Search results for: water jacket
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8452

Search results for: water jacket

4642 Resolution Method for Unforeseen Ground Condition Problem Case in Coal Fired Steam Power Plant Project Location Adipala, Indonesia

Authors: Andi Fallahi, Bona Ryan Situmeang

Abstract:

The Construction Industry is notoriously risky. Much of the preparatory paperwork that precedes construction project can be viewed as the formulation of risk allocation between the owner and the Contractor. The Owner is taking the risk that his project will not get built on the schedule that it will not get built for what he has budgeted and that it will not be of the quality he expected. The Contractor Face a multitude of risk. One of them is an unforeseen condition at the construction site. The Owner usually has the upper hand here if the unforeseen condition occurred. Site data contained in Ground Investigation report is often of significant contractual importance in disputes related to the unforeseen ground condition. A ground investigation can never fully disclose all the details of the underground condition (Risk of an unknown ground condition can never be 100% eliminated). Adipala Coal Fired Steam Power Plant (CSFPP) 1 x 660 project is one of the large CSFPP project in Indonesia based on Engineering, Procurement, and Construction (EPC) Contract. Unforeseen Ground Condition it’s responsible by the Contractor has stipulated in the clausal of Contract. In the implementation, there’s indicated unforeseen ground condition at Circulating Water Pump House (CWPH) area which caused the Contractor should be changed the Method of Work that give big impact against Time of Completion and Cost Project. This paper tries to analyze the best way for allocating the risk between The Owner and The Contractor. All parties that allocating of sharing risk fairly can ultimately save time and money for all parties, and get the job done on schedule for the least overall cost.

Keywords: unforeseen ground condition, coal fired steam power plant, circulating water pump house, Indonesia

Procedia PDF Downloads 313
4641 An Ultrasonic Approach to Investigate the Effect of Aeration on Rheological Properties of Soft Biological Materials with Bubbles Embedded

Authors: Hussein M. Elmehdi

Abstract:

In this paper, we present the results of our recent experiments done to examine the effect of air bubbles, which were introduced to bio-samples during preparation, on the rheological properties of soft biological materials. To effectively achieve this, we three samples each prepared with differently. Our soft biological systems comprised of three types of flour dough systems made from different flour varieties with variable protein concentrations. The samples were investigated using ultrasonic waves operated at low frequency in transmission mode. The sample investigated included dough made from bread flour, wheat flour and all-purpose flour. During mixing, the main ingredient of the samples (the flour) was transformed into cohesive dough comprised of the continuous dough matrix and air pebbles. The rheological properties of such materials determine the quality of the end cereal product. Two ultrasonic parameters, the longitudinal velocity and attenuation coefficient were found to be very sensitive to properties such as the size of the occluded bubbles, and hence have great potential of providing quantitative evaluation of the properties of such materials. The results showed that the magnitudes of the ultrasonic velocity and attenuation coefficient peaked at optimum mixing times; the latter of which is taken as an indication of the end of the mixing process. There was an agreement between the results obtained by conventional rheology and ultrasound measurements, thus showing the potential of the use of ultrasound as an on-line quality control technique for dough-based products. The results of this work are explained with respect to the molecular changes occurring in the dough system as the mixing process proceeds; particular emphasis is placed on the presence of free water and bound water.

Keywords: ultrasound, soft biological materials, velocity, attenuation

Procedia PDF Downloads 258
4640 Exploring the Optimum Temperature and Diet for Growth and Gastric Emptying Time of Juvenile Malabar Blood Snapper (Lutjanus malabaricus)

Authors: Sabuj Kanti Mazumder, Mazlan Abd Ghaffar, Simon Kumar Das

Abstract:

In this study, we analyzed the effects of water temperature and diet on the growth properties and gastric emptying period of juvenile Malabar blood snapper (Lutjanus malabaricus) over a 30day experimental period. Fish were collected from a local hatchery of Pulau Ketam, Selangor, Malaysia and immediately transferred to flow-through sea water system and subjected to four different temperatures (22, 26, 30, and 34 °C) and two diets (formulated pellet and shrimp). Body weight gain, food consumption, food conversion ratio, food consumption efficiency, specific growth rate, relative growth rate, daily growth rate, and gastric emptying period were significantly influenced by temperature and diet (P<0.05). The best food conversion ratio was with the shrimp group recorded at 30°C (1.33±0.08). The highest growth rate was observed in the shrimp group at 30°C (3.97±0.57% day-1), and the lowest was observed in the formulated pellet group at 22°C (1.63±0.29% day-1). No significant difference was observed between the groups subjected to temperatures of 26 and 30°C. Similarly, the lowest gastric emptying period was detected in the shrimp group at 30°C (16h), where the proportion of meal residues in the stomach decreased from 100% to less than 8% after 12h of starvation. A significantly longer gastric emptying period was observed in the formulated pellet group at 22°C (28h). Overall, the best results were observed on shrimp group subjected to a 30°C temperature. The data obtained from this study suggest that a shrimp diet fed on L. malabaricus at 30°C will optimize the commercial production of this commercially important fish species.

Keywords: aquaculture, diet, digestion rate, growth, Malabar blood snapper

Procedia PDF Downloads 265
4639 Pickering Dry Emulsion System for Dissolution Enhancement of Poorly Water Soluble Drug (Fenofibrate)

Authors: Nitin Jadhav, Pradeep R. Vavia

Abstract:

Poor water soluble drugs are difficult to promote for oral drug delivery as they demonstrate poor and variable bioavailability because of its poor solubility and dissolution in GIT fluid. Nowadays lipid based formulations especially self microemulsifying drug delivery system (SMEDDS) is found as the most effective technique. With all the impressive advantages, the need of high amount of surfactant (50% - 80%) is the major drawback of SMEDDS. High concentration of synthetic surfactant is known for irritation in GIT and also interference with the function of intestinal transporters causes changes in drug absorption. Surfactant may also reduce drug activity and subsequently bioavailability due to the enhanced entrapment of drug in micelles. In chronic treatment these issues are very conspicuous due to the long exposure. In addition the liquid self microemulsifying system also suffers from stability issues. Recently one novel approach of solid stabilized micro and nano emulsion (Pickering emulsion) has very admirable properties such as high stability, absence or very less concentration of surfactant and easily converts into the dry form. So here we are exploring pickering dry emulsion system for dissolution enhancement of anti-lipemic, extremely poorly water soluble drug (Fenofibrate). Oil moiety for emulsion preparation was selected mainly on the basis of higher solubility of drug. Captex 300 was showed higher solubility for fenofibrate, hence selected as oil for emulsion. With Silica (solid stabilizer); Span 20 was selected to improve the wetting property of it. Emulsion formed by Silica and Span20 as stabilizer at the ratio 2.5:1 (silica: span 20) was found very stable at the particle size 410 nm. The prepared emulsion was further preceded for spray drying and formed microcapsule evaluated for in-vitro dissolution study, in-vivo pharmacodynamic study and characterized for DSC, XRD, FTIR, SEM, optical microscopy etc. The in vitro study exhibits significant dissolution enhancement of formulation (85 % in 45 minutes) as compared to plain drug (14 % in 45 minutes). In-vivo study (Triton based hyperlipidaemia model) exhibits significant reduction in triglyceride and cholesterol with formulation as compared to plain drug indicating increasing in fenofibrate bioavailability. DSC and XRD study exhibit loss of crystallinity of drug in microcapsule form. FTIR study exhibit chemical stability of fenofibrate. SEM and optical microscopy study exhibit spherical structure of globule coated with solid particles.

Keywords: captex 300, fenofibrate, pickering dry emulsion, silica, span20, stability, surfactant

Procedia PDF Downloads 486
4638 Synthesis and Characterization of High-Aspect-Ratio Hematite Nanostructures for Solar Water Splitting

Authors: Paula Quiterio, Arlete Apolinario, Celia T. Sousa, Joao Azevedo, Paula Dias, Adelio Mendes, Joao P. Araujo

Abstract:

Nowadays one of the mankind's greatest challenges has been the supply of low-cost and environmentally friendly energy sources as an alternative to non-renewable fossil fuels. Hydrogen has been considered a promising solution, representing a clean and low-cost fuel. It can be produced directly from clean and abundant resources, such as sunlight and water, using photoelectrochemical cells (PECs), in a process that mimics the nature´s photosynthesis. Hematite (alpha-Fe2O3) has attracted considerable attention as a promising photoanode for solar water splitting, due to its high chemical stability, nontoxicity, availability and low band gap (2.2 eV), which allows reaching a high thermodynamic solar-to-hydrogen efficiency of 16.8 %. However, the main drawbacks of hematite such as the short hole diffusion length and the poor conductivity that lead to high electron-hole recombination result in significant PEC efficiency losses. One strategy to overcome these limitations and to increase the PEC efficiency is to use 1D nanostructures, such as nanotubes (NTs) and nanowires (NWs), which present high aspect ratios and large surface areas providing direct pathways for electron transport up to the charge collector and minimizing the recombination losses. In particular, due to the ultrathin walls of the NTs, the holes can reach the surface faster than in other nanostructures, representing a key factor for the NTs photoresponse. In this work, we prepared hematite NWs and NTs, respectively by hydrothermal process and electrochemical anodization. For hematite NWs growing, we studied the effect of variable hydrothermal conditions, different annealing temperatures and time, and the use of Ti and Sn dopants on the morphology and PEC performance. The crystalline phase characterization by X-ray diffraction was crucial to distinguish the formation of hematite and other iron oxide phases, alongside its effect on the photoanodes conductivity and consequent PEC efficiency. The conductivity of the as-prepared NWs is very low, in the order of 10-5 S cm-1, but after doping and annealing optimization it increased by a factor of 105. A high photocurrent density of 1.02 mA cm-2 at 1.45 VRHE was obtained under simulated sunlight, which is a very promising value for this kind of hematite nanostructures. The stability of the photoelectrodes was also tested, presenting good stability after several J-V measurements over time. The NTs, synthesized by fast anodizations with potentials ranging from 20-100 V, presented a linear growth of the NTs pore walls, with very low thicknesses from 10 - 18 nm. These preliminary results are also very promising for the use of hematite photoelectrodes on PEC hydrogen applications.

Keywords: hematite, nanotubes, nanowires, photoelectrochemical cells

Procedia PDF Downloads 207
4637 The Relationship between Demographic, Social and Economic Characteristics and the Level of Implementation of Rural Women’s Practices to Preserve the Environment in the Governorates of Sharkia and Beni Suef

Authors: Asmaa Ahmed Nasr El-Din

Abstract:

The Egyptian countryside faces many environmental problems in the field of environmental pollution in a wide range due to the current bad behavior patterns towards the environment, where the rural people continued to follow unconscious environmental practices in addition to the lack of environmental awareness among the rural people in terms of legislation, and the damages resulting from those practices. Rural women play an important and vital role that cannot be neglected in the field of reducing environmental pollution and rationalizing environmental resources, and it is their responsibility to maintain the safety of environmental elements such as water, air, food, and soil from pollution, either through limiting their personal practice that leads to the pollution of these elements or from During the upbringing of her children on the right behaviors towards these elements to protect them from pollution and thus avoid the infection of family members with diseases arising from environmental pollution that may affect their health and production capacity. Therefore, the research aimed to identify the level of rural women’s implementation of environmental practices (land, water, air, public health, and food waste), as well as determining the nature of the relationship between the studied independent variables (demographic, social and economic characteristics) and the level of rural women’s implementation of their role in preserving the environment and identifying some women’s information sources rural environment to preserve the environment. The research was conducted in the villages of Tarout and Qam al-Arous in the governorates of Sharkia and BeniSuef, respectively, and a random sample of 333 rural women was selected using the Yamani equation. Statistical ratio analysis, arithmetic mean, Pearson simple correlation coefficient value, and T-test.

Keywords: environment, rural women, EL-sharkia, banuef

Procedia PDF Downloads 86
4636 Anticancer Effect of Resveratrol-Loaded Gelatin Nanoparticles in NCI-H460 Non-Small Cell Lung Carcinoma Cell Lines

Authors: N. Rajendra Prasad

Abstract:

Resveratrol (RSV), a grape phytochemical, has drawn greater attention because of its beneficial ef-fects against cancer. However, RSV has some draw-backs such as unstabilization, poor water solubility and short biological half time, which limit the utili-zation of RSV in medicine, food and pharmaceutical industries. In this study, we have encapsulated RSV in gelatin nanoparticles (GNPs) and studied its anti-cancer efficacy in NCI-H460 lung cancer cells. SEM and DLS studies have revealed that the prepared RSV-GNPs possess spherical shape with a mean diameter of 294 nm. The successful encapsulation of RSV in GNPs has been achieved by the cross-linker glutaraldehyde probably through Schiff base reaction and hydrogen bond interaction. Spectrophotometric analysis revealed that the max-imum of 93.6% of RSV has been entrapped in GNPs. In vitro drug release kinetics indicated that there was an initial burst release followed by a slow and sustained release of RSV from GNPs. The prepared RSV-GNPs exhibited very rapid and more efficient cellular uptake than free RSV. Further, RSV-GNPs treatment showed greater antiproliferative efficacy than free RSV treatment in NCI-H460 cells. It has been found that greater ROS generation, DNA damage and apoptotic incidence in RSV-GNPs treated cells than free RSV treatment. Erythrocyte aggregation assay showed that the prepared RSV-GNPs formulation elicit no toxic response. HPLC analysis revealed that RSV-GNPs was more bioavailable and had a longer half-life than free RSV. Hence, GNPs carrier system might be a promising mode for controlled delivery and for improved therapeutic index of poorly water soluble RSV.

Keywords: resveratrol, coacervation, anticancer gelatin nanoparticles, lung cancer, controlled release

Procedia PDF Downloads 432
4635 Assessment of Amphibian Diversity and Status of Their Habitats through Physico-Chemical Parameters in Sindh, Pakistan

Authors: Kalsoom Shaikh, Ghulam Sarwar Gachal, Saima Memon

Abstract:

Our study aimed to assess diversity and habitats of amphibian fauna in Sindh province as amphibians are among most vulnerable animals and the risk of their extinction is increasing in many parts of world mainly due to habitat degradation. Present study consisted of field surveys and laboratory analytical work; field surveys were carried out to confirm amphibian diversity and collection of water samples from their habitats, whereas laboratory work was conducted for identification of species and analysis of water quality of habitats through physico-chemical parameters. For identification of amphibian species, morphology was thoroughly examined using taxonomic key, whereas water quality was assessed via physico-chemical parameters including pH, electric conductivity (EC), total dissolved solids (TDS), total hardness (T. Hard), total alkalinity (T. Alk), chloride (Cl), carbon dioxide (CO₂), sulfate (SO₄), phosphate (PO₄), nitrite (NO₂) and nitrate (NO₃) using material and methods of analytical grade. pH value was analyzed using pH meter, whereas levels of EC and TDS were recorded using conductivity meter and TDS meter, respectively. Other parameters with exception of non-metallic parameters (SO₄, PO₄, NO₂, and NO₃) were analyzed through distinct titration methods. Concentration of non-metallic parameters was evaluated using ultra-violet spectrophotometer. This study revealed existence of four amphibian species including Hoplobatrachus tigerinus, Euphlyctis cyanophlyctis, Allopa hazarensis belonging to Family Ranidae and Bufo stomaticus (Family Bufonidae) randomly distributed in district Ghotki, Jamshoro, Kashmor, Larkana, Matiari and Shikarpur in Sindh. Assessment of aquatic habitats in different areas found value of parameters as followed: Habitats in district Ghoki (pH: 7.8 ± 0.3, EC: 2165.3 ± 712.6, TDS: 1507.0 ± 413.1, T-Hard: 416.4 ± 67.5, T. Alk: 393.4 ± 78.4, Cl: 362.4 ± 70.1, CO₂: 21.1 ± 3.5, SO₄: 429.3 ± 100.1, PO₄: 487.5 ± 122.5, NO₂: 13.7 ± 1.0, NO₃: 14.7 ± 2.5), district Jamshoro habitats (pH: 8.1 ± 0.4, EC: 2403.8 ± 55.4, TDS: 1697.2 ± 77.0, T. Hard: 548.7 ± 43.2, T. Alk: 294.4 ± 29.0, Cl: 454.7 ± 50.8 CO₂: 16.9 ± 2.4, SO₄: 713.0 ± 49.3, PO₄: 826.2 ± 53.0, NO₂: 15.2 ± 3.4, NO₃: 21.6 ± 3.7), habitats in Kashmor district (pH: 8.0 ± 0.5, EC: 2450.3 ± 610.9, TDS: 1745.3 ± 440.9, T. Hard: 624.6 ± 305.8, T. Alk: 445.7 ± 120.5, Cl: 448.9 ± 128.8, CO₂: 18.9 ± 4.5, SO₄: 619.8 ± 205.8, PO₄: 474.1 ± 94.2, NO₂: 15.2 ± 3.1, NO₃ 14.3 ± 2.6), district Larkana habitats (pH: 8.4 ± 0.4, EC: 2555.8 ± 70.3, TDS: 1784.4 ± 36.9, T. Hard: 623.0 ± 42.5, T. Alk: 329.6 ± 36.7, Cl: 614.3 ± 89.5, CO₂: 17.6 ± 1.2, SO₄: 845.1 ± 67.6, PO₄: 895.0 ± 61.4, NO₂: 13.6 ± 3.8, NO₃: 23.1 ± 2.8), district Matiari habitats (pH: 8.0 ± 0.4 EC: 2492.3 ± 928.1, TDS: 430.0 ± 161.3, T. Hard: 396.7 ± 183.3, T. Alk: 388.1 ± 97.4, Cl: 551.6 ± 73.4, CO₂: 15.8 ± 2.9, SO₄: 576.5 ± 200.0, PO₄: 434.7 ± 100.6, NO₂: 15.8 ± 2.9, NO₃: 15.2 ± 3.0) and habitats in Shikarpur district (pH: 8.1 ± 0.6, EC: 2191.7 ± 765.1, TDS: 1764.9 ± 409.2, T. Hard: 431.9 ± 68.4,T. Alk: 350.3 ± 44.3, Cl: 381.5 ± 29.5, CO₂: 18.0 ± 4.0, SO₄: 518.8 ± 97.9, PO₄: 493.6 ± 64.6, NO₂: 14.0 ± 0.8, NO₃: 16.1 ± 2.8). Values of physico-chemical parameters were found higher than permissible level of Environmental Protectiona Agency (EPA). Monthly variation in concentration of physico-chemical parameters was also prominently recorded at all the study locals. This study discovered poor diversity of amphibian fauna and condition of their habitats was also observed as pitiable. This study established base line information that may be used in execution of an effective management plan and future monitoring of amphibian diversity and their habitats in Sindh.

Keywords: amphibians, diversity, habitats, Pakistan, Sindh

Procedia PDF Downloads 143
4634 Hydrological Challenges and Solutions in the Nashik Region: A Multi Tracer and Geochemistry Approach to Groundwater Management

Authors: Gokul Prasad, Pennan Chinnasamy

Abstract:

The degradation of groundwater resources, attributed to factors such as excessive abstraction and contamination, has emerged as a global concern. This study delves into the stable isotopes of water) in a hard-rock aquifer situated in the Upper Godavari watershed, an agriculturally rich region in India underlain by Basalt. The higher groundwater draft (> 90%) poses significant risks; comprehending groundwater sources, flow patterns, and their environmental impacts is pivotal for researchers and water managers. The region has faced five droughts in the past 20 years; four are categorized as medium. The recharge rates are variable and show a very minimum contribution to groundwater. The rainfall pattern shows vast variability, with the region receiving seasonal monsoon rainfall for just four months and the rest of the year experiencing minimal rainfall. This research closely monitored monsoon precipitation inputs and examined spatial and temporal fluctuations in δ18O and δ2H in both groundwater and precipitation. By discerning individual recharge events during monsoons, it became possible to identify periods when evaporation led to groundwater quality deterioration, characterized by elevated salinity and stable isotope values in the return flow. The locally derived meteoric water line (LMWL) (δ2H = 6.72 * δ18O + 1.53, r² = 0.6) provided valuable insights into the groundwater system. The leftward shift of the Nashik LMWL in relation to the GMWL and LMWL indicated groundwater evaporation (-33 ‰), supported by spatial variations in electrical conductivity (EC) data. Groundwater in the eastern and northern watershed areas exhibited higher salinity > 3000uS/cm, expanding > 40% of the area compared to the western and southern regions due to geological disparities (alluvium vs basalt). The findings emphasize meteoric precipitation as the primary groundwater source in the watershed. However, spatial variations in isotope values and chemical constituents indicate other contributing factors, including evaporation, groundwater source type, and natural or anthropogenic (specifically agricultural and industrial) contaminants. Therefore, the study recommends focused hydro geochemistry and isotope analysis in areas with strong agricultural and industrial influence for the development of holistic groundwater management plans for protecting the groundwater aquifers' quantity and quality.

Keywords: groundwater quality, stable isotopes, salinity, groundwater management, hard-rock aquifer

Procedia PDF Downloads 33
4633 A Study of Influence of Freezing on Mechanical Properties of Tendon Fascicles

Authors: Martyna Ekiert, Andrzej Mlyniec

Abstract:

Tendons are the biological structures, which primary function is to transfer force generated by muscles to the bones. Unfortunately, damages of tendons are also one of the most common injuries of the human musculoskeletal system. For the most severe cases of tendon rupture, such as the tear of calcaneus tendon or anterior cruciate ligament of the knee, a surgical procedure is the only possible way of full recovery. Tendons used as biological grafts are usually subjected to the process of deep freezing and subsequent thawing. This, in particular for multiple freezing/thawing cycles, may result in changes of tendon internal structure causing deterioration of mechanical properties of the tissue. Therefore, studies on the influence of freezing on tendons biomechanics, including internal water content in soft tissue, seems to be greatly needed. An experimental study of the influence of freezing on mechanical properties of the tendon was performed on fascicles samples dissected form bovine flexor tendons. The preparation procedure was performed with the presence of 0.9% saline solution in order to prevent an excessive tissue drying. All prepared samples were subjected to the different number of freezing/thawing cycles. For freezing part of the protocol we used -80°C temperature while for slow thawing we used fridge temperature (4°C) combined with equalizing temperatures in the standard state (25°C). After final thawing, the mechanical properties of each sample was examined using cyclic loading test. Our results may contribute for better understanding of negative effects of soft tissues freezing, resulting from abnormal thermal expansion of water. This also may help to determine the limit of freezing/thawing cycles disqualifying tissue for surgical purposes and thus help optimize tissues storage conditions.

Keywords: freezing, soft tissue, tendon, bovine fascicles

Procedia PDF Downloads 196
4632 Effect of Irrigation Regime and Plant Density on Chickpea (Cicer arietinum L.) Yield in a Semi-Arid Environment

Authors: Atif Naim, Faisal E. Ahmed, Sershen

Abstract:

A field experiment was conducted for two consecutive winter seasons at the Demonstration Farm of the Faculty of Agriculture, University of Khartoum, Sudan, to study effects of different levels of irrigation regime and plant density on yield of introduced small seeded (desi type) chickpea cultivar (ILC 482). The experiment was laid out in a 3X3 factorial split-plot design with 4 replications. The treatments consisted of three irrigation regimes (designated as follows: I1 = optimum irrigation, I2 = moderate stress and I3 = severe stress; this corresponded with irrigation after drainage of 50%, 75% and 100% of available water based on 70%, 60% and 50% of field capacity, respectively) assigned as main plots and three plant densities (D₁=20, D₂= 40 and D₃= 60 plants/m²) assigned as subplots. The results indicated that the yield components (number of pods per plant, number of seeds per pod, 100 seed weight), seed yield per plant, harvest index and yield per unit area of chickpea were significantly (p < 0.05) affected by irrigation regime. Decreasing irrigation regime significantly (p < 0.05) decreased all measured parameters. Alternatively, increasing plant density significantly (p < 0.05) decreased the number of pods and seed yield per plant and increased seed yield per unit area. While number of seeds per pod and harvest index were not significantly (p > 0.05) affected by plant density. Interaction between irrigation regime and plant density was also significantly (p < 0.05) affected all measured parameters of yield, except for harvest index. It could be concluded that the best irrigation regime was full irrigation (after drainage of 50% available water at 70% field capacity) and the optimal plant density was 20 plants/m² under conditions of semi-arid regions.

Keywords: irrigation regime, Cicer arietinum, chickpea, plant density

Procedia PDF Downloads 203
4631 Assessment of Estrogenic Contamination and Potential Risk in Taihu Lake, China

Authors: Guanghua Lu, Zhenhua Yan

Abstract:

To investigate the estrogenic contamination and potential risk of Taihu Lake, eight active biomonitoring points in the northern section of Taihu Lake were set up and located in Wangyuhe River outlet (P1), Gonghu Bay (P2 and P3), Meiliang Bay (P4 and P5), Zhushan Bay (P6 and P7) and Lake Centre (P8). A suite of biomarkers in caged fish after in situ exposure for 28 days, coupled with six selected exogenous estrogens in water, were determined in May and December 2011. Six target estrogens, namely estrone (E1), 17b-estradiol (E2), ethinylestradiol (EE2), estriol (E3), diethylstilbestrol (DES) and bisphenol A (BPA), were quantified using UPLC/MS/MS. The concentrations of E1, E2, E3, EE2, DES and BPA ranged from ND to 3.61 ng/L, ND to 17.3 ng/L, ND to 1.65 ng/L, ND to 10.2 ng/L, ND to 34.6 ng/L, and 3.95 to 207 ng/L, respectively. BPA was detected at all sampling points at all test periods, E2 was detected at 95% of samples, E1 and EE2 was detected at 75% of samples, and E3 was detected only in December 2011 with quite low concentrations. Each individual estrogen concentration measured at each sampling point was multiplied by its relative potency to gain the estradiol equivalent (EEQ). The total EEQ values in all the monitoring points ranged from 5.69 to 17.8 ng/L in May 2011, and from 4.46 to 21.1 ng/L in December 2011. E2 and EE2 were thought to be the major causal agents responsible for the estrogenic activities. Serum vitellogenin and E2 levels, gonadal DNA damage, and gonadosomatic index were measured in the in situ exposed fish. An enhanced integrated biomarker response (EIBR) was calculated and used to evaluate potential feminization risk of fish in the polluted area of Taihu Lake. EIBR index showed good agreement with the observed total EEQ levels in water. Our results indicated that Gong bay and the lake center had a low estrogenic risk, whereas Wangyuhe River, Meiliang Bay, and Zhushan Bay might present a higher risk to fish.

Keywords: active biomonitoring, estrogen, feminization risk, Taihu Lake

Procedia PDF Downloads 263
4630 Chitosan Stabilized Oil-in-Water Pickering Emulsion Optimized for Food-Grade Application

Authors: Ankit Patil, Tushar D. Deshpande, Yogesh M. Nimdeo

Abstract:

Pickering emulsions (PE) were developed in response to increased demand for organic, eco-friendly, and biocompatible products. These emulsions are usually stabilized by solid particles. In this research, we created chitosan-based sunflower oil-in-water (O/W) PE without the need for a surfactant. In our work, we employed chitosan, a biopolymer derived from chitin, as a stabilizer. This decision was influenced by chitosan's biocompatibility and biodegradability, as well as its anti-inflammatory and antibacterial capabilities. It also has other functional properties, such as antioxidant activity, a probiotic delivery mechanism, and the ability to encapsulate bioactive compounds. The purpose of this study was to govern key parameters that can be changed to obtain stable PE, such as the concentration of chitosan (0.3-0.5 wt.%), the concentration of oil (0.8-1 vol%), the pH of the emulsion (3-7) manipulated by the addition of 1M HCl/ 4M NaOH, and the amount of electrolyte (NaCl-0-300mM) added to increase or decrease ionic strength. A careful combination of these properties resulted in the production of the most stable and optimal PE. Particle size study found that emulsions with pH 6, 0.4% chitosan, and 300 mM salts were exceptionally stable, with droplet size 886 nm, PI of 0.1702, and zeta potential of 32.753.83 mV. It is fair to infer that when ionic strength rises, particle size, zeta potential, and PI value decrease. A lower PI value suggests that emulsion nanoparticles are more homogeneous. The addition of sodium chloride increases the ionic strength of the emulsion, facilitating the formation of more compact and ordered particle layers. These findings provide light on the creation of stimulus-responsive chitosan-based PE capable of encapsulating bioactive materials, functioning as antioxidants, and serving as food-grade emulsifiers.

Keywords: pickering emulsion, biocompatibility, eco-friendly, chitosan

Procedia PDF Downloads 216
4629 Composite Coatings of Piezoelectric Quartz Sensors Based on Viscous Sorbents and Casein Micelles

Authors: Shuba Anastasiia, Kuchmenko Tatiana, Umarkhanov Ruslan

Abstract:

The development of new sensitive coatings for sensors is one of the key directions in the development of sensor technologies. Recently, there has been a trend towards the creation of multicomponent coatings for sensors, which make it possible to increase the sensitivity, and specificity, and improve the performance properties of sensors. When analyzing samples with a complex matrix of biological origin, the inclusion of micelles of bioactive substances (amino and nucleic acids, peptides, proteins) in the composition of the sensor coating can also increase useful analytical information. The purpose of this work is to evaluate the analytical characteristics of composite coatings of piezoelectric quartz sensors based on medium-molecular viscous sorbents with incorporated micellar casein concentrate during the sorption of vapors of volatile organic compounds. The sorption properties of the coatings were studied by piezoelectric quartz microbalance. Macromolecular compounds (dicyclohexyl-18-crown-6, triton X-100, lanolin, micellar casein concentrate) were used as sorbents. Highly volatile organic compounds of various classes (alcohols, acids, aldehydes, esters) and water were selected as test substances. It has been established that composite coatings of sensors with the inclusion of micellar casein are more stable and selective to vapors of highly volatile compounds than to water vapors. The method and technique of forming a composite coating using molecular viscous sorbents do not affect the kinetic features of VOC sorption. When casein micelles are used, the features of kinetic sorption depend on the matrix of the coating.

Keywords: piezoquartz sensor, viscous sorbents, micellar casein, coating, volatile compounds

Procedia PDF Downloads 84
4628 An Advanced Method of Plant Preservation and Colour Retention of Herbarium Specimens

Authors: Abduraheem K., Suboohi Nasrin

Abstract:

Herbaria are specimens of preserved plants, which are very delicate and cellulosic in nature. While these collections are very useful for the enrichment of knowledge and are considered as natural heritage of our entire world, it is very important to preserve and conserve them. The significance is not only to prevent the herbaria from the deterioration of biological agencies but also to preserve its colours and retain natural colour. Colour is not only characteristic of a plant, but it can also help to identify closely related species or to distinguish a plant from a collection of herbaria. Keeping this in mind, a selective solution has been prepared for the conservation and preservation of herbarium in the present study. In this, the quantity of all the selected chemicals, i.e., formaldehyde and copper sulphate was kept constant, and the solution was prepared by dissolving it in distilled water by increasing the amount of picric acid (1, 2, 3, 4, and 5 ml). Fresh specimens of roses and bougainvillea were washed with distilled water and kept in the above solution for 10 to 15 minutes at room temperature. After 10 minutes, the specimen was removed from the solution, dried with the help of paper, and then pressed under the plant press. Blotting sheets were used to absorb the moisture content and were changed every 2 to 3 days to protect against fungal growth. The results revealed that all solutions had insecticidal properties and protected the herbarium specimen against pests. While in the case of colour retention, solution-1 and 2 were not satisfactory colour preservation, and solutions-3 and 5 maintained the colour of rose and bougainvillea leaves for 15 to 20 days and for a month, respectively. After that, the colour begins to fade, and the process is faster in rose leaves than in bougainvillea. And it was also observed that the colour of young leaves started to fade before that of older leaves. When the leaves of rose and bougainvillea are treated with Solution-4, then the colour of rose leaves is maintained for six months.

