Search results for: satellite applications
3286 Carbon Sequestering and Structural Capabilities of Eucalyptus Cloeziana
Authors: Holly Sandberg, Christina McCoy, Khaled Mansy
Abstract:
Eucalyptus Cloeziana, commonly known as Gympie Messmate, is a fast-growing hardwood native to Australia. Its quick growth makes it advantageous for carbon sequestering, while its strength class lends itself to structural applications. Market research shows that the demand for timber is growing, especially mass timber. An environmental product declaration, or EPD, for eucalyptus Cloeziana in the Australian market has been evaluated and compared to the EPD’s of steel and Douglas fir of the same region. An EPD follows a product throughout its life cycle, stating values for global warming potential, ozone depletion potential, acidification potential, eutrophication potential, photochemical ozone creation potential, and abiotic depletion potential. This paper highlights the market potential, as well as the environmental benefits and challenges to using Gympie Messmate as a structural building material. In addition, a case study is performed to compare steel, Douglas fir, and eucalyptus in terms of embodied carbon and structural weight within a single structural bay. Comparisons among the three materials highlight both the differences in structural capabilities as well as environmental impact.Keywords: eucalyptus, timber, construction, structural, material
Procedia PDF Downloads 1873285 Improving Security in Healthcare Applications Using Federated Learning System With Blockchain Technology
Authors: Aofan Liu, Qianqian Tan, Burra Venkata Durga Kumar
Abstract:
Data security is of the utmost importance in the healthcare area, as sensitive patient information is constantly sent around and analyzed by many different parties. The use of federated learning, which enables data to be evaluated locally on devices rather than being transferred to a central server, has emerged as a potential solution for protecting the privacy of user information. To protect against data breaches and unauthorized access, federated learning alone might not be adequate. In this context, the application of blockchain technology could provide the system extra protection. This study proposes a distributed federated learning system that is built on blockchain technology in order to enhance security in healthcare. This makes it possible for a wide variety of healthcare providers to work together on data analysis without raising concerns about the confidentiality of the data. The technical aspects of the system, including as the design and implementation of distributed learning algorithms, consensus mechanisms, and smart contracts, are also investigated as part of this process. The technique that was offered is a workable alternative that addresses concerns about the safety of healthcare while also fostering collaborative research and the interchange of data.Keywords: data privacy, distributed system, federated learning, machine learning
Procedia PDF Downloads 1373284 A New Learning Automata-Based Algorithm to the Priority-Based Target Coverage Problem in Directional Sensor Networks
Authors: Shaharuddin Salleh, Sara Marouf, Hosein Mohammadi
Abstract:
Directional sensor networks (DSNs) have recently attracted a great deal of attention due to their extensive applications in a wide range of situations. One of the most important problems associated with DSNs is covering a set of targets in a given area and, at the same time, maximizing the network lifetime. This is due to limitation in sensing angle and battery power of the directional sensors. This problem gets more complicated by the possibility that targets may have different coverage requirements. In the present study, this problem is referred to as priority-based target coverage (PTC). As sensors are often densely deployed, organizing the sensors into several cover sets and then activating these cover sets successively is a promising solution to this problem. In this paper, we propose a learning automata-based algorithm to organize the directional sensors into several cover sets in such a way that each cover set could satisfy coverage requirements of all the targets. Several experiments are conducted to evaluate the performance of the proposed algorithm. The results demonstrated that the algorithms were able to contribute to solving the problem.Keywords: directional sensor networks, target coverage problem, cover set formation, learning automata
Procedia PDF Downloads 4163283 Distributed Energy Storage as a Potential Solution to Electrical Network Variance
Authors: V. Rao, A. Bedford
Abstract:
As the efficient performance of national grid becomes increasingly important to maintain the electrical network stability, the balance between the generation and the demand must be effectively maintained. To do this, any losses that occur in the power network must be reduced by compensating for it. In this paper, one of the main cause for the losses in the network is identified as the variance, which hinders the grid’s power carrying capacity. The reason for the variance in the grid is investigated and identified as the rise in the integration of renewable energy sources (RES) such as wind and solar power. The intermittent nature of these RES along with fluctuating demands gives rise to variance in the electrical network. The losses that occur during this process is estimated by analyzing the network’s power profiles. Whilst researchers have identified different ways to tackle this problem, little consideration is given to energy storage. This paper seeks to redress this by considering the role of energy storage systems as potential solutions to reduce variance in the network. The implementation of suitable energy storage systems based on different applications is presented in this paper as part of variance reduction method and thus contribute towards maintaining a stable and efficient grid operation.Keywords: energy storage, electrical losses, national grid, renewable energy, variance
Procedia PDF Downloads 3193282 Understanding Personal Well-Being among Entrepreneurial Breadwinners: Bibliographic and Empirical Analyses of Relative Resource Theory
Authors: E. Fredrick Rice
Abstract:
Over the past three decades, a substantial body of academic literature has asserted that the pressure to maintain household income can negatively affect the personal well-being of breadwinners. Given that scholars have failed to thoroughly explore this phenomenon with breadwinners who are also business owners, theory has been underdeveloped in the entrepreneurial context. To identify the most appropriate theories to apply to entrepreneurs, the current paper utilized two approaches. First, a comprehensive bibliographic analysis was conducted focusing on works at the intersection of breadwinner status and well-being. Co-authorship and journal citation patterns highlighted relative resource theory as a boundary spanning approach with promising applications in the entrepreneurial space. To build upon this theory, regression analysis was performed using data from the Panel Study of Entrepreneurial Dynamics (PSED). Empirical results showed evidence for the effects of breadwinner status and household income on entrepreneurial well-being. Further, the findings suggest that it is not merely income or job status that predicts well-being, but one’s relative financial contribution compared to that of one’s non-breadwinning organizationally employed partner. This paper offers insight into how breadwinner status can be studied in relation to the entrepreneurial personality.Keywords: breadwinner, entrepreneurship, household income, well-being.
Procedia PDF Downloads 1723281 A Genetic Algorithm for the Load Balance of Parallel Computational Fluid Dynamics Computation with Multi-Block Structured Mesh
Authors: Chunye Gong, Ming Tie, Jie Liu, Weimin Bao, Xinbiao Gan, Shengguo Li, Bo Yang, Xuguang Chen, Tiaojie Xiao, Yang Sun
Abstract:
Large-scale CFD simulation relies on high-performance parallel computing, and the load balance is the key role which affects the parallel efficiency. This paper focuses on the load-balancing problem of parallel CFD simulation with structured mesh. A mathematical model for this load-balancing problem is presented. The genetic algorithm, fitness computing, two-level code are designed. Optimal selector, robust operator, and local optimization operator are designed. The properties of the presented genetic algorithm are discussed in-depth. The effects of optimal selector, robust operator, and local optimization operator are proved by experiments. The experimental results of different test sets, DLR-F4, and aircraft design applications show the presented load-balancing algorithm is robust, quickly converged, and is useful in real engineering problems.Keywords: genetic algorithm, load-balancing algorithm, optimal variation, local optimization
Procedia PDF Downloads 1863280 Cascaded Multi-Level Single-Phase Switched Boost Inverter
Authors: Van-Thuan Tran, Minh-Khai Nguyen, Geum-Bae Cho
Abstract:
Recently, multilevel inverters have become more attractive for researchers due to low total harmonic distortion (THD) in the output voltage and low electromagnetic interference (EMI). This paper proposes a single-phase cascaded H-bridge quasi switched boost inverter (CHB-qSBI) for renewable energy sources applications. The proposed inverter has the advantage over the cascaded H-bridge quasi-Z-source inverter (CHB-qZSI) in reducing two capacitors and two inductors. As a result, cost, weight, and size are reduced. Furthermore, the dc-link voltage of each module is controlled by individual shoot-through duty cycle to get the same values. Therefore, the proposed inverter solves the imbalance problem of dc-link voltage in traditional CHB inverter. This paper shows the operating principles and analysis of the single-phase cascaded H-bridge quasi switched boost inverter. Also, a control strategy for the proposed inverter is shown. Experimental and simulation results are shown to verify the operating principle of the proposed inverter.Keywords: renewable energy sources, cascaded h-bridge inverter, quasi switched boost inverter, quasi z-source inverter, multilevel inverter
Procedia PDF Downloads 3353279 Flexural Response of Sandwiches with Micro Lattice Cores Manufactured via Selective Laser Sintering
Authors: Emre Kara, Ali Kurşun, Halil Aykul
Abstract:
The lightweight sandwiches obtained with the use of various core materials such as foams, honeycomb, lattice structures etc., which have high energy absorbing capacity and high strength to weight ratio, are suitable for several applications in transport industry (automotive, aerospace, shipbuilding industry) where saving of fuel consumption, load carrying capacity increase, safety of vehicles and decrease of emission of harmful gases are very important aspects. While the sandwich structures with foams and honeycombs have been applied for many years, there is a growing interest on a new generation sandwiches with micro lattice cores. In order to produce these core structures, various production methods were created with the development of the technology. One of these production technologies is an additive manufacturing technique called selective laser sintering/melting (SLS/SLM) which is very popular nowadays because of saving of production time and achieving the production of complex topologies. The static bending and the dynamic low velocity impact tests of the sandwiches with carbon fiber/epoxy skins and the micro lattice cores produced via SLS/SLM were already reported in just a few studies. The goal of this investigation was the analysis of the flexural response of the sandwiches consisting of glass fiber reinforced plastic (GFRP) skins and the micro lattice cores manufactured via SLS under thermo-mechanical loads in order to compare the results in terms of peak load and absorbed energy values respect to the effect of core cell size, temperature and support span length. The micro lattice cores were manufactured using SLS technology that creates the product drawn by a 3D computer aided design (CAD) software. The lattice cores which were designed as body centered cubic (BCC) model having two different cell sizes (d= 2 and 2.5 mm) with the strut diameter of 0.3 mm were produced using titanium alloy (Ti6Al4V) powder. During the production of all the core materials, the same production parameters such as laser power, laser beam diameter, building direction etc. were kept constant. Vacuum Infusion (VI) method was used to produce skin materials, made of [0°/90°] woven S-Glass prepreg laminates. The combination of the core and skins were implemented under VI. Three point bending tests were carried out by a servo-hydraulic test machine with different values of support span distances (L = 30, 45, and 60 mm) under various temperature values (T = 23, 40 and 60 °C) in order to analyze the influences of support span and temperature values. The failure mode of the collapsed sandwiches has been investigated using 3D computed tomography (CT) that allows a three-dimensional reconstruction of the analyzed object. The main results of the bending tests are: load-deflection curves, peak force and absorbed energy values. The results were compared according to the effect of cell size, support span and temperature values. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry, where problems of collision and crash have increased in the last years.Keywords: light-weight sandwich structures, micro lattice cores, selective laser sintering, transport application
Procedia PDF Downloads 3403278 Bounded Solution Method for Geometric Programming Problem with Varying Parameters
Authors: Abdullah Ali H. Ahmadini, Firoz Ahmad, Intekhab Alam
Abstract:
Geometric programming problem (GPP) is a well-known non-linear optimization problem having a wide range of applications in many engineering problems. The structure of GPP is quite dynamic and easily fit to the various decision-making processes. The aim of this paper is to highlight the bounded solution method for GPP with special reference to variation among right-hand side parameters. Thus this paper is taken the advantage of two-level mathematical programming problems and determines the solution of the objective function in a specified interval called lower and upper bounds. The beauty of the proposed bounded solution method is that it does not require sensitivity analyses of the obtained optimal solution. The value of the objective function is directly calculated under varying parameters. To show the validity and applicability of the proposed method, a numerical example is presented. The system reliability optimization problem is also illustrated and found that the value of the objective function lies between the range of lower and upper bounds, respectively. At last, conclusions and future research are depicted based on the discussed work.Keywords: varying parameters, geometric programming problem, bounded solution method, system reliability optimization
Procedia PDF Downloads 1353277 Planning of Construction Material Flow Using Hybrid Simulation Modeling
Authors: A. M. Naraghi, V. Gonzalez, M. O'Sullivan, C. G. Walker, M. Poshdar, F. Ying, M. Abdelmegid
Abstract:
Discrete Event Simulation (DES) and Agent Based Simulation (ABS) are two simulation approaches that have been proposed to support decision-making in the construction industry. Despite the wide use of these simulation approaches in the construction field, their applications for production and material planning is still limited. This is largely due to the dynamic and complex nature of construction material supply chain systems. Moreover, managing the flow of construction material is not well integrated with site logistics in traditional construction planning methods. This paper presents a hybrid of DES and ABS to simulate on-site and off-site material supply processes. DES is applied to determine the best production scenarios with information of on-site production systems, while ABS is used to optimize the supply chain network. A case study of a construction piling project in New Zealand is presented illustrating the potential benefits of using the proposed hybrid simulation model in construction material flow planning. The hybrid model presented can be used to evaluate the impact of different decisions on construction supply chain management.Keywords: construction supply-chain management, simulation modeling, decision-support tools, hybrid simulation
Procedia PDF Downloads 2083276 Big Data Applications for Transportation Planning
Authors: Antonella Falanga, Armando Cartenì
Abstract:
"Big data" refers to extremely vast and complex sets of data, encompassing extraordinarily large and intricate datasets that require specific tools for meaningful analysis and processing. These datasets can stem from diverse origins like sensors, mobile devices, online transactions, social media platforms, and more. The utilization of big data is pivotal, offering the chance to leverage vast information for substantial advantages across diverse fields, thereby enhancing comprehension, decision-making, efficiency, and fostering innovation in various domains. Big data, distinguished by its remarkable attributes of enormous volume, high velocity, diverse variety, and significant value, represent a transformative force reshaping the industry worldwide. Their pervasive impact continues to unlock new possibilities, driving innovation and advancements in technology, decision-making processes, and societal progress in an increasingly data-centric world. The use of these technologies is becoming more widespread, facilitating and accelerating operations that were once much more complicated. In particular, big data impacts across multiple sectors such as business and commerce, healthcare and science, finance, education, geography, agriculture, media and entertainment and also mobility and logistics. Within the transportation sector, which is the focus of this study, big data applications encompass a wide variety, spanning across optimization in vehicle routing, real-time traffic management and monitoring, logistics efficiency, reduction of travel times and congestion, enhancement of the overall transportation systems, but also mitigation of pollutant emissions contributing to environmental sustainability. Meanwhile, in public administration and the development of smart cities, big data aids in improving public services, urban planning, and decision-making processes, leading to more efficient and sustainable urban environments. Access to vast data reservoirs enables deeper insights, revealing hidden patterns and facilitating more precise and timely decision-making. Additionally, advancements in cloud computing and artificial intelligence (AI) have further amplified the potential of big data, enabling more sophisticated and comprehensive analyses. Certainly, utilizing big data presents various advantages but also entails several challenges regarding data privacy and security, ensuring data quality, managing and storing large volumes of data effectively, integrating data from diverse sources, the need for specialized skills to interpret analysis results, ethical considerations in data use, and evaluating costs against benefits. Addressing these difficulties requires well-structured strategies and policies to balance the benefits of big data with privacy, security, and efficient data management concerns. Building upon these premises, the current research investigates the efficacy and influence of big data by conducting an overview of the primary and recent implementations of big data in transportation systems. Overall, this research allows us to conclude that big data better provide to enhance rational decision-making for mobility choices and is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, public transport, sustainable mobility, transport demand, transportation planning
Procedia PDF Downloads 613275 Extending the Theory of Planned Behaviour to Predict Intention to Commute by Bicycle: Case Study of Mexico City
Authors: Magda Cepeda, Frances Hodgson, Ann Jopson
Abstract:
There are different barriers people face when choosing to cycle for commuting purposes. This study examined the role of psycho-social factors predicting the intention to cycle to commute in Mexico City. An extended version of the theory of planned behaviour was developed and utilized with a simple random sample of 401 road users. We applied exploratory and confirmatory factor analysis and after identifying five factors, a structural equation model was estimated to find the relationships among the variables. The results indicated that cycling attributes, attitudes to cycling, social comparison and social image and prestige were the most important factors influencing intention to cycle. Although the results from this study are specific to Mexico City, they indicate areas of interest to transportation planners in other regions especially in those cities where intention to cycle its linked to its perceived image and there is political ambition to instigate positive cycling cultures. Moreover, this study contributes to the current literature developing applications of the Theory of Planned Behaviour.Keywords: cycling, latent variable model, perception, theory of planned behaviour
Procedia PDF Downloads 3543274 The Application of Conceptual Metaphor Theory to the Treatment of Depression
Abstract:
Conceptual Metaphor Theory (CMT) proposes that metaphor is fundamental to human thought. CMT utilizes embodied cognition, in that emotions are conceptualized as effects on the body because of a coupling of one’s bodily experiences and one’s somatosensory system. Time perception is a function of embodied cognition and conceptual metaphor in that one’s experience of time is inextricably dependent on one’s perception of the world around them. A hallmark of depressive disorders is the distortion in one’s perception of time, such as neurological dysfunction and psychomotor retardation, and yet, to the author’s best knowledge, previous studies have not before linked CMT, embodied cognition, and depressive disorders. Therefore, the focus of this paper is the investigation of how the applications of CMT and embodied cognition (especially regarding time perception) have promise in improving current techniques to treat depressive disorders. This paper aimed to extend, through a thorough review of literature, the theoretical basis required to further research into CMT and embodied cognition’s application in treating time distortion related symptoms of depressive disorders. Future research could include the development of brain training technologies that capitalize on the principles of CMT, with the aim of promoting cognitive remediation and cognitive activation to mitigate symptoms of depressive disorder.Keywords: depression, conceptual metaphor theory, embodied cognition, time
Procedia PDF Downloads 1633273 Utilizing Google Earth for Internet GIS
Authors: Alireza Derambakhsh
Abstract:
The objective of this examination is to explore the capability of utilizing Google Earth for Internet GIS applications. The study particularly analyzes the utilization of vector and characteristic information and the capability of showing and preparing this information in new ways utilizing the Google Earth stage. It has progressively been perceived that future improvements in GIS will fixate on Internet GIS, and in three noteworthy territories: GIS information access, spatial data scattering and GIS displaying/preparing. Google Earth is one of the group of geobrowsers that offer a free and simple to utilize administration that empower information with a spatial part to be overlain on top of a 3-D model of the Earth. This examination makes a methodological structure to accomplish its objective that comprises of three noteworthy parts: A database level, an application level and a customer level. As verification of idea a web model has been produced, which incorporates a differing scope of datasets and lets clients direst inquiries and make perceptions of this custom information. The outcomes uncovered that both vector and property information can be successfully spoken to and imagined utilizing Google Earth. In addition, the usefulness to question custom information and envision results has been added to the Google Earth stage.Keywords: Google earth, internet GIS, vector, characteristic information
Procedia PDF Downloads 3103272 Use of Waste Road-Asphalt as Aggregate in Pavement Block Production
Authors: Babagana Mohammed, Abdulmuminu Mustapha Ali, Solomon Ibrahim, Buba Ahmad Umdagas
Abstract:
This research investigated the possibility of replacing coarse and fine aggregates with waste road-asphalt (RWA), when sieved appropriately, in concrete production. Interlock pavement block is used widely in many parts of the world as modern day solution to outdoor flooring applications. The weight-percentage replacements of both coarse and fine aggregates with RWA at 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% respectively using a concrete mix ratio of 1:2:4 and water-to-cement ratio of 0.45 were carried out. The interlock block samples produced were then cured for 28days. Unconfined compressive strength (UCS) and the water absorption properties of the samples were then tested. Comparison of the results of the RWA-containing samples to those of the respective control samples shows significant benefits of using RWA in interlock block production. UCS results of RWA-containing samples compared well with those of the control samples and the RWA content also influenced the lowering of the water absorption of the samples. Overall, the research shows that it is possible to replace both coarse and fine aggregates with RWA materials when sieved appropriately, hence indicating that RWA could be recycled beneficially.Keywords: aggregate, block-production, pavement, road-asphalt, use, waste
Procedia PDF Downloads 1973271 A Greedy Alignment Algorithm Supporting Medication Reconciliation
Authors: David Tresner-Kirsch
Abstract:
Reconciling patient medication lists from multiple sources is a critical task supporting the safe delivery of patient care. Manual reconciliation is a time-consuming and error-prone process, and recently attempts have been made to develop efficiency- and safety-oriented automated support for professionals performing the task. An important capability of any such support system is automated alignment – finding which medications from a list correspond to which medications from a different source, regardless of misspellings, naming differences (e.g. brand name vs. generic), or changes in treatment (e.g. switching a patient from one antidepressant class to another). This work describes a new algorithmic solution to this alignment task, using a greedy matching approach based on string similarity, edit distances, concept extraction and normalization, and synonym search derived from the RxNorm nomenclature. The accuracy of this algorithm was evaluated against a gold-standard corpus of 681 medication records; this evaluation found that the algorithm predicted alignments with 99% precision and 91% recall. This performance is sufficient to support decision support applications for medication reconciliation.Keywords: clinical decision support, medication reconciliation, natural language processing, RxNorm
Procedia PDF Downloads 2883270 KCBA, A Method for Feature Extraction of Colonoscopy Images
Authors: Vahid Bayrami Rad
Abstract:
In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature
Procedia PDF Downloads 583269 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory
Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan
Abstract:
Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.Keywords: data fusion, Dempster-Shafer theory, data mining, event detection
Procedia PDF Downloads 4123268 Development of One-Axis Didactic Solar Tracker for Photovoltaic Panels
Authors: L. J. de Bessa Neto, M. R. B. Guerra Vale, F. K. O. M. Varella Guerra
Abstract:
In recent years, solar energy has established itself as one of the main sources of renewable energy, gaining a large space in electricity generation around the world. However, due to the low performance of photovoltaic panels, technologies need to be sought to maximize the production of electricity. In this regard, the present study aims to develop a prototype of solar tracker for didactics applications, controlled with the Arduino® platform, that enables the movement of photovoltaic plates in relation to the sun positions throughout the day through an electromechanical system, optimizing, thus, the efficiency of solar photovoltaic generation and improvements for the photovoltaic effect. The solar tracking technology developed in this work was presented of the shape oral and practical in two middle schools in the municipality of Mossoró/RN, being one of the public network and other of the private network, always keeping the average age of the students, in the case, around 16 years, contemplating an average of 60 students in each of the visits. Thus, it is concluded that the present study contributed substantially to the dissemination of knowledge concerning the photovoltaic solar generation, as well as the study of solar trackers, thus arousing the interest and curiosity of the students regarding the thematic approached.Keywords: alternative energy, solar tracker, energy efficiency, photovoltaic panels
Procedia PDF Downloads 1503267 Finite Element Analysis of Oil-Lubricated Elliptical Journal Bearings
Authors: Marco Tulio C. Faria
Abstract:
Fixed-geometry hydrodynamic journal bearings are one of the best supporting systems for several applications of rotating machinery. Cylindrical journal bearings present excellent load-carrying capacity and low manufacturing costs, but they are subjected to the oil-film instability at high speeds. An attempt of overcoming this instability problem has been the development of non-circular journal bearings. This work deals with an analysis of oil-lubricated elliptical journal bearings using the finite element method. Steady-state and dynamic performance characteristics of elliptical bearings are rendered by zeroth- and first-order lubrication equations obtained through a linearized perturbation method applied on the classical Reynolds equation. Four-node isoparametric rectangular finite elements are employed to model the bearing thin film flow. Curves of elliptical bearing load capacity and dynamic force coefficients are rendered at several operating conditions. The results presented in this work demonstrate the influence of the bearing ellipticity on its performance at different loading conditions.Keywords: elliptical journal bearings, non-circular journal bearings, hydrodynamic bearings, finite element method
Procedia PDF Downloads 4503266 Nanocharacterization of PIII Treated 7075 Aluminum Alloy
Authors: Bruno Bacci Fernandes, Stephan Mändl, Ataíde Ribeiro da Silva Junior, José Osvaldo Rossi, Mário Ueda
Abstract:
Nitrogen implantation in aluminum and its alloys is acquainted for the difficulties in obtaining modified layers deeper than 200 nm. The present work addresses a new method to overcome such a problem; although, the coating with nitrogen and oxygen obtained by plasma immersion ion implantation (PIII) into a 7075 aluminum alloy surface was too shallow. This alloy is commonly used for structural parts in aerospace applications. Such a layer was characterized by secondary ion mass spectroscopy, electron microscopy, and nanoindentation experiments reciprocating wear tests. From the results, one can assume that the wear of this aluminum alloy starts presenting severe abrasive wear followed by an additional adhesive mechanism. PIII produced a slight difference, as shown in all characterizations carried out in this work. The results shown here can be used as the scientific basis for further nitrogen PIII experiments in aluminum alloys which have the goal to produce thicker modified layers or to improve their surface properties.Keywords: aluminum alloys, plasma immersion ion implantation, tribological properties, hardness, nanofatigue
Procedia PDF Downloads 3403265 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique
Authors: Reda Abdel Azim, Tariq Shehab
Abstract:
The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension
Procedia PDF Downloads 2563264 A Computational Study of the Effect of Intake Design on Volumetric Efficiency for Best Performance in Motorsport
Authors: Dominic Wentworth-Linton, Shian Gao
Abstract:
This project was aimed at investigating the effect of velocity stacks on the intakes of internal combustion engines for motorsport applications. The intake systems in motorsport are predominantly fuel injection with a plate mounted for the stacks. Using Computational Fluid Dynamics software, the relationship between the stack length and power and torque delivery across the engine’s rev range was investigated and the results were used to choose the best option for its intended motorsport discipline. The test results are expected to vary with engine geometry and its natural manufacturer characteristics. The test was also relevant in bridging between computational data and real simulation as the results show flow, pressure and velocity readings but the behaviour of the engine is inferred from the nature of each test. The results of the data analysis were tested in a real-life simulation on a dynamometer to prove the theory of stack length on power and torque delivery, which helps determine the most suitable stack for the Vauxhall engine for rallying in the Caribbean.Keywords: CFD simulation, Internal combustion engine, Intake system, Dynamometer test
Procedia PDF Downloads 2853263 Energy Audit: A Case Study of a Hot Rolling Mill in Steel Industry
Authors: Arvind Dhingra, Tejinder Singh Saggu
Abstract:
As the energy demands rise and the pollution levels grow, it becomes imperative for us to save energy in all the fields in which it is used. The industrial sector is the major commercial energy consuming sector in India, where electrical energy is the most common and widely used type of energy. As the demand and price of energy are increasing day by day, therefore, the subject of energy conservation is a concern for most energy users particularly industry. Judicious use of energy becomes imperative for third world developing country being presence of energy crisis. This paper provides some measure for energy saving that can be commonly recommended for a rolling unit of steel industry. A case of hot rolling unit in JSL Stainless Ltd., Hisar for energy conservation is given. Overall improvement in energy consumption in light of the stated recommendation is illustrated along with the proposed utilization of the techniques and their applications. Energy conservation in conventional motor with replacement or use of star delta star converter, reduction in cable losses, replacement of filament of LED lamps, replacement of conventional transformer with cast resin dry type transformer and provision of energy management system for energy conservation and per unit production cost reduction are elaborated in this paper.Keywords: energy audit, energy conservation, energy efficient motors
Procedia PDF Downloads 5343262 Studies on Affecting Factors of Wheel Slip and Odometry Error on Real-Time of Wheeled Mobile Robots: A Review
Authors: D. Vidhyaprakash, A. Elango
Abstract:
In real-time applications, wheeled mobile robots are increasingly used and operated in extreme and diverse conditions traversing challenging surfaces such as a pitted, uneven terrain, natural flat, smooth terrain, as well as wet and dry surfaces. In order to accomplish such tasks, it is critical that the motion control functions without wheel slip and odometry error during the navigation of the two-wheeled mobile robot (WMR). Wheel slip and odometry error are disrupting factors on overall WMR performance in the form of deviation from desired trajectory, navigation, travel time and budgeted energy consumption. The wheeled mobile robot’s ability to operate at peak performance on various work surfaces without wheel slippage and odometry error is directly connected to four main parameters, which are the range of payload distribution, speed, wheel diameter, and wheel width. This paper analyses the effects of those parameters on overall performance and is concerned with determining the ideal range of parameters for optimum performance.Keywords: wheeled mobile robot, terrain, wheel slippage, odometryerror, trajectory
Procedia PDF Downloads 2853261 Generating Insights from Data Using a Hybrid Approach
Authors: Allmin Susaiyah, Aki Härmä, Milan Petković
Abstract:
Automatic generation of insights from data using insight mining systems (IMS) is useful in many applications, such as personal health tracking, patient monitoring, and business process management. Existing IMS face challenges in controlling insight extraction, scaling to large databases, and generalising to unseen domains. In this work, we propose a hybrid approach consisting of rule-based and neural components for generating insights from data while overcoming the aforementioned challenges. Firstly, a rule-based data 2CNL component is used to extract statistically significant insights from data and represent them in a controlled natural language (CNL). Secondly, a BERTSum-based CNL2NL component is used to convert these CNLs into natural language texts. We improve the model using task-specific and domain-specific fine-tuning. Our approach has been evaluated using statistical techniques and standard evaluation metrics. We overcame the aforementioned challenges and observed significant improvement with domain-specific fine-tuning.Keywords: data mining, insight mining, natural language generation, pre-trained language models
Procedia PDF Downloads 1243260 Lamb Wave-Based Blood Coagulation Measurement System Using Citrated Plasma
Authors: Hyunjoo Choi, Jeonghun Nam, Chae Seung Lim
Abstract:
Acoustomicrofluidics has gained much attention due to the advantages, such as noninvasiveness and easy integration with other miniaturized systems, for clinical and biological applications. However, a limitation of acoustomicrofluidics is the complicated and costly fabrication process of electrodes. In this study, we propose a low-cost and lithography-free device using Lamb wave for blood analysis. Using a Lamb wave, calcium ion-removed blood plasma and coagulation reagents can be rapidly mixed for blood coagulation test. Due to the coagulation process, the viscosity of the sample increases and the viscosity change can be monitored by internal acoustic streaming of microparticles suspended in the sample droplet. When the acoustic streaming of particles stops by the viscosity increase is defined as the coagulation time. With the addition of calcium ion at 0-25 mM, the coagulation time was measured and compared with the conventional index for blood coagulation analysis, prothrombin time, which showed highly correlated with the correlation coefficient as 0.94. Therefore, our simple and cost-effective Lamb wave-based blood analysis device has the powerful potential to be utilized in clinical settings.Keywords: acoustomicrofluidics, blood analysis, coagulation, lamb wave
Procedia PDF Downloads 3433259 Characteristics of Different Volumes of Waste Cellular Concrete Powder-Cement Paste for Sustainable Construction
Authors: Mohammed Abed, Rita Nemes
Abstract:
Cellular concrete powder (CCP) is not used widely as supplementary cementitious material, but in the literature, its efficiency is proved when it used as a replacement of cement in concrete mixtures. In this study, different amounts of raw CCP (CCP as a waste material without any industrial modification) will be used to investigate the characteristics of cement pastes and the effects of CCP on the properties of the cement pastes. It is an attempt to produce green binder paste, which is useful for sustainable construction applications. The fresh and hardened properties of a number of CCP blended cement paste will be tested in different life periods, and the optimized CCP volume will be reported with more significant investigations on durability properties. Different replacing of mass percentage (low and high) of the cement mass will be conducted (0%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%). The consistency, flexural strength, and compressive strength will be the base indicator for the further properties' investigations. The CCP replacement until 50% have been tested until 7 days, and the initial results showed a linear relationship between strength and the percentage of the replacement; that is an optimistic indicator for further replacement percentages of waste CCP.Keywords: cellular concrete powder, supplementary cementitious material, sustainable construction, green concrete
Procedia PDF Downloads 3263258 Influential Factors on Woodcarvings in Traditional Malay Houses of Negeri Sembilan, Malaysia
Authors: Nurdiyana Zainal Abidin, Raja Nafida Raja Shahminan, Fawazul Khair Ibrahim
Abstract:
Timber vernacular houses in Malaysia are unique heritage buildings which can be identified through their designs, structure, architectural elements and ornamentations. Woodcarvings are common forms of ornamentations and decorations in Traditional Malay Houses and they can be found throughout Malaysia including in Negeri Sembilan. As a multi-cultural, multi-racial, and multi-religion state which uniquely practices the matrilineal social system, Negeri Sembilan has a strong connection to its’ history and heritage and in particular the distinctive vernacular architecture. The purpose of this paper is to underline the factors that influence the woodcarvings in Traditional Malay Houses in Negeri Sembilan, Malaysia. The houses studied were from the archives of measured drawings in Center of Built Environment in the Malay World (KALAM), Universiti Teknologi Malaysia (UTM). The findings indicated several factors influencing the woodcarver’s works and also the applications of the woodcarvings such as religious factors, cultural factors and political factors. These factors among several other shows that woodcarvings were predetermined before being carved and that they were not just merely placed without reason but are functioning pieces of aesthetic ornamentation.Keywords: influences, traditional Malay houses, woodcarvings, multi-cultural
Procedia PDF Downloads 5123257 Improved Performance in Content-Based Image Retrieval Using Machine Learning Approach
Authors: B. Ramesh Naik, T. Venugopal
Abstract:
This paper presents a novel approach which improves the high-level semantics of images based on machine learning approach. The contemporary approaches for image retrieval and object recognition includes Fourier transforms, Wavelets, SIFT and HoG. Though these descriptors helpful in a wide range of applications, they exploit zero order statistics, and this lacks high descriptiveness of image features. These descriptors usually take benefit of primitive visual features such as shape, color, texture and spatial locations to describe images. These features do not adequate to describe high-level semantics of the images. This leads to a gap in semantic content caused to unacceptable performance in image retrieval system. A novel method has been proposed referred as discriminative learning which is derived from machine learning approach that efficiently discriminates image features. The analysis and results of proposed approach were validated thoroughly on WANG and Caltech-101 Databases. The results proved that this approach is very competitive in content-based image retrieval.Keywords: CBIR, discriminative learning, region weight learning, scale invariant feature transforms
Procedia PDF Downloads 184