Search results for: optimality
66 BIASS in the Estimation of Covariance Matrices and Optimality Criteria
Authors: Juan M. Rodriguez-Diaz
Abstract:
The precