was synthesized and characterized. The surface of the Ag foil substrate was directly oxidized to fabricate a top layer composed of {111}-bound Ag3PO4 tetrahedrons layer with a porous structure, forming the dual-layer Ag/Ag3PO4 photoanode. Furthermore, the key synthesis parameters were systematically investigated by varying the concentration ratio of capping agent-to-precursor (R), the volume ratio of hydrogen peroxide (H2O2)-to-water, and reaction period. Results showed that the optimized dual-layer Ag/Ag3PO4 photoanode achieved a photocurrent density as high as 4.19 mA/cm2 at 1 V vs. Ag/AgCl for the R-value of 4, the volume ratio of H2O2-to-water of 3:5 and 20 h reaction period. The current work provides a solid foundation for further nanoarchitecture modification strategies on Ag3PO4-based photoanodes for more efficient PEC water splitting applications. This piece of information needs to be backed up by evidence; therefore, you need to provide a reference. As the abstract should be self-contained, all information requiring a reference should be removed. This is a fact known to the area of research, and not necessarily required a reference to support.

Keywords: solar-to-hydrogen fuel, photoelectrochemical water splitting, photoelectrode, silver orthophosphate

Procedia PDF Downloads 112
1244 Stimulation of Stevioside Accumulation on Stevia rebaudiana (Bertoni) Shoot Culture Induced with Red LED Light in TIS RITA® Bioreactor System

Authors: Vincent Alexander, Rizkita Esyanti

Abstract:

Leaves of Stevia rebaudiana contain steviol glycoside which mainly comprise of stevioside, a natural sweetener compound that is 100-300 times sweeter than sucrose. Current cultivation method of Stevia rebaudiana in Indonesia has yet to reach its optimum efficiency and productivity to produce stevioside as a safe sugar substitute sweetener for people with diabetes. An alternative method that is not limited by environmental factor is in vitro temporary immersion system (TIS) culture method using recipient for automated immersion (RITA®) bioreactor. The aim of this research was to evaluate the effect of red LED light induction towards shoot growth and stevioside accumulation in TIS RITA® bioreactor system, as an endeavour to increase the secondary metabolite synthesis. The result showed that the stevioside accumulation in TIS RITA® bioreactor system induced with red LED light for one hour during night was higher than that in TIS RITA® bioreactor system without red LED light induction, i.e. 71.04 ± 5.36 μg/g and 42.92 ± 5.40 μg/g respectively. Biomass growth rate reached as high as 0.072 ± 0.015/day for red LED light induced TIS RITA® bioreactor system, whereas TIS RITA® bioreactor system without induction was only 0.046 ± 0.003/day. Productivity of Stevia rebaudiana shoots induced with red LED light was 0.065 g/L medium/day, whilst shoots without any induction was 0.041 g/L medium/day. Sucrose, salt, and inorganic consumption in both bioreactor media increased as biomass increased. It can be concluded that Stevia rebaudiana shoot in TIS RITA® bioreactor induced with red LED light produces biomass and accumulates higher stevioside concentration, in comparison to bioreactor without any light induction.

Keywords: LED, Stevia rebaudiana, Stevioside, TIS RITA

Procedia PDF Downloads 357