Keywords: solutions, colour retention, preservation and conservation, leaves of roses and bougainvillea

Procedia PDF Downloads 75
4627 Marginalized Children's Drawings Speak for Themselves: Self Advocacy for Protecting Their Rights

Authors: Bhavneet Bharti, Prahbhjot Malhi, Vandana Thakur

Abstract:

Introduction: Children of the urban migrant laborers have great difficulty in accessing government programs which are otherwise routinely available in rural settings. These include programs for child care, nutrition, health and education. There are major communicative fault-lines preventing advocacy for these marginalized children. The overarching aim of this study was to investigate the role of an innovative strategy of children’s drawings in supporting communication between children, social workers, pediatricians and other child advocates to fulfil their fundamental child rights. Materials and Methods: The data was collected over a period of one-year April 2015 to April 2016 during the routine visits by the members of the Social Pediatrics team including a social worker, pediatricians and an artist to the makeshift colony of migrant laborers. Once a week a drawing session was organized where the children including adolescents were asked to any drawing and provide a narrative thereafter. 5-30 children attended these weekly sessions for one year. All these drawings were then classified into various themes and exhibited on 16th April 2016 in the Govt. College of Art Museum. The forum was used for advocacy of Child Rights of these underprivileged children to Secretary social welfare. Results: Mean (SD) age of children in present observational study was 8.5 (2.5) years, with 60% of the boys. Majority of children demonstrated themes which were local and contextualized to their daily needs, threats and festivals which clearly underscored their fundamental right to basic services and equality of opportunities to achieve their full development Drawings of tap with flowing water, queues of people collecting water from hand pumps reflect the local problem of water availability for these children. Young children talking about fear of rape and murder following their drawings indicate the looming threat of potential abuse and neglect. Besides reality driven drawing, children also echoed supernatural beliefs, dangers and festivities in their drawings. Anyone who watched these children at work with art materials was able to see the intense level of absorption, clearly indicating the enjoyment they received, making it a meaningful activity. Indeed, this self-advocacy through art exhibition led to the successful establishment of mobile Anganwadi (A social safety net programme of the government) in their area of stay. Conclusions: This observational study is an example of how children were able to do self-advocacy to protect their rights. Of particular importance, these drawings address how psychologists and other child advocates can ensure in a child-centered manner that the voice of children is heard and represented in all assessments of their well-being and future care options.

Keywords: child advocacy, children drawings, child rights, marginalized children

Procedia PDF Downloads 159
4626 Design of an Innovative Geothermal Heat Pump with a PCM Thermal Storage

Authors: Emanuele Bonamente, Andrea Aquino

Abstract:

This study presents an innovative design for geothermal heat pumps with the goal of maximizing the system efficiency (COP - Coefficient of Performance), reducing the soil use (e.g. length/depth of geothermal boreholes) and initial investment costs. Based on experimental data obtained from a two-year monitoring of a working prototype implemented for a commercial building in the city of Perugia, Italy, an upgrade of the system is proposed and the performance is evaluated via CFD simulations. The prototype was designed to include a thermal heat storage (i.e. water), positioned between the boreholes and the heat pump, acting as a flywheel. Results from the monitoring campaign show that the system is still capable of providing the required heating and cooling energy with a reduced geothermal installation (approx. 30% of the standard length). In this paper, an optimization of the system is proposed, re-designing the heat storage to include phase change materials (PCMs). Two stacks of PCMs, characterized by melting temperatures equal to those needed to maximize the system COP for heating and cooling, are disposed within the storage. During the working cycle, the latent heat of the PCMs is used to heat (cool) the water used by the heat pump while the boreholes independently cool (heat) the storage. The new storage is approximately 10 times smaller and can be easily placed close to the heat pump in the technical room. First, a validation of the CFD simulation of the storage is performed against experimental data. The simulation is then used to test possible alternatives of the original design and it is finally exploited to evaluate the PCM-storage performance for two different configurations (i.e. single- and double-loop systems).

Keywords: geothermal heat pump, phase change materials (PCM), energy storage, renewable energies

Procedia PDF Downloads 295
4625 Interference of Polymers Addition in Wastewaters Microbial Survey: Case Study of Viral Retention in Sludges

Authors: Doriane Delafosse, Dominique Fontvieille

Abstract:

Background: Wastewater treatment plants (WWTPs) generally display significant efficacy in virus retention yet, are sometimes highly variable, partly in relation to large fluctuating loads at the head of the plant and partly because of episodic dysfunctions in some treatment processes. The problem is especially sensitive when human enteric viruses, such as human Noroviruses Genogroup I or Adenoviruses, are in concern: their release downstream WWTP, in environments often interconnected to recreational areas, may be very harmful to human communities even at low concentrations. It points out the importance of WWTP permanent monitoring from which their internal treatment processes could be adjusted. One way to adjust primary treatments is to add coagulants and flocculants to sewage ahead settling tanks to improve decantation. In this work, sludge produced by three coagulants (two organics, one mineral), four flocculants (three cationic, one anionic), and their combinations were studied for their efficacy in human enteric virus retention. Sewage samples were coming from a WWTP in the vicinity of the laboratory. All experiments were performed three times and in triplicates in laboratory pilots, using Murine Norovirus (MNV-1), a surrogate of human Norovirus, as an internal control (spiking). Viruses were quantified by (RT-)qPCR after nucleic acid extraction from both treated water and sediment. Results: Low values of sludge virus retention (from 4 to 8% of the initial sewage concentration) were observed with each cationic organic flocculant added to wastewater and no coagulant. The largest part of the virus load was detected in the treated water (48 to 90%). However, it was not counterbalancing the amount of the introduced virus (MNV-1). The results pertained to two types of cationic flocculants, branched and linear, and in the last case, to two percentages of cations. Results were quite similar to the association of a linear cationic organic coagulant and an anionic flocculant, though suggesting that differences between water and sludges would sometimes be related to virus size or virus origins (autochthonous/allochthonous). FeCl₃, as a mineral coagulant associated with an anionic flocculant, significantly increased both auto- and allochthonous virus retention in the sediments (15 to 34%). Accordingly, virus load in treated water was lower (14 to 48%) but with a total that still does not reach the amount of the introduced virus (MNV-1). It also appeared that the virus retrieval in a bare 0.1M NaCl suspension varied rather strongly according to the FeCl₃ concentration, suggesting an inhibiting effect on the molecular analysis used to detect the virus. Finally, no viruses were detected in both phases (sediment and water) with the combination branched cationic coagulant-linear anionic flocculant, which was later demonstrated as an effect, here also, of polymers on the virus detection-molecular analysis. Conclusions: The combination of FeCl₃-anionic flocculant gave its highest performance to the decantation-based virus removal process. However, large unbalanced values in spiking experiments were observed, suggesting that polymers cast additional obstacles to both elution buffer and lysis buffer on their way to reach the virus. The situation was probably even worse with autochthonous viruses already embedded into sewage's particulate matter. Polymers and FeCl₃ also appeared to interfere in some steps of molecular analyses. More attention should be paid to such impediments wherever chemical additives are considered to be used to enhance WWTP processes. Acknowledgments: This research was supported by the ABIOLAB laboratory (Montbonnot Saint-Martin, France) and by the ASPOSAN association. Field experiments were possible thanks to the Grand Chambéry WWTP authorities (Chambéry, France).

