Search results for: environmentally friendly organic wastes
790 Environmental Catalysts for Refining Technology Application: Reduction of CO Emission and Gasoline Sulphur in Fluid Catalytic Cracking Unit
Authors: Loganathan Kumaresan, Velusamy Chidambaram, Arumugam Velayutham Karthikeyani, Alex Cheru Pulikottil, Madhusudan Sau, Gurpreet Singh Kapur, Sankara Sri Venkata Ramakumar
Abstract:
Environmentally driven regulations throughout the world stipulate dramatic improvements in the quality of transportation fuels and refining operations. The exhaust gases like CO, NOx, and SOx from stationary sources (e.g., refinery) and motor vehicles contribute to a large extent for air pollution. The refining industry is under constant environmental pressure to achieve more rigorous standards on sulphur content in the fuel used in the transportation sector and other off-gas emissions. Fluid catalytic cracking unit (FCCU) is a major secondary process in refinery for gasoline and diesel production. CO-combustion promoter additive and gasoline sulphur reduction (GSR) additive are catalytic systems used in FCCU to assist the combustion of CO to CO₂ in the regenerator and regulate sulphur in gasoline faction respectively along with main FCC catalyst. Effectiveness of these catalysts is governed by the active metal used, its dispersion, the type of base material employed, and retention characteristics of additive in FCCU such as attrition resistance and density. The challenge is to have a high-density microsphere catalyst support for its retention and high activity of the active metals as these catalyst additives are used in low concentration compare to the main FCC catalyst. The present paper discusses in the first part development of high dense microsphere of nanocrystalline alumina by hydro-thermal method for CO combustion promoter application. Performance evaluation of additive was conducted under simulated regenerator conditions and shows CO combustion efficiency above 90%. The second part discusses the efficacy of a co-precipitation method for the generation of the active crystalline spinels of Zn, Mg, and Cu with aluminium oxides as an additive. The characterization and micro activity test using heavy combined hydrocarbon feedstock at FCC unit conditions for evaluating gasoline sulphur reduction activity are studied. These additives were characterized by X-Ray Diffraction, NH₃-TPD & N₂ sorption analysis, TPR analysis to establish structure-activity relationship. The reaction of sulphur removal mechanisms involving hydrogen transfer reaction, aromatization and alkylation functionalities are established to rank GSR additives for their activity, selectivity, and gasoline sulphur removal efficiency. The sulphur shifting in other liquid products such as heavy naphtha, light cycle oil, and clarified oil were also studied. PIONA analysis of liquid product reveals 20-40% reduction of sulphur in gasoline without compromising research octane number (RON) of gasoline and olefins content.Keywords: hydrothermal, nanocrystalline, spinel, sulphur reduction
Procedia PDF Downloads 96789 Synthesis of ZnFe₂O₄-AC/CeMOF for Improvement Photodegradation of Textile Dyes Under Visible-light: Optimization and Statistical Study
Authors: Esraa Mohamed El-Fawal
Abstract:
A facile solvothermal procedure was applied to fabricate zinc ferrite nanoparticles (ZnFe₂O₄ NPs). Activated carbon (AC) derived from peanut shells is synthesized using a microwave through the chemical activation method. The ZnFe₂O₄-AC composite is then mixed with a cerium-based metal-organic framework (CeMOF) by solid-state adding to formulate ZnFe₂O₄-AC/CeMOF composite. The synthesized photo materials were tested by scanning/transmission electron microscope (SEM/TEM), Photoluminescence (PL), (XRD) X-Ray diffraction, (FTIR) Fourier transform infrared, (UV-Vis/DRS) ultraviolet-visible/diffuse reflectance spectroscopy. The prepared ZnFe₂O₄-AC/CeMOFphotomaterial shows significantly boosted efficiency for photodegradation of methyl orange /methylene blue (MO/MB) compared with the pristine ZnFe₂O₄ and ZnFe₂O₄-AC composite under the irradiation of visible-light. The favorable ZnFe₂O₄-AC/CeMOFphotocatalyst displays the highest photocatalytic degradation efficiency of MB/MO (R: 91.5-88.6%, consecutively) compared with the other as-prepared materials after 30 min of visible-light irradiation. The apparent reaction rate K: 1.94-1.31 min-1 is also calculated. The boosted photocatalytic proficiency is ascribed to the heterojunction at the interface of prepared photo material that assists the separation of the charge carriers. To reach optimization, statistical analysis using response surface methodology was applied. The effect of independent parameters (such as A (pH), B (irradiation time), and (c) initial pollutants concentration on the response function (%)photodegradation of MB/MO dyes (as examples of azodyes) was investigated via using central composite design. At the optimum condition, the photodegradation efficiency (%) of the MB/MO is 99.8-97.8%, respectively. ZnFe2O₄-AC/CeMOF hybrid reveals good stability over four consecutive cycles.Keywords: azo-dyes, photo-catalysis, zinc ferrite, response surface methodology
Procedia PDF Downloads 168788 A Comparative Study on Primary Productivity in Fish Cage Culture Unit and Fish Pond in Relation to Different Level of Water Depth
Authors: Pawan Kumar Sharma, J. Stephan Sampath Kumar, D. Manikandavelu, V. Senthil Kumar
Abstract:
The total amount of productivity in the system is the gross primary productivity. The present study was carried out to understand the relationship between productivity in the cages and water depth. The experiment was conducted in the fish cages installed in the pond at the Directorate of Sustainable Aquaculture, Thanjavur, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Tamil Nadu (10° 47' 13.1964'' N; 79° 8' 16.1700''E). Primary productivity was estimated by light and dark bottle method. The measurement of primary productivity was done at different depths viz., 20 cm, 40 cm, and 60 cm. Six Biological Oxygen Demand bottles of 300 ml capacity were collected and tagged. The productivity was obtained in mg O2/l/hr. The maximum dissolved oxygen level at 20 cm depth was observed 5.62 ± 0.22 mg/l/hr in the light bottle in pond water while the minimum dissolved oxygen level at 20 cm depth in a cage was observed 3.62 ± 0.18 mg/l/hr in dark bottle. In the same way, the maximum and minimum value of dissolved oxygen was observed at 40, and 60 cm depth and results were compared. A slight change in pH was observed in the cage and pond. The maximum gross primary productivity observed was 1.97 mg/l/hr in pond at 20 cm depth while minimum gross primary productivity observed was 0.82±0.16 mg/l/hr in a cage at 60 cm depth. The community respiration was also variable with the depth in both cage and pond. Maximum community respiration was found 1.50±0.19 mg/l/hr in pond at 20 cm depth. A strong positive linear relationship was observed between primary productivity and fish yields in ponds. The pond primary productivity can contribute substantially to the nutrition of farm-raised aquaculture species, including shrimp. The growth of phytoplankton’s is dependent on the sun light, availability of primary nutrients (N, P, and K) in the water body and transparency, so to increase the primary productivity fertilization through organic manure may be done that will clean to the pond environment also.Keywords: cage aquaculture, water depth, net primary productivity, gross primary productivity, community respiration
Procedia PDF Downloads 207787 Neoliberalism and Environmental Justice: A Critical Examination of Corporate Greenwashing
Authors: Arnav M. Raval
Abstract:
This paper critically examines the neoliberal economic model and its role in enabling corporate greenwashing, a practice where corporations deceptively market themselves as environmentally responsible while continuing harmful environmental practices. Through a rigorous focus on the neoliberal emphasis of free markets, deregulation, and minimal government intervention, this paper explores how these policies have set the stage for corporations to externalize environmental costs and engage in superficial sustainability initiatives. Within this framework, companies often bypass meaningful environmental reform, opting for strategies that enhance their public image without addressing their actual environmental impacts. The paper also draws on the works of critical theorists Theodor Adorno, Max Horkheimer, and Herbert Marcuse, particularly their critiques of capitalist society and its tendency to commodify social values. This paper argues that neoliberal capitalism has commodified environmentalism, transforming genuine ecological responsibility into a marketable product. Through corporate social responsibility initiatives, corporations have created the illusion of sustainability while masking deeper environmental harm. Under neoliberalism, these initiatives often serve as public relations tools rather than genuine commitments to environmental justice and sustainability. This commodification has become particularly dangerous because as it manipulates consumer perceptions and diverts attention away from the structural causes of environmental degradation. The analysis also examines how greenwashing practices have disproportionately affected marginalized communities, particularly in the global South, where environmental costs are often externalized. As these corporations promote their “sustainability” in wealthier markets, these marginalized communities bear the brunt of their pollution, resource depletion, and other forms of environmental degradation. This dynamic underscores the inherent injustice within neoliberal environmental policies, as those most vulnerable to environmental risks are often neglected, as companies reap the benefits of corporate sustainability efforts at their expense. Finally, this paper calls for a fundamental transition away from neoliberal market-driven solutions, which prioritize corporate profit over genuine ecological reform. It advocates for stronger regulatory frameworks, transparent third-party certifications, and a more collective approach to environmental governance. In order to ensure genuine corporate accountability, governments and institutions must move beyond superficial green initiatives and market-based solutions, shifting toward policies that enforce real environmental responsibility and prioritize environmental justice for all communities. Through the critique of the neoliberal system and its commodification of environmentalism, this paper has highlighted the urgent need to rethink how environmental responsibility is defined and enacted in the corporate world. Without systemic change, greenwashing will continue to undermine both ecological sustainability and social justice, leaving the most vulnerable populations to suffer the consequences.Keywords: critical theory, environmental justice, greenwashing, neoliberalism
Procedia PDF Downloads 17786 Thermal Evaluation of Printed Circuit Board Design Options and Voids in Solder Interface by a Simulation Tool
Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles
Abstract:
Quad Flat No-Lead (QFN) packages have become very popular for turners, converters and audio amplifiers, among others applications, needing efficient power dissipation in small footprints. Since semiconductor junction temperature (TJ) is a critical parameter in the product quality. And to ensure that die temperature does not exceed the maximum allowable TJ, a thermal analysis conducted in an earlier development phase is essential to avoid repeated re-designs process with huge losses in cost and time. A simulation tool capable to estimate die temperature of components with QFN package was developed. Allow establish a non-empirical way to define an acceptance criterion for amount of voids in solder interface between its exposed pad and Printed Circuit Board (PCB) to be applied during industrialization process, and evaluate the impact of PCB designs parameters. Targeting PCB layout designer as an end user for the application, a user-friendly interface (GUI) was implemented allowing user to introduce design parameters in a convenient and secure way and hiding all the complexity of finite element simulation process. This cost effective tool turns transparent a simulating process and provides useful outputs after acceptable time, which can be adopted by PCB designers, preventing potential risks during the design stage and make product economically efficient by not oversizing it. This article gathers relevant information related to the design and implementation of the developed tool, presenting a parametric study conducted with it. The simulation tool was experimentally validated using a Thermal-Test-Chip (TTC) in a QFN open-cavity, in order to measure junction temperature (TJ) directly on the die under controlled and knowing conditions. Providing a short overview about standard thermal solutions and impacts in exposed pad packages (i.e. QFN), accurately describe the methods and techniques that the system designer should use to achieve optimum thermal performance, and demonstrate the effect of system-level constraints on the thermal performance of the design.Keywords: QFN packages, exposed pads, junction temperature, thermal management and measurements
Procedia PDF Downloads 256785 Determination of Gross Alpha and Gross Beta Activity in Water Samples by iSolo Alpha/Beta Counting System
Authors: Thiwanka Weerakkody, Lakmali Handagiripathira, Poshitha Dabare, Thisari Guruge
Abstract:
The determination of gross alpha and beta activity in water is important in a wide array of environmental studies and these parameters are considered in international legislations on the quality of water. This technique is commonly applied as screening method in radioecology, environmental monitoring, industrial applications, etc. Measuring of Gross Alpha and Beta emitters by using iSolo alpha beta counting system is an adequate nuclear technique to assess radioactivity levels in natural and waste water samples due to its simplicity and low cost compared with the other methods. Twelve water samples (Six samples of commercially available bottled drinking water and six samples of industrial waste water) were measured by standard method EPA 900.0 consisting of the gas-less, firm wear based, single sample, manual iSolo alpha beta counter (Model: SOLO300G) with solid state silicon PIPS detector. Am-241 and Sr90/ Y90 calibration standards were used to calibrate the detector. The minimum detectable activities are 2.32mBq/L and 406mBq/L, for alpha and beta activity, respectively. Each of the 2L water samples was evaporated (at low heat) to a small volume and transferred into 50mm stainless steel counting planchet evenly (for homogenization) and heated by IR lamp and the constant weighted residue was obtained. Then the samples were counted for gross alpha and beta. Sample density on the planchet area was maintained below 5mg/cm. Large quantities of solid wastes sludges and waste water are generated every year due to various industries. This water can be reused for different applications. Therefore implementation of water treatment plants and measuring water quality parameters in industrial waste water discharge is very important before releasing them into the environment. This waste may contain different types of pollutants, including radioactive substances. All these measured waste water samples having gross alpha and beta activities, lower than the maximum tolerance limits for industrial waste water discharge of industrial waste in to inland surface water, that is 10-9µCi/mL and 10-8µCi/mL for gross alpha and beta respectively (National Environmental Act, No. 47 of 1980). This is according to extraordinary gazette of the democratic socialist republic of Sri Lanka in February 2008. The measured water samples were below the recommended radioactivity levels and do not pose any radiological hazard when releasing the environment. Drinking water is an essential requirement of life. All the drinking water samples were below the permissible levels of 0.5Bq/L for gross alpha activity and 1Bq/L for gross beta activity. The values have been proposed by World Health Organization in 2011; therefore the water is acceptable for consumption of humans without any further clarification with respect to their radioactivity. As these screening levels are very low, the individual dose criterion (IDC) would usually not be exceeded (0.1mSv y⁻¹). IDC is a criterion for evaluating health risks from long term exposure to radionuclides in drinking water. Recommended level of 0.1mSv/y expressed a very low level of health risk. This monitoring work will be continued further for environmental protection purposes.Keywords: drinking water, gross alpha, gross beta, waste water
Procedia PDF Downloads 198784 Comparative Correlation Investigation of Polynuclear Aromatic Hydrocarbons (PAHs) in Soils of Different Land Uses: Sources Evaluation Perspective
Authors: O. Onoriode Emoyan, E. Eyitemi Akporhonor, Charles Otobrise
Abstract:
Polycyclic Aromatic Hydrocarbons (PAHs) are formed mainly as a result of incomplete combustion of organic materials during industrial, domestic activities or natural occurrence. Their toxicity and contamination of terrestrial and aquatic ecosystem have been established. Though with limited validity index, previous research has focused on PAHs isomer pair ratios of variable physicochemical properties in source identification. The objective of this investigation was to determine the empirical validity of Pearson correlation coefficient (PCC) and cluster analysis (CA) in PAHs source identification along soil samples of different land uses. Therefore, 16 PAHs grouped as endocrine disruption substances (EDSs) were determined in 10 sample stations in top and sub soils seasonally. PAHs was determined the use of Varian 300 gas chromatograph interfaced with flame ionization detector. Instruments and reagents used are of standard and chromatographic grades respectively. PCC and CA results showed that the classification of PAHs along kinetically and thermodyanamically-favoured and those derived directly from plants product through biologically mediated processes used in source signature is about the predominance PAHs are likely to be. Therefore the observed PAHs in the studied stations have trace quantities of the vast majority of the sixteen un-substituted PAHs which may ultimately inhabit the actual source signature authentication. Type and extent of bacterial metabolism, transformation products/substrates, and environmental factors such as: salinity, pH, oxygen concentration, nutrients, light intensity, temperature, co-substrates and environmental medium are hereby recommended as factors to be considered when evaluating possible sources of PAHs.Keywords: comparative correlation, kinetically and thermodynamically-favored PAHs, pearson correlation coefficient, cluster analysis, sources evaluation
Procedia PDF Downloads 419783 Electrospun Conducting Polymer/Graphene Composite Nanofibers for Gas Sensing Applications
Authors: Aliaa M. S. Salem, Soliman I. El-Hout, Amira Gaber, Hassan Nageh
Abstract:
Nowadays, the development of poisonous gas detectors is considered to be an urgent matter to secure human health and the environment from poisonous gases, in view of the fact that even a minimal amount of poisonous gas can be fatal. Of these concerns, various inorganic or organic sensing materials have been used. Among these are conducting polymers, have been used as the active material in the gassensorsdue to their low-cost,easy-controllable molding, good electrochemical properties including facile fabrication process, inherent physical properties, biocompatibility, and optical properties. Moreover, conducting polymer-based chemical sensors have an amazing advantage compared to the conventional one as structural diversity, facile functionalization, room temperature operation, and easy fabrication. However, the low selectivity and conductivity of conducting polymers motivated the doping of it with varied materials, especially graphene, to enhance the gas-sensing performance under ambient conditions. There were a number of approaches proposed for producing polymer/ graphene nanocomposites, including template-free self-assembly, hard physical template-guided synthesis, chemical, electrochemical, and electrospinning...etc. In this work, we aim to prepare a novel gas sensordepending on Electrospun nanofibers of conducting polymer/RGO composite that is the effective and efficient expectation of poisonous gases like ammonia, in different application areas such as environmental gas analysis, chemical-,automotive- and medical industries. Moreover, our ultimate objective is to maximize the sensing performance of the prepared sensor and to check its recovery properties.Keywords: electro spinning process, conducting polymer, polyaniline, polypyrrole, polythiophene, graphene oxide, reduced graphene oxide, functionalized reduced graphene oxide, spin coating technique, gas sensors
Procedia PDF Downloads 186782 Thermoelectric Blanket for Aiding the Treatment of Cerebral Hypoxia and Other Related Conditions
Authors: Sarayu Vanga, Jorge Galeano-Cabral, Kaya Wei
Abstract:
Cerebral hypoxia refers to a condition in which there is a decrease in oxygen supply to the brain. Patients suffering from this condition experience a decrease in their body temperature. While there isn't any cure to treat cerebral hypoxia as of date, certain procedures are utilized to help aid in the treatment of the condition. Regulating the body temperature is an example of one of those procedures. Hypoxia is well known to reduce the body temperature of mammals, although the neural origins of this response remain uncertain. In order to speed recovery from this condition, it is necessary to maintain a stable body temperature. In this study, we present an approach to regulating body temperature for patients who suffer from cerebral hypoxia or other similar conditions. After a thorough literature study, we propose the use of thermoelectric blankets, which are temperature-controlled thermal blankets based on thermoelectric devices. These blankets are capable of heating up and cooling down the patient to stabilize body temperature. This feature is possible through the reversible effect that thermoelectric devices offer while behaving as a thermal sensor, and it is an effective way to stabilize temperature. Thermoelectricity is the direct conversion of thermal to electrical energy and vice versa. This effect is now known as the Seebeck effect, and it is characterized by the Seebeck coefficient. In such a configuration, the device has cooling and heating sides with temperatures that can be interchanged by simply switching the direction of the current input in the system. This design integrates various aspects, including a humidifier, ventilation machine, IV-administered medication, air conditioning, circulation device, and a body temperature regulation system. The proposed design includes thermocouples that will trigger the blanket to increase or decrease a set temperature through a medical temperature sensor. Additionally, the proposed design allows an efficient way to control fluctuations in body temperature while being cost-friendly, with an expected cost of 150 dollars. We are currently working on developing a prototype of the design to collect thermal and electrical data under different conditions and also intend to perform an optimization analysis to improve the design even further. While this proposal was developed for treating cerebral hypoxia, it can also aid in the treatment of other related conditions, as fluctuations in body temperature appear to be a common symptom that patients have for many illnesses.Keywords: body temperature regulation, cerebral hypoxia, thermoelectric, blanket design
Procedia PDF Downloads 159781 Potentiometric Determination of Moxifloxacin in Some Pharmaceutical Formulation Using PVC Membrane Sensors
Authors: M. M. Hefnawy, A. M. A. Homoda, M. A. Abounassif, A. M. Alanazia, A. Al-Majed, Gamal A. E. Mostafa
Abstract:
PVC membrane sensors using different approach e.g. ion-pair, ionophore, and Schiff-base has been used as testing membrane sensor. Analytical applications of membrane sensors for direct measurement of variety of different ions in complex biological and environmental sample are reported. The most important step of such PVC membrane sensor is the sensing active material. The potentiometric sensors have some outstanding advantages including simple design, operation, wide linear dynamic range, relative fast response time, and rotational selectivity. The analytical applications of these techniques to pharmaceutical compounds in dosage forms are also discussed. The construction and electrochemical response characteristics of Poly (vinyl chloride) membrane sensors for moxifloxacin HCl (MOX) are described. The sensing membranes incorporate ion association complexes of moxifloxacin cation and sodium tetraphenyl borate (NaTPB) (sensor 1), phosphomolybdic acid (PMA) (sensor 2) or phosphotungstic acid (PTA) (sensor 3) as electroactive materials. The sensors display a fast, stable and near-Nernstian response over a relative wide moxifloxacin concentration range (1 ×10-2-4.0×10-6, 1 × 10-2-5.0×10-6, 1 × 10-2-5.0×10-6 M), with detection limits of 3×10-6, 4×10-6 and 4.0×10-6 M for sensor 1, 2 and 3, respectively over a pH range of 6.0-9.0. The sensors show good discrimination of moxifloxacin from several inorganic and organic compounds. The direct determination of 400 µg/ml of moxifloxacin show an average recovery of 98.5, 99.1 and 98.6 % and a mean relative standard deviation of 1.8, 1.6 and 1.8% for sensors 1, 2, and 3 respectively. The proposed sensors have been applied for direct determination of moxifloxacin in some pharmaceutical preparations. The results obtained by determination of moxifloxacin in tablets using the proposed sensors are comparable favorably with those obtained using the US Pharmacopeia method. The sensors have been used as indicator electrodes for potentiometric titration of moxifloxacin.Keywords: potentiometry, PVC, membrane sensors, ion-pair, ionophore, schiff-base, moxifloxacin HCl, sodium tetraphenyl borate, phosphomolybdic acid, phosphotungstic acid
Procedia PDF Downloads 439780 Culture Sustainability in Contemporary Vernacular Architecture: Muscat International Airport Case Study
Authors: Soheir Mohamed Hegazy
Abstract:
Culture sustainability, which reflects a deep respect for people and history, is a cause of concern in contemporary architecture. Adopting ultramodern architecture styles was initiated in the 20th century by a plurality of states worldwide. Only a few countries, including Oman, realized that fashionable architectural designs ignore cultural values, identity, the context of its environment, economic perspective, and social performance. Stirring the Sultanate of Oman from being a listless and closed community to a modern country started in the year 1970. Despite unprecedented development in all aspects of Omani people's life, the leadership and the public had the capability to adjust to the changing global challenges without compromising social values and identity. This research provides a close analysis of one of the recent examples of contemporary vernacular architecture in the Sultanate of Oman, as a case study, Oman International Airport. The said airport gained an international appreciation for its Omani-themed architecture, distinguished traveler experience, and advanced technology. Accordingly, it was selected by the World Travel Awards as the Best Tourism Development Project in the Middle East only four weeks afterward after starting its operation. This paper aims to transfer this successful design approach of integrating the latest trends in technology, systems, eco-friendly aspects, and materials with the traditional Omani architectural features, which reflects symbiotic harmony of the community, individuals, and environment to other countries, designers, researchers, and students. In addition, the paper aims to encourage architects and teachers to take responsibility for valorizing built heritage as a source of inspiration for modern architecture, which could be considered as an added value. The work depends on reviewing the relevant literature, a case study, interviews with two architects who were involved in the project’s site work, and one current high-ranking employee in the airport besides data analysis and conclusion.Keywords: contemporary vernacular architecture, culture sustainability, Oman international airport, current Omani architecture type
Procedia PDF Downloads 142779 Hydrometallurgical Processing of a Nigerian Chalcopyrite Ore
Authors: Alafara A. Baba, Kuranga I. Ayinla, Folahan A. Adekola, Rafiu B. Bale
Abstract:
Due to increasing demands and diverse applications of copper oxide as pigment in ceramics, cuprammonium hydroxide solution for rayon, p-type semi-conductor, dry cell batteries production and as safety disposal of hazardous materials, a study on the hydrometallurgical operations involving leaching, solvent extraction and precipitation for the recovery of copper for producing high grade copper oxide from a Nigerian chalcopyrite ore in chloride media has been examined. At a particular set of experimental parameter with respect to acid concentration, reaction temperature and particle size, the leaching investigation showed that the ore dissolution increases with increasing acid concentration, temperature and decreasing particle diameter at a moderate stirring. The kinetics data has been analyzed and was found to follow diffusion control mechanism. At optimal conditions, the extent of ore dissolution reached 94.3%. The recovery of the total copper from the hydrochloric acid-leached chalcopyrite ore was undertaken by solvent extraction and precipitation techniques, prior to the beneficiation of the purified solution as copper oxide. The purification of the leach liquor was firstly done by precipitation of total iron and manganese using Ca(OH)2 and H2O2 as oxidizer at pH 3.5 and 4.25, respectively. An extraction efficiency of 97.3% total copper was obtained by 0.2 mol/L Dithizone in kerosene at 25±2ºC within 40 minutes, from which ≈98% Cu from loaded organic phase was successfully stripped by 0.1 mol/L HCl solution. The beneficiation of the recovered pure copper solution was carried out by crystallization through alkali addition followed by calcination at 600ºC to obtain high grade copper oxide (Tenorite, CuO: 05-0661). Finally, a simple hydrometallurgical scheme for the operational extraction procedure amenable for industrial utilization and economic sustainability was provided.Keywords: chalcopyrite ore, Nigeria, copper, copper oxide, solvent extraction
Procedia PDF Downloads 393778 (De)Motivating Mitigation Behavior: An Exploratory Framing Study Applied to Sustainable Food Consumption
Authors: Youval Aberman, Jason E. Plaks
Abstract:
This research provides initial evidence that self-efficacy of mitigation behavior – the belief that one’s action can make a difference on the environment – can be implicitly inferred from the way numerical information is presented in environmental messages. The scientific community sees climate change as a pressing issue, but the general public tends to construe climate change as an abstract phenomenon that is psychologically distant. As such, a main barrier to pro-environmental behavior is that individuals often believe that their own behavior makes little to no difference on the environment. When it comes to communicating how the behavior of billions of individuals affects global climate change, it might appear valuable to aggregate those billions and present the shocking enormity of the resources individuals consume. This research provides initial evidence that, in fact, this strategy is ineffective; presenting large-scale aggregate data dilutes the contribution of the individual and impedes individuals’ motivation to act pro-environmentally. The high-impact, underrepresented behavior of eating a sustainable diet was chosen for the present studies. US Participants (total N = 668) were recruited online for a study on ‘meat and the environment’ and received information about some of resources used in meat production – water, CO2e, and feed – with numerical information that varied in its frame of reference. A ‘Nation’ frame of reference discussed the resources used in the beef industry, such as the billions of CO2e released daily by the industry, while a ‘Meal’ frame of reference presented the resources used in the production of a single beef dish. Participants completed measures of pro-environmental attitudes and behavioral intentions, either immediately (Study 1) or two days (Study 2) after reading the information. In Study 2 (n = 520) participants also indicated whether they consumed less or more meat than usual. Study 2 included an additional control condition that contained no environmental data. In Study 1, participants who read about meat production at a national level, compared to at a meal level, reported lower motivation to make ecologically conscious dietary choices and reported lower behavioral intention to change their diet. In Study 2, a similar pattern emerged, with the added insight that the Nation condition, but not the Meal condition, deviated from the control condition. Participants across conditions, on average, reduced their meat consumption in the duration of Study 2, except those in the Nation condition who remained unchanged. Presenting nation-wide consequences of human behavior is a double-edged sword: Framing in a large scale might reveal the relationship between collective actions and environmental issues, but it hinders the belief that individual actions make a difference.Keywords: climate change communication, environmental concern, meat consumption, motivation
Procedia PDF Downloads 158777 The Experimental and Numerical Analysis of the Joining Processes for Air Conditioning Systems
Authors: M.St. Węglowski, D. Miara, S. Błacha, J. Dworak, J. Rykała, K. Kwieciński, J. Pikuła, G. Ziobro, A. Szafron, P. Zimierska-Nowak, M. Richert, P. Noga
Abstract:
In the paper the results of welding of car’s air-conditioning elements are presented. These systems based on, mainly, the environmental unfriendly refrigerants. Thus, the producers of cars will have to stop using traditional refrigerant and to change it to carbon dioxide (R744). This refrigerant is environmental friendly. However, it should be noted that the air condition system working with R744 refrigerant operates at high temperature (up to 150 °C) and high pressure (up to 130 bar). These two parameters are much higher than for other refrigerants. Thus new materials, design as well as joining technologies are strongly needed for these systems. AISI 304 and 316L steels as well as aluminium alloys 5xxx are ranked among the prospective materials. As a joining process laser welding, plasma welding, electron beam welding as well as high rotary friction welding can be applied. In the study, the metallographic examination based on light microscopy as well as SEM was applied to estimate the quality of welded joints. The analysis of welding was supported by numerical modelling based on Sysweld software. The results indicated that using laser, plasma and electron beam welding, it is possible to obtain proper quality of welds in stainless steel. Moreover, high rotary friction welding allows to guarantee the metallic continuity in the aluminium welded area. The metallographic examination revealed that the grain growth in the heat affected zone (HAZ) in laser and electron beam welded joints were not observed. It is due to low heat input and short welding time. The grain growth and subgrains can be observed at room temperature when the solidification mode is austenitic. This caused low microstructural changes during solidification. The columnar grain structure was found in the weld metal. Meanwhile, the equiaxed grains were detected in the interface. The numerical modelling of laser welding process allowed to estimate the temperature profile in the welded joint as well as predicts the dimensions of welds. The agreement between FEM analysis and experimental data was achieved.Keywords: car’s air–conditioning, microstructure, numerical modelling, welding
Procedia PDF Downloads 408776 Carbon Electrode Materials for Supercapacitors
Authors: Yu. Mateyshina, A. Ulihin, N. Uvarov
Abstract:
Supercapacitors are one of the most promising devices for energy storage applications as they can provide higher power density than batteries and higher energy density than conventional dielectric capacitors. Carbon materials with various microtextures are considered as main candidates for supercapacitors in terms of high surface area, interconnected pore structure, controlled pore size, high electrical conductivity and environmental friendliness. The specific capacitance (C) of the electrode material of the Electrochemical Double Layer Capacitors (EDLC) is known to depend on the specific surface area (Ss) and the pore structure. Activated carbons are most commonly used in supercapacitors because of their high surface area (Ss ≥ 1000 m2/g), good adhesion to electrolytes and low cost. In this work, electrochemical properties of new microporous and mesoporous carbon electrode materials were studied. The aim of the work was to investigate the relationship between the specific capacitance and specific surface area in a series of materials prepared from different organic precursors.. As supporting matrixes different carbon samples with Ss = 100-2000 m2/g were used. The materials were modified by treatment in acids (H2SO4, HNO3, acetic acid) in order to enable surface hydrophilicity. Then nanoparticles of transition metal oxides (for example NiO) were deposited on the carbon surfaces using methods of salts impregnation, mechanical treatment in ball mills and the precursors decomposition. The electrochemical characteristics of electrode hybrid materials were investigated in a symmetrical two-electrode cell using an impedance spectroscopy, voltammetry in both potentiodynamic and galvanostatic modes. It was shown that the value of C for the materials under study strongly depended on the preparation method of the electrode and the type of electrolyte (1 M H2SO4, 6 M KOH, 1 M LiClO4 in acetonitryl). Specific capacity may be increased by the introduction of nanoparticles from 50-100 F/g for initial carbon materials to 150-300 F/g for nanocomposites which may be used in supercapacitors. The work is supported by the по SC-14.604.21.0013.Keywords: supercapacitors, carbon electrode, mesoporous carbon, electrochemistry
Procedia PDF Downloads 305775 Sustainability in Space: Material Efficiency in Space Missions
Authors: Hamda M. Al-Ali
Abstract:
From addressing fundamental questions about the history of the solar system to exploring other planets for any signs of life have always been the core of human space exploration. This triggered humans to explore whether other planets such as Mars could support human life on them. Therefore, many planned space missions to other planets have been designed and conducted to examine the feasibility of human survival on them. However, space missions are expensive and consume a large number of various resources to be successful. To overcome these problems, material efficiency shall be maximized through the use of reusable launch vehicles (RLV) rather than disposable and expendable ones. Material efficiency is defined as a way to achieve service requirements using fewer materials to reduce CO2 emissions from industrial processes. Materials such as aluminum-lithium alloys, steel, Kevlar, and reinforced carbon-carbon composites used in the manufacturing of spacecrafts could be reused in closed-loop cycles directly or by adding a protective coat. Material efficiency is a fundamental principle of a circular economy. The circular economy aims to cutback waste and reduce pollution through maximizing material efficiency so that businesses can succeed and endure. Five strategies have been proposed to improve material efficiency in the space industry, which includes waste minimization, introduce Key Performance Indicators (KPIs) to measure material efficiency, and introduce policies and legislations to improve material efficiency in the space sector. Another strategy to boost material efficiency is through maximizing resource and energy efficiency through material reusability. Furthermore, the environmental effects associated with the rapid growth in the number of space missions include black carbon emissions that lead to climate change. The levels of emissions must be tracked and tackled to ensure the safe utilization of space in the future. The aim of this research paper is to examine and suggest effective methods used to improve material efficiency in space missions so that space and Earth become more environmentally and economically sustainable. The objectives used to fulfill this aim are to identify the materials used in space missions that are suitable to be reused in closed-loop cycles considering material efficiency indicators and circular economy concepts. An explanation of how spacecraft materials could be re-used as well as propose strategies to maximize material efficiency in order to make RLVs possible so that access to space becomes affordable and reliable is provided. Also, the economic viability of the RLVs is examined to show the extent to which the use of RLVs has on the reduction of space mission costs. The environmental and economic implications of the increase in the number of space missions as a result of the use of RLVs are also discussed. These research questions are studied through detailed critical analysis of the literature, such as published reports, books, scientific articles, and journals. A combination of keywords such as material efficiency, circular economy, RLVs, and spacecraft materials were used to search for appropriate literature.Keywords: access to space, circular economy, material efficiency, reusable launch vehicles, spacecraft materials
Procedia PDF Downloads 113774 Phyto-Therapeutic, Functional and Nutritional Acclaims of Turnip (Brassica rapus L.): An Overview
Authors: Tabussam Tufail
Abstract:
Purpose: The core purpose of the current review article is to elaborate the phytochemicals present in turnip (brassica rapus l.) and also allied health claims. Plant-based foods contain a significant amount of bioactive compounds which provide desirable health benefits beyond the basic nutrition. Epidemiological evidence suggests that consumption of a diet rich in vegetables and fruits has positive implications for human health. Design: Potential of turnip peroxidase (TP) for the treatment of phenolic-contaminated solutions has been reviewed. However, issues of taste along with behavioral nutrition ought to be considered. So in the last decades, special attention has been paid towards edible plants, especially those that are rich in secondary metabolites (frequently called phytochemicals) and nowadays, there is an increasing interest in the antioxidant activity of such phytochemicals present in the diet. These chemicals favor nutritional and phytotherapy that is emerging as new concepts of health aid in recent years. Turnip is rich in these valuable ingredients though it can be employed as having health promoting and healing properties. Findings: Numerous bioactive components i.e. organic acids, phenolic compounds, turnip peroxidase, kaempeferol, vitamin-K, etc. are present in turnip. The review focused on the significance of plant derived (especially turnip) phenolic compounds as a source of certain beneficial compounds for human health. Owing to the presence of bioactive moieties, the turnip has high antioxidant activity, positive role in blood clotting, effectual in phenobarbital-induced sleeping time, effective against hepatic injury in diabetics and also have a good hepatoprotective role. Strong recommendations for consumption of nutraceuticals from turnip have become progressively popular to improve health, and to prevent from diseases.Keywords: phytochemicals, turnip, antioxidants, health benefits
Procedia PDF Downloads 235773 Development of Automatic Farm Manure Spreading Machine for Orchards
Authors: Barış Ozluoymak, Emin Guzel, Ahmet İnce
Abstract:
Since chemical fertilizers are used for meeting the deficiency of plant nutrients, its many harmful effects are not taken into consideration for the structure of the earth. These fertilizers are hampering the work of the organisms in the soil immediately after thrown to the ground. This interference is first started with a change of the soil pH and micro organismic balance is disrupted by reaction in the soil. Since there can be no fragmentation of plant residues, organic matter in the soil will be increasingly impoverished in the absence of micro organismic living. Biological activity reduction brings about a deterioration of the soil structure. If the chemical fertilization continues intensively, soils will get worse every year; plant growth will slow down and stop due to the intensity of chemical fertilizers, yield decline will be experienced and farmer will not receive an adequate return on his investment. In this research, a prototype of automatic farm manure spreading machine for orange orchards that not just manufactured in Turkey was designed, constructed, tested and eliminate the human drudgery involved in spreading of farm manure in the field. The machine comprised several components as a 5 m3 volume hopper, automatic controlled hydraulically driven chain conveyor device and side delivery conveyor belts. To spread the solid farm manure automatically, the machine was equipped with an electronic control system. The hopper and side delivery conveyor designs fitted between orange orchard tree row spacing. Test results showed that the control system has significant effects on reduction in the amount of unnecessary solid farm manure use and avoiding inefficient manual labor.Keywords: automatic control system, conveyor belt application, orchard, solid farm manure
Procedia PDF Downloads 285772 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study
Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari
Abstract:
The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two well known scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a case-study. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means of TRNSYS, which allows to simulate the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With TRNSYS it is possible to obtain quite accurate and reliable results, that allow to identify effective combinations building-HVAC system. The second step has consisted of using output data obtained with TRNSYS as input to the calculation model RETScreen, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing to determine the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while RETScreen provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model RETScreen for different design options. For example, the analysis performed on the building, taken as a case study, found that the most suitable plant solution, taking into account technical, economic and environmental aspects, is the one based on a CCHP system (Combined Cooling, Heating, and Power) using an internal combustion engine.Keywords: energy, system, building, cooling, electrical
Procedia PDF Downloads 573771 Concentration and Stability of Fatty Acids and Ammonium in the Samples from Mesophilic Anaerobic Digestion
Authors: Mari Jaakkola, Jasmiina Haverinen, Tiina Tolonen, Vesa Virtanen
Abstract:
These process monitoring of biogas plant gives valuable information of the function of the process and help to maintain a stable process. The costs of basic monitoring are often much lower than the costs associated with re-establishing a biologically destabilised plant. Reactor acidification through reactor overload is one of the most common reasons for process deterioration in anaerobic digesters. This occurs because of a build-up of volatile fatty acids (VFAs) produced by acidogenic and acetogenic bacteria. VFAs cause pH values to decrease, and result in toxic conditions in the reactor. Ammonia ensures an adequate supply of nitrogen as a nutrient substance for anaerobic biomass and increases system's buffer capacity, counteracting acidification lead by VFA production. However, elevated ammonia concentration is detrimental to the process due to its toxic effect. VFAs are considered the most reliable analytes for process monitoring. To obtain accurate results, sample storage and transportation need to be carefully controlled. This may be a challenge for off-line laboratory analyses especially when the plant is located far away from the laboratory. The aim of this study was to investigate the correlation between fatty acids, ammonium, and bacteria in the anaerobic digestion samples obtained from an industrial biogas factory. The stability of the analytes was studied comparing the results of the on-site analyses performed in the factory site to the results of the samples stored at room temperature and -18°C (up to 30 days) after sampling. Samples were collected in the biogas plant consisting of three separate mesofilic AD reactors (4000 m³ each) where the main feedstock was swine slurry together with a complex mixture of agricultural plant and animal wastes. Individual VFAs, ammonium, and nutrients (K, Ca, Mg) were studied by capillary electrophoresis (CE). Longer chain fatty acids (oleic, hexadecanoic, and stearic acids) and bacterial profiles were studied by GC-MSD (Gas Chromatography-Mass Selective Detector) and 16S rDNA, respectively. On-site monitoring of the analytes was performed by CE. The main VFA in all samples was acetic acid. However, in one reactor sample elevated levels of several individual VFAs and long chain fatty acids were detected. Also bacterial profile of this sample differed from the profiles of other samples. Acetic acid decomposed fast when the sample was stored in a room temperature. All analytes were stable when stored in a freezer. Ammonium was stable even at a room temperature for the whole testing period. One reactor sample had higher concentration of VFAs and long chain fatty acids than other samples. CE was utilized successfully in the on-site analysis of separate VFAs and NH₄ in the biogas production site. Samples should be analysed in the sampling day if stored in RT or freezed for longer storage time. Fermentation reject can be stored (and transported) at ambient temperature at least for one month without loss of NH₄. This gives flexibility to the logistic solutions when reject is used as a fertilizer.Keywords: anaerobic digestion, capillary electrophoresis, ammonium, bacteria
Procedia PDF Downloads 168770 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects
Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes
Abstract:
Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction
Procedia PDF Downloads 149769 Taking Risks to Get Pleasure: Reproductive Health Behaviour of Early Adolescents in Pantura Line, Indonesia
Authors: Juariah Salam Suryadi
Abstract:
North coast (Pantura) line is known as a high-risk area related to reproductive health. This is because along the line, there are many food stalls and entertainment industries that at night the function changed to be sexual transaction areas. This business line also facilitate circulation and transaction of drug and substance abuse. The environment conditions can influence adolescents who live in this area. It is because of adolescence characteristics that has high curiosity and looking for their identities. Therefore, purposes of this study were to explore reproductive health behaviour of early adolescents who lived in Pantura line and to suggest intervention based on the adolescents reproductive health conditions. This study was conducted in November 2016 among the seventh-grade students of Pusakajaya Junior High School 1 and 2, Subang District. Number of respondents were 269 students (Male=135, Female=134). The students were interviewed using a semi-structured questionnaire. Some teachers also interviewed to complement the data. The quantitative data was analyzed with univariate analysis, while content analysis was used for the qualitative data. Findings of this study showed that 85,2% of male students were smoker. Most of them started smoking at elementary school. Male students who often drunk alcohol were about 25,2% and all of them initiated to drink at elementary school. There were about 21,5% of male students ever used drug and substance abuse. There were 54,6% of the students that confessed having a lover. Most of them were female students. Sexual behaviour that ever done with their lovers were: holding hands (37,4%), kissing (4%) and embracing (6,8%). Although all of the students claimed to have never had sexual intercourse, but 5,9% of them said that they had friends who have had sexual intercourse. Most of the students also had friends with negative characteristics. Their friends were smoker (82,2%), drinker (53,2%) and drug abuse (42%). Most of the students recognized that they took the risks behaviour to get pleasure with their peers. Information from the teachers indicated that most problem of male students were smoking and drug and substance abuse; while sexuality including unwanted pregnancies were reproductive problems of many female students. Therefore, It is recommended to enhance understanding of the adolescents about risks of unhealthy behaviour through continuing reproductive health education, both in school and out of school. Policy support to create positive social environment and adolescents friendly is also suggested.Keywords: reproductive health, behaviour, early adolescents, pantura line
Procedia PDF Downloads 289768 Sustainable Solutions for Urban Problems: Industrial Container Housing for Endangered Communities in Maranhao, Brazil
Authors: Helida Thays Gomes Soares, Conceicao De Maria Pinheiro Correia, Fabiano Maciel Soares, Kleymer Silva
Abstract:
There is great discussion around populational increase in urban areas of the global south, and, consequently, the growth of inappropriate housing and the different ways humans have found to solve housing problems around the world. Sao Luís, the capital of the state of Maranhao is a good example. The 1.6 million inhabitant metropole is a colonial tropical city that shelters 22% of the population of Maranhão, brazilian state that still carries the scars of slavery in past centuries. In 2016, Brazilian Institute of Geography and Statistic found that 20% of Maranhão’s inhabitants were living in houses with external walls made of non-durable materials, like recycled wood, cardboard or soil. Out of this problematic, this study aims to propose interventions not only in the physical structure of irregular housing, but also to serve as a guide to intervene in the way eco-friendly, communitarian housing is seen by extreme poor zones inside metropolitan regions around big cities in the global south. The adaptation and reuse of industrial containers from the Harbor of Itaqui for housing is also an aim of the project. The great volume of discarded industrial containers may be an opportunity to solve housing deficit in the city. That way, through field research in São Luís’ neighborhoods mostly occupied by inappropriate housing, the study intends to raise ethnographical and physical values that help to shape new uses of industrial containers and recycled building materials, bringing the community into the process of shaping new-housing for local housing programs, changing the mindset of a concrete/brick model of building. The study used a general feasibility analysis of local engineers regarding strength of the locally used container for construction purposes, and also researched in-loco the current impressions of risky areas inhabitants of housing, traditional housing and the role they played as city shapers, evaluating their perceptions of what means to live and how their houses represent their personality.Keywords: container housing, civil construction, housing deficit, participatory design, sustainability
Procedia PDF Downloads 191767 Textile Wastewater Ecotoxicity Abatement after Aerobic Granular Sludge Treatment and Advanced Oxidation Process
Authors: Ana M. T. Mata, Alexiane Ligneul
Abstract:
Textile effluents are usually heavily loaded with organic carbon and color compounds, the latter being azo dyes in an estimated 70% of the case effluent posing a major challenge in environmental protection. In this study, the ecotoxicity of simulated textile effluent after biological treatment with anaerobic and aerobic phase (aerobic granular sludge, AGS) and after advanced oxidation processes (AOP) namely ozonation and UV irradiation as post-treatment, were tested to evaluate the fitness of this treatments for ecotoxicity abatement. AGS treatment achieved an 80% removal in both COD and color. AOP was applied with the intention to mineralize the metabolites resulting from biodecolorization of the azo dye Acid Red 14, especially the stable aromatic amine (4-amino-1-naphthalenesulfonic acid, 4A1NS). The ecotoxicity evaluation was based on growth inhibition of the algae Pseudokirchneriella subcapitata following OECD TG 201 except regarding the medium, MBL medium was used instead. Five replicate control cultures and samples were performed with an average STD of 2.7% regarding specific algae growth rate determination. It was found that untreated textile effluent holds an inhibition of specific growth rate of 82%. AGS treatment by itself is able to lower ecotoxicity to 53%. This is probably due to the high color removal of the treatment. AOP post-treatment with Ozone and UV irradiation improves the ecotoxicity abatment to 49 and 43% inhibition respectively, less significantly than previously thought. Since over 85% of 4A1NS was removed by either of the AOP (followed by HPLC), an individual ecotoxicity test of 4A1NS was performed showing that 4A1NS does not inhibit algae growth (0% inhibition). It was concluded that AGS treatment is able by itself to achieve a significant ecotoxicity abatement of textile effluent. The cost-benefit of AOP as a post-treatment have to be better accessed since their application resulted in an improvement of only 10% regarding ecotoxicity effluent removal. It was also found that the 4A1NS amine had no apparent effect on ecotoxicity. Further studies will be conducted to study where ecotoxicity is coming from after AGS biological treatment and how to eliminate it.Keywords: textile wastewate, ecotoxicity, aerobic granular sludge, AOP
Procedia PDF Downloads 164766 Investigation of the Effect of Anaerobic Digestate on Antifungal Activity and in Different Parameters of Maize
Authors: Nazia Zaffar, Alam Khan, Abdul Haq, Malik Badshah
Abstract:
Pakistan is an agricultural country. The increasing population leads to an increase in demand for food. A large number of crops are infected by different microbes, and nutrient deficiency of soil adversely affects the yield of crops. Furthermore, the use of chemical fertilizers like Nitrogen, Phosphorus, Potassium (NPK) Urea, and Diammonium phosphate (DAP) and pesticides have environmental consequences. Therefore, there is an urgent need to explore alternative renewable and sustainable biofertilizers. Maize is one of the top growing crops in Pakistan, but it has low yield compared to other countries due to deficiency of organic matter, widespread nutrients deficiency (phosphorus and nitrogen), unbalanced use of fertilizers and various fungal diseases. In order to get rid of all these disadvantages, Digestate emerged as a win-win opportunity for the control of a few plant diseases and a replacement for the chemical fertilizers. The present study was designed to investigate the effect of Anerobic digestate on Antifungal Activity and in different parameters of Maize. The antifungal activity, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC) against selected phytopathogens (Colletotrichum coccodis, Pythium ultimum, Phytophthora capsci, Rhizoctonia solani, Bipolaris oryzae and Fusarium Fujikuroi) were determined by microtiter plate method. The effect of various fertilizers in different growth parameters height, diameter, chlorophyll, leaf area, biomass, and yield were studied in field experiments. The extracts from anaerobic digestate have shown antifungal activity against selected phytopathogens, the highest activity was noted against P. ultimum, the MIC activity was high in case of P. ultimum and B. oryzae. The present study concludes that anaerobic digestate have a positive effect on maize growth and yield as well as an antifungal activity which can be potentially a good biofertilizer.Keywords: anaerobic digestate, antifungal activity, MIC, phytopathogens
Procedia PDF Downloads 125765 Chemical Composition and Biological Properties of Algerian Honeys
Authors: Ouchemoukh Salim, Amessis-Ouchemoukh Nadia, Guenaoui Nawel, Moumeni Lynda, Zaidi Hicham, Otmani Amar, Sadou Dyhia
Abstract:
Honey is a hive food rich in carbohydrates and water and it also has a lot of nutrients (enzymes, minerals, organic acids, phytochemicals...). It is used in different nutritional and therapeutic fields. Algerian honey was studied for its physicochemical parameters, nutritional values (moisture, brix, pH, electrical conductivity, and amounts of HMF, proteins, proline, total phenolic compounds and flavonoids) and some biological activities (antioxidant, anti-inflammatory and enzymatic anti-browning). The antioxidant activities of the samples were estimated using different methods (ABTS, DPPH free radicals scavenging, reducing power, and chelating ferrous activity). All honeys were acidic (3.45≤pH≤4.65). The color varied from mimosa yellow to dark brown. The specific rotation was levorotatory in most honey samples, and the electrical conductivity, hydroxymethylfurfural, and proline values agreed with the international honey requirements. For anti-inflammatory activity, the results showed that the inhibiting capacity of the denaturation of the BSA of the honey analyzed varied from 15 to 75 % with a maximum of activity at the concentration of 0,5 mg/ml. All honey exhibited enzymatic anti-browning on different slices of fruits. In fact, the results showed that the controls have the greatest browning unit compared to the honeys studied and PPO and POD enzymes had the lowest enzyme activity. High significant correlations were found between the color of honey, its antioxidant content and its biological activities (antioxidant, anti-inflammatory and enzymatic anti-browning). The dark color of honey is a good indicator of the best biological properties, therefore, the best nutritional and therapeutic values.Keywords: honey, physico-chemical parameters, bioactive compounds, biological properties