Keywords: flocculants-coagulants, polymers, enteric viruses, wastewater sedimentation treatment plant

Procedia PDF Downloads 100
4624 A Simple Model for Solar Panel Efficiency

Authors: Stefano M. Spagocci

Abstract:

The efficiency of photovoltaic panels can be calculated with such software packages as RETScreen that allow design engineers to take financial as well as technical considerations into account. RETScreen is interfaced with meteorological databases, so that efficiency calculations can be realistically carried out. The author has recently contributed to the development of solar modules with accumulation capability and an embedded water purifier, aimed at off-grid users such as users in developing countries. The software packages examined do not allow to take ancillary equipment into account, hence the decision to implement a technical and financial model of the system. The author realized that, rather than re-implementing the quite sophisticated model of RETScreen - a mathematical description of which is anyway not publicly available - it was possible to drastically simplify it, including the meteorological factors which, in RETScreen, are presented in a numerical form. The day-by-day efficiency of a photovoltaic solar panel was parametrized by the product of factors expressing, respectively, daytime duration, solar right ascension motion, solar declination motion, cloudiness, temperature. For the sun-motion-dependent factors, positional astronomy formulae, simplified by the author, were employed. Meteorology-dependent factors were fitted by simple trigonometric functions, employing numerical data supplied by RETScreen. The accuracy of our model was tested by comparing it to the predictions of RETScreen; the accuracy obtained was 11%. In conclusion, our study resulted in a model that can be easily implemented in a spreadsheet - thus being easily manageable by non-specialist personnel - or in more sophisticated software packages. The model was used in a number of design exercises, concerning photovoltaic solar panels and ancillary equipment like the above-mentioned water purifier.

Keywords: clean energy, energy engineering, mathematical modelling, photovoltaic panels, solar energy

Procedia PDF Downloads 33
4623 Remote Sensing of Urban Land Cover Change: Trends, Driving Forces, and Indicators

Authors: Wei Ji

Abstract:

This study was conducted in the Kansas City metropolitan area of the United States, which has experienced significant urban sprawling in recent decades. The remote sensing of land cover changes in this area spanned over four decades from 1972 through 2010. The project was implemented in two stages: the first stage focused on detection of long-term trends of urban land cover change, while the second one examined how to detect the coupled effects of human impact and climate change on urban landscapes. For the first-stage study, six Landsat images were used with a time interval of about five years for the period from 1972 through 2001. Four major land cover types, built-up land, forestland, non-forest vegetation land, and surface water, were mapped using supervised image classification techniques. The study found that over the three decades the built-up lands in the study area were more than doubled, which was mainly at the expense of non-forest vegetation lands. Surprisingly and interestingly, the area also saw a significant gain in surface water coverage. This observation raised questions: How have human activities and precipitation variation jointly impacted surface water cover during recent decades? How can we detect such coupled impacts through remote sensing analysis? These questions led to the second stage of the study, in which we designed and developed approaches to detecting fine-scale surface waters and analyzing coupled effects of human impact and precipitation variation on the waters. To effectively detect urban landscape changes that might be jointly shaped by precipitation variation, our study proposed “urban wetscapes” (loosely-defined urban wetlands) as a new indicator for remote sensing detection. The study examined whether urban wetscape dynamics was a sensitive indicator of the coupled effects of the two driving forces. To better detect this indicator, a rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. Three SPOT images for years 1992, 2008, and 2010, respectively were classified with this technique to generate the four types of land cover as described above. The spatial analyses of remotely-sensed wetscape changes were implemented at the scales of metropolitan, watershed, and sub-watershed, as well as based on the size of surface water bodies in order to accurately reveal urban wetscape change trends in relation to the driving forces. The study identified that urban wetscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds in response to human impacts at different scales. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while generally smaller wetlands decreased mainly due to human development activities. These results confirm that wetscape dynamics can effectively reveal the coupled effects of human impact and climate change on urban landscapes. As such, remote sensing of this indicator provides new insights into the relationships between urban land cover changes and driving forces.

Keywords: urban land cover, human impact, climate change, rule-based classification, across-scale analysis

Procedia PDF Downloads 294
4622 Impact of the 2015 Drought on Rural Livelihood – a Case Study of Masurdi Village in Latur District of Maharashtra, India

Authors: Nitin Bhagat

Abstract:

Drought is a global phenomenon. It has a huge impact on agriculture and allied sector activities. Agriculture plays a substantial role in the economy of developing countries, which mainly depends on rainfall. The present study illustrates the drought conditions in Masurdi village of Latur district in the Marathwada region, Maharashtra. This paper is based on both primary as well as secondary data sources. The multistage sample method was used for primary data collection. The 100 households sample survey data has been collected from the village through a semi-structured questionnaire. The crop production data is collected from the Department of Agriculture, Government of Maharashtra. The rainfall data is obtained from the Department of Revenue, Office of Divisional Commissioner, Aurangabad for the period from 1988 to 2018. This paper examines the severity of drought consequences of the 2015 drought on domestic water supply, crop production, and the effect on children's schooling, livestock assets, bank credit, and migration. The study also analyzed climate variables' impact on the Latur district's total food grain production for 19 years from 2000 to 2018. This study applied multiple regression analysis to check the relationship between climatic variables and the Latur district's total food grain production. The climate variables are annual rainfall, maximum temperature and minimum temperature. The study considered that climatic variables are independent variables and total food grain as the dependent variable. It shows there is a significant relationship between rainfall and maximum temperature. The study also calculated rainfall deviations to find out the drought and normal years. According to drought manual 2016, the rainfall deviation calculated using the following formula. RF dev = {(RFi – RFn) / RFn}*100.Approximately 27.43 % of the workforce migrated from rural to urban areas for searching jobs, and crop production decreased tremendously due to inadequate rainfall in the drought year 2015. Many farm and non-farm labor, some marginal and small cultivators, migrated from rural to urban areas (like Pune, Mumbai, and Western Maharashtra).About 48 % of the households' children faced education difficulties; in the drought period, children were not going to school. They left their school and joined to bring water with their mother and fathers, sometimes they fetched water on their head or using a bicycle, near about 2 km from the village. In their school-going days, drinking water was not available in their schools, so the government declared holidays early in the academic education year 2015-16 compared to another academic year. Some college and 10th class students left their education due to financial problems. Many households benefited from state government schemes, like drought subsidies, crop insurance, and bank loans. Out of 100 households, about 50 (50 %) have obtained financial support from the state government’s subsidy scheme, 58 ( 58 %) have got crop insurance, and 41(41 %) irrigated households have got bank loans from national banks; besides that, only two families have obtained loans from their relatives and moneylenders.

Keywords: agriculture, drought, household, rainfall

Procedia PDF Downloads 161
4621 Systems Lens: Towards Sustainable Management of Maintenance and Renewal of Wire-Based Infrastructure: The Case of Water Network in the City of Linköping, Sweden

Authors: E. Hegazy, S. Anderberg, J. Krook

Abstract:

The city's wire-based infrastructure systems (WBIS) are responsible for the delivery of electricity, telecommunications, sanitation, drainage, and district heating and are a necessity for sustainable modern urban life. Maintaining the functionality of these structures involves high costs and, brings disturbance to the local community and effects on the environment. One key reason for this is that the cables and pipes are placed under streets, making system parts easily worn and their service lifetime reduced, and all maintenance and renewal rely on recurrent needs for excavation. In Sweden, a significant part of wire-based infrastructure is already outdated and will need to be replaced in the coming decades. The replacement of these systems will entail massive costs as well as important traffic disruption and environmental disturbance. However, this challenge may also open a unique opportunity to introduce new, more sustainable technologies and management practices. The transformation of WBIS management for long-term sustainability and meeting maintenance and renewal needs does not have a comprehensive approach. However, a systemic approach may inform WBIS management. This approach considers both technical and non-technical aspects, as well as time-related factors. Nevertheless, there is limited systemic knowledge of how different factors influence current management practices. The aim of this study is to address this knowledge gap and contribute to the understanding of what factors influence the current practice of WBIS management. A case study approach is used to identify current management practices, the underlying factors that influence them, and their implications for sustainability outcomes. The case study is based on both quantitative data on the local system and data from interviews and workshops with local practitioners and other stakeholders. Linköping was selected as a case since it provided good accessibility to the water administration and relevant data for analyzing water infrastructure management strategies. It is a sufficiently important city in Sweden to be able to identify challenges, which, to some extent, are common to all Swedish cities. By uncovering current practices and what is influencing Linköping, knowledge gaps and uncertainties related to sustainability consequences were highlighted. The findings show that goals, priorities, and policies controlling management are short-termed, and decisions on maintenance and renewal are often restricted to finding solutions to the most urgent issues. Sustainability transformation in the infrastructure area will not be possible through individual efforts without coordinated technical, organizational, business, and regulatory changes.

Keywords: case study, infrastructure, management, practice, Sweden

Procedia PDF Downloads 66
4620 Finite Element Model to Investigate the Dynamic Behavior of Ring-Stiffened Conical Shell Fully and Partially Filled with Fluid

Authors: Mohammadamin Esmaeilzadehazimi, Morteza Shayan Arani, Mohammad Toorani, Aouni Lakis

Abstract:

This study uses a hybrid finite element method to predict the dynamic behavior of both fully and partially-filled truncated conical shells stiffened with ring stiffeners. The method combines classical shell theory and the finite element method, and employs displacement functions derived from exact solutions of Sanders' shell equilibrium equations for conical shells. The shell-fluid interface is analyzed by utilizing the velocity potential, Bernoulli's equation, and impermeability conditions to determine an explicit expression for fluid pressure. The equations of motion presented in this study apply to both conical and cylindrical shells. This study presents the first comparison of the method applied to ring-stiffened shells with other numerical and experimental findings. Vibration frequencies for conical shells with various boundary conditions and geometries in a vacuum and filled with water are compared with experimental and numerical investigations, achieving good agreement. The study thoroughly investigates the influence of geometric parameters, stiffener quantity, semi-vertex cone angle, level of water filled in the cone, and applied boundary conditions on the natural frequency of fluid-loaded ring-stiffened conical shells, and draws some useful conclusions. The primary advantage of the current method is its use of a minimal number of finite elements while achieving highly accurate results.

Keywords: finite element method, fluid–structure interaction, conical shell, natural frequency, ring-stiffener

Procedia PDF Downloads 54
4619 Inactivation Kinetics of DNA and RNA Viruses by Ozone-Air Mixture in a Flow Mixer

Authors: Nikolai Nosik, Vladislav Podmasterjev, Nina Kondrashina, Marina Chataeva, Olga Lobach, Dmitry Noosik, Sergei Razumovskii

Abstract:

Virucidal activity of ozone is well known: dissolved in water it kill viruses very fast. The virucidal capacity of ozone in ozone-air mixture is less known. The goal of the study was to investigate the virucidal potentials of the ozone–air mixture and kinetics of virus inactivation. Materials and methods. Ozone (O3 ) was generated from oxygen with ozonizer ( 1.0 – 75.0 mg\l). The ozone concentration was determined by the spectrophotometric methods. Virus contaminated samples were placed into the flowing reactor. Viruses: poliovirus type 1, vaccine strain (Sabin) and adenovirus, type 5, were obtained from the State virus collection. Titrations of viruses were carried out in appropriate cell cultures. CxT value ( mg\l x min) was calculated. Results. Metallic, polycarbonic and fiber “Kevlar” samples were contaminated with virus, dried and treated with ozone-air mixture in the flowing reactor. Kinetics of poliovirus inactivation: in 15 min at 5.0 mg\l -2.0 lg TCID50 inhibition , in 15 min at 10 mg\l – 2.5 lg TCID50 , 4.0 lg TCID50 inactivation of poliovirus was achieved after 75min at ozone concentration 20.0mg\l (99.99%). ( CxT = 75, 150 and 1500 mg\l x min on all three types of surfaces). It was found that the inactivation of poliovirus was more effective when the virus contaminated samples were wet (in 15 min at 20mg\l inhibition of virus in dry samples was 2.0 TCID50 , in wet samples – 4.0 TCID50). Adenovirus was less resistant to ozone treatment then poliovirus: 4.0 lg TCID50 inhibition was observed after 30 min of the treatment with ozone at 20mg\l ( CxT mg\l x min = 300 for adenovirus as for poliovirus it was 1500). Conclusion. It was found that ozone-air mixture inactivates viruses at rather high concentrations (compared to the reported effect of ozone dissolved in water). Despite of that there is a difference in the resistance to ozone action between viruses – poliovirus is more resistant then adenovirus-ozone-air mixture can be used for disinfection of large rooms. The maintaining of the virus-contaminated surfaces in wet condition allow to decrease the ozone load for virus inactivation.

Keywords: adenovirus, disinfection, ozone, poliovirus

Procedia PDF Downloads 330
4618 Landscape Pattern Evolution and Optimization Strategy in Wuhan Urban Development Zone, China

Authors: Feng Yue, Fei Dai

Abstract:

With the rapid development of urbanization process in China, its environmental protection pressure is severely tested. So, analyzing and optimizing the landscape pattern is an important measure to ease the pressure on the ecological environment. This paper takes Wuhan Urban Development Zone as the research object, and studies its landscape pattern evolution and quantitative optimization strategy. First, remote sensing image data from 1990 to 2015 were interpreted by using Erdas software. Next, the landscape pattern index of landscape level, class level, and patch level was studied based on Fragstats. Then five indicators of ecological environment based on National Environmental Protection Standard of China were selected to evaluate the impact of landscape pattern evolution on the ecological environment. Besides, the cost distance analysis of ArcGIS was applied to simulate wildlife migration thus indirectly measuring the improvement of ecological environment quality. The result shows that the area of land for construction increased 491%. But the bare land, sparse grassland, forest, farmland, water decreased 82%, 47%, 36%, 25% and 11% respectively. They were mainly converted into construction land. On landscape level, the change of landscape index all showed a downward trend. Number of patches (NP), Landscape shape index (LSI), Connection index (CONNECT), Shannon's diversity index (SHDI), Aggregation index (AI) separately decreased by 2778, 25.7, 0.042, 0.6, 29.2%, all of which indicated that the NP, the degree of aggregation and the landscape connectivity declined. On class level, the construction land and forest, CPLAND, TCA, AI and LSI ascended, but the Distribution Statistics Core Area (CORE_AM) decreased. As for farmland, water, sparse grassland, bare land, CPLAND, TCA and DIVISION, the Patch Density (PD) and LSI descended, yet the patch fragmentation and CORE_AM increased. On patch level, patch area, Patch perimeter, Shape index of water, farmland and bare land continued to decline. The three indexes of forest patches increased overall, sparse grassland decreased as a whole, and construction land increased. It is obvious that the urbanization greatly influenced the landscape evolution. Ecological diversity and landscape heterogeneity of ecological patches clearly dropped. The Habitat Quality Index continuously declined by 14%. Therefore, optimization strategy based on greenway network planning is raised for discussion. This paper contributes to the study of landscape pattern evolution in planning and design and to the research on spatial layout of urbanization.

Keywords: landscape pattern, optimization strategy, ArcGIS, Erdas, landscape metrics, landscape architecture

Procedia PDF Downloads 141
4617 Land Cover Change Analysis Using Remote Sensing

Authors: Tahir Ali Akbar, Hirra Jabbar

Abstract:

Land cover change analysis plays a significant role in understanding the trends of urban sprawl and land use transformation due to anthropogenic activities. In this study, the spatio-temporal dynamics of major land covers were analyzed in the last twenty years (1988-2016) for District Lahore located in the Punjab Province of Pakistan. The Landsat satellite imageries were downloaded from USGS Global Visualization Viewer of Earth Resources Observation and Science Center located in Sioux Falls, South Dakota USA. The imageries included: (i) Landsat TM-5 for 1988 and 2001; and (ii) Landsat-8 OLI for 2016. The raw digital numbers of Landsat-5 images were converted into spectral radiance and then planetary reflectance. The digital numbers of Landsat-8 image were directly converted into planetary reflectance. The normalized difference vegetation index (NDVI) was used to classify the processed images into six major classes of water, buit-up, barren land, shrub and grassland, sparse vegetation and dense vegetation. The NDVI output results were improved by visual interpretation using high-resolution satellite imageries. The results indicated that the built-up areas were increased to 21% in 2016 from 10% in 1988. The decrease in % areas was found in case of water, barren land and shrub & grassland. There were improvements in percentage of areas for the vegetation. The increasing trend of urban sprawl for Lahore requires implementation of GIS based spatial planning, monitoring and management system for its sustainable development.

Keywords: land cover changes, NDVI, remote sensing, urban sprawl

Procedia PDF Downloads 299
4616 In Vitro Evaluation of the Antimitotic and Genotoxic Effect by the Allium cepa L. Test of the Aqueous Extract of Peganum harmala L. Leaves (Laghouat, Algeria)

Authors: Ouzid Yasmina, Aiche-Iratni Ghenima, Harchaoui Lina, Saadoun Noria, Houali Karim

Abstract:

Medicinal plants are an important source of bioactive molecules with biological activities such as anticancer, antioxidant, anti-inflammatory, antibacterial, antimitotic.... These molecules include alkaloids, polyphenols and terpenes. The latter can be extracted by different solvents, namely: water, ethanol, methanol, butanol, acetone... This is why it seemed interesting to us to evaluate in vitro the antimitotic and genotoxic effect of these secondary metabolites contained in the aqueous extract of the leaves of Peganum harmala L. by the Allium cepa L. test on meristematic cells by calculating the mitotic parameters (The mitotic index, the aberration index and the limit value of cytotoxicity).A spectrophotometric determination of secondary metabolites, namely alkaloids and flavonoids in the aqueous extract of this essence, was performed. As a result, the alkaloid content is estimated to be 28.42 μg EC/mg extract, and the flavonoid content is 12.52 μg EQ/mg extract. The determination of the mitotic index revealed disturbances in cell division with a highly significant difference between the negative control (distilled water) and the different samples (aqueous extracts, colchicine and quecetin). The exposure of meristematic cells to our samples resulted in a large number of chromosomal, nuclear and cellular aberrations with an aberration index reaching 16.21±1.28% for the 4mg/ml aqueous extract and 11.71±3.32% for the 10mg/ml aqueous extract. The limit value of cytotoxicity revealed that our samples are sublethal on Allium cepa L. meristematic cells.

Keywords: allium cepa l., antimitotic and genotoxic effect, aqueous leaf extract, laghouat (algeria), peganum harmala l., secondary metabolites

Procedia PDF Downloads 65
4615 Effect of Tooth Bleaching Agents on Enamel Demineralisation

Authors: Najlaa Yousef Qusti, Steven J. Brookes, Paul A. Brunton

Abstract:

Background: Tooth discoloration can be an aesthetic problem, and tooth whitening using carbamide peroxide bleaching agents are a popular treatment option. However, there are concerns about possible adverse effects such as demineralisation of the bleached enamel; however, the cause of this demineralisation is unclear. Introduction: Teeth can become stained or discoloured over time. Tooth whitening is an aesthetic solution for tooth discoloration. Bleaching solutions of 10% carbamide peroxide (CP) have become the standard agent used in dentist-prescribed and home-applied ’vital bleaching techniques’. These materials release hydrogen peroxide (H₂O₂), the active whitening agent. However, there is controversy in the literature regarding the effect of bleaching agents on enamel integrity and enamel mineral content. The purpose of this study was to establish if carbamide peroxide bleaching agents affect the acid solubility of enamel (i.e., make teeth more prone to demineralisation). Materials and Methods: Twelve human premolar teeth were sectioned longitudinally along the midline and varnished to leave the natural enamel surface exposed. The baseline behavior of each tooth half in relation to its demineralisation in acid was established by sequential exposure to 4 vials containing 1ml of 10mM acetic acid (1 minute/vial). This was followed by exposure to 10% CP for 8 hours. After washing in distilled water, the tooth half was sequentially exposed to 4 further vials containing acid to test if the acid susceptibility of the enamel had been affected. The corresponding tooth half acted as a control and was exposed to distilled water instead of CP. The mineral loss was determined by measuring [Ca²⁺] and [PO₄³⁻] released in each vial using a calcium ion-selective electrode and the phosphomolybdenum blue method, respectively. The effect of bleaching on the tooth surfaces was also examined using SEM. Results: Exposure to carbamide peroxide did not significantly alter the susceptibility of enamel to acid attack, and SEM of the enamel surface revealed a slight alteration in surface appearance. SEM images of the control enamel surface showed a flat enamel surface with some shallow pits, whereas the bleached enamel appeared with an increase in surface porosity and some areas of mild erosion. Conclusions: Exposure to H₂O₂ equivalent to 10% CP does not significantly increase subsequent acid susceptibility of enamel as determined by Ca²⁺ release from the enamel surface. The effects of bleaching on mineral loss were indistinguishable from distilled water in the experimental system used. However, some surface differences were observed by SEM. The phosphomolybdenum blue method for phosphate is compromised by peroxide bleaching agents due to their oxidising properties. However, the Ca²⁺ electrode is unaffected by oxidising agents and can be used to determine the mineral loss in the presence of peroxides.

Keywords: bleaching, carbamide peroxide, demineralisation, teeth whitening

Procedia PDF Downloads 108
4614 Utility of Geospatial Techniques in Delineating Groundwater-Dependent Ecosystems in Arid Environments

Authors: Mangana B. Rampheri, Timothy Dube, Farai Dondofema, Tatenda Dalu

Abstract:

Identifying and delineating groundwater-dependent ecosystems (GDEs) is critical to the well understanding of the GDEs spatial distribution as well as groundwater allocation. However, this information is inadequately understood due to limited available data for the most area of concerns. Thus, this study aims to address this gap using remotely sensed, analytical hierarchy process (AHP) and in-situ data to identify and delineate GDEs in Khakea-Bray Transboundary Aquifer. Our study developed GDEs index, which integrates seven explanatory variables, namely, Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), Land-use and landcover (LULC), slope, Topographic Wetness Index (TWI), flow accumulation and curvature. The GDEs map was delineated using the weighted overlay tool in ArcGIS environments. The map was spatially classified into two classes, namely, GDEs and Non-GDEs. The results showed that only 1,34 % (721,91 km2) of the area is characterised by GDEs. Finally, groundwater level (GWL) data was used for validation through correlation analysis. Our results indicated that: 1) GDEs are concentrated at the northern, central, and south-western part of our study area, and 2) the validation results showed that GDEs classes do not overlap with GWL located in the 22 boreholes found in the given area. However, the results show a possible delineation of GDEs in the study area using remote sensing and GIS techniques along with AHP. The results of this study further contribute to identifying and delineating priority areas where appropriate water conservation programs, as well as strategies for sustainable groundwater development, can be implemented.

Keywords: analytical hierarchy process (AHP), explanatory variables, groundwater-dependent ecosystems (GDEs), khakea-bray transboundary aquifer, sentinel-2

Procedia PDF Downloads 91
4613 Unlocking the Potential of Neglected Cereal Resources Waste: Exploring Functional Properties of Algerian Pearl Millet Starch via Wet Milling and Ultrasound Techniques

Authors: Sarra Bouhallel, Sara Legbedj, Rima Messaoud, Sofia Saffarbatti

Abstract:

In the context of global waste management and sustainable resource utilization, millets emerge as a vital yet underutilized cereal resource. Despite their exceptional nutritional profile and resilience to harsh environmental conditions, their potential remains largely untapped. This study aims to contribute to the valorization of seven Algerian pearl millet landraces (Pennisetum glaucum (L.) R. Br) from the southern region by focusing on the characterization of their starches. Utilizing both conventional wet milling, incorporating sodium azide as a microbial growth inhibitor, and a novel green technology—Ultrasound-assisted isolation, we explore avenues for enhancing the functional properties of these starches. Analysis of key functional properties such as swelling power and water solubility index reveals significant enhancements, particularly during heat treatment near the gelatinization temperature [70 - 80 °C]. Furthermore, our investigation into the influence of pre-treatment methods on isolated starches highlights the potential of Ultrasound-assisted isolation in reducing absorbency and water solubility compared to conventional methods. Through rigorous data analysis using SPSS software (Version 23), we ascertain the efficiency of Ultrasound-assisted isolation, underscoring its promising role in the valorization of pearl millet waste. This research not only sheds light on the functional properties of pearl millet starch but also underscores the imperative of sustainable waste management in harnessing the full potential of underutilized cereal resources.

Keywords: isolation, solubility, starch, swelling, ultrasound

Procedia PDF Downloads 31