Procedia PDF Downloads 55764 Beta-Carotene Attenuates Cognitive and Hepatic Impairment in Thioacetamide-Induced Rat Model of Hepatic Encephalopathy via Mitigation of MAPK/NF-κB Signaling Pathway
Authors: Marawan Abd Elbaset Mohamed, Hanan A. Ogaly, Rehab F. Abdel-Rahman, Ahmed-Farid O.A., Marwa S. Khattab, Reham M. Abd-Elsalam
Abstract:
Liver fibrosis is a severe worldwide health concern due to various chronic liver disorders. Hepatic encephalopathy (HE) is one of its most common complications affecting liver and brain cognitive function. Beta-Carotene (B-Car) is an organic, strongly colored red-orange pigment abundant in fungi, plants, and fruits. The study attempted to know B-Car neuroprotective potential against thioacetamide (TAA)-induced neurotoxicity and cognitive decline in HE in rats. Hepatic encephalopathy was induced by TAA (100 mg/kg, i.p.) three times per week for two weeks. B-Car was given orally (10 or 20 mg/kg) daily for two weeks after TAA injections. Organ body weight ratio, Serum transaminase activities, liver’s antioxidant parameters, ammonia, and liver histopathology were assessed. Also, the brain’s mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NF-κB), antioxidant parameters, adenosine triphosphate (ATP), adenosine monophosphate (AMP), norepinephrine (NE), dopamine (DA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) cAMP response element-binding protein (CREB) expression and B-cell lymphoma 2 (Bcl-2) expression were measured. The brain’s cognitive functions (Spontaneous locomotor activity, Rotarod performance test, Object recognition test) were assessed. B-Car prevented alteration of the brain’s cognitive function in a dose-dependent manner. The histopathological outcomes supported these biochemical evidences. Based on these results, it could be established that B-Car could be assigned to treat the brain’s neurotoxicity consequences of HE via downregualtion of MAPK/NF-κB signaling pathways.Keywords: beta-carotene, liver injury, MAPK, NF-κB, rat, thioacetamide
Procedia PDF Downloads 154763 Phenolic Composition and Antioxidant Property of Honey with Dried Apricots
Authors: Jasna Čanadanović-Brunet, Gordana Ćetković, Sonja Djilas, Vesna Tumbas-Šaponjac, Jelena Vulić, Sladjana Stajčić
Abstract:
Honey, produced by the honeybee, is a natural saturated sugar solution, which is mainly composed of a complex mixture of carbohydrates. Besides this, it also contains certain minor constituents, proteins, enzymes, amino and organic acids, lipids, vitamins, phenolic acids, flavonoids and carotenoids. Honey serves as a source of natural antioxidants, which are effective in reducing the risk of heart disease, cancer, immune-system decline, cataracts, and different inflammatory processes. Honey is consumed in its natural form alone, but also in combination with nuts and various kinds of dried fruits (plums, figs, cranberries, apricots etc.). The aim of this research was to investigate the contribution of dried apricot addition to polyphenols and flavonoids contents and antioxidant activities of honey. Some individual phenolic compounds in Serbian polyfloral honey (PH), linden honey (LH) and also in their mixtures with dried apricot, in 40% mass concentrations (PH40; LH40), were identified and quantified by HPLC. The most dominant phenolic compound was: gallic acid in LH (11.14 mg/100g), LH40 (42.65 mg/100g), PH (7.24 mg/100g) and catehin in PH40 (11.83 mg/100g). The antioxidant activity of PH, LH, PH40 and LH40 was tested by measuring their ability to scavenge hydroxyl radicals (OH) by electron spin resonance spectroscopy (ESR). Honey samples with 40% dried apricot exhibited better antioxidant activity measured by hydroxyl radical scavenging activity. The EC50 values, the amount of antioxidant necessary to decrease the initial concentration of OH radicals by 50%, were: EC50PH=3.36 mg/ml, EC50LH=13.36 mg/ml, EC50PH40=2.29 mg/ml, EC50 LH40=7.78 mg/ml. Our results indicate that supplementation of polyfloral honey and linden honey with dried apricots improves antioxidant activity of honey by enriching the phenolic composition.Keywords: honey, dried apricot, HPLC, hydroxyl radical
Procedia PDF Downloads 356762 Optimal Tetra-Allele Cross Designs Including Specific Combining Ability Effects
Authors: Mohd Harun, Cini Varghese, Eldho Varghese, Seema Jaggi
Abstract:
Hybridization crosses find a vital role in breeding experiments to evaluate the combining abilities of individual parental lines or crosses for creation of lines with desirable qualities. There are various ways of obtaining progenies and further studying the combining ability effects of the lines taken in a breeding programme. Some of the most common methods are diallel or two-way cross, triallel or three-way cross, tetra-allele or four-way cross. These techniques help the breeders to improve the quantitative traits which are of economical as well as nutritional importance in crops and animals. Amongst these methods, tetra-allele cross provides extra information in terms of the higher specific combining ability (sca) effects and the hybrids thus produced exhibit individual as well as population buffering mechanism because of the broad genetic base. Most of the common commercial hybrids in corn are either three-way or four-way cross hybrids. Tetra-allele cross came out as the most practical and acceptable scheme for the production of slaughter pigs having fast growth rate, good feed efficiency, and carcass quality. Tetra-allele crosses are mostly used for exploitation of heterosis in case of commercial silkworm production. Experimental designs involving tetra-allele crosses have been studied extensively in literature. Optimality of designs has also been considered as a researchable issue. In practical situations, it is advisable to include sca effects in the model as this information is needed by the breeder to improve economically and nutritionally important quantitative traits. Thus, a model that provides information regarding the specific traits by utilizing sca effects along with general combining ability (gca) effects may help the breeders to deal with the problem of various stresses. In this paper, a model for experimental designs involving tetra-allele crosses that incorporates both gca and sca has been defined. Optimality aspects of such designs have been discussed incorporating sca effects in the model. Orthogonality conditions have been derived for block designs ensuring estimation of contrasts among the gca effects, after eliminating the nuisance factors, independently from sca effects. User friendly SAS macro and web solution (webPTC) have been developed for the generation and analysis of such designs.Keywords: general combining ability, optimality, specific combining ability, tetra-allele cross, webPTC
Procedia PDF Downloads 137761 Diversification of Rice-Based Cropping Systems under Irrigated Condition
Authors: A. H. Nanher, N. P. Singh
Abstract:
In India, Agriculture is largely in rice- based cropping system. It has indicated decline in factor productivity along with emergence of multi - nutrient deficiency, buildup of soil pathogen and weed flora because it operates and removes nutrients from the same rooting depth. In designing alternative cropping systems, the common approaches are crop intensification, crop diversification and cultivar options. The intensification leads to the diversification of the cropping system. Intensification is achieved by introducing an additional component crop in a pre-dominant sequential system by desirable adjustments in cultivars of one or all the component crops. Invariably, this results in higher land use efficiency and productivity per unit time Crop Diversification through such crop and inclusion of fodder crops help to improve the economic situation of small and marginal farmers because of higher income. Inclusion of crops in sequential and intercropping systems reduces some obnoxious weeds through formation of canopies due to competitive planting pattern and thus provides an opportunity to utilize cropping systems as a tool of weed management with non-chemical means. Use of organic source not only acts as supplement for fertilizer (nitrogen) but also improve the physico-chemical properties of soils. Production and use of nitrogen rich biomass offer better prospect for supplementing chemical fertilizers on regular basis. Such biological diversity brings yield and economic stability because of its potential for compensation among components of the system. In a particular agro-climatic and resource condition, the identification of most suitable crop sequence is based on its productivity, stability, land use efficiency as well as production efficiency and its performance is chiefly judged in terms of productivity and net return.Keywords: integrated farming systems, sustainable intensification, system of crop intensification, wheat
Procedia PDF Downloads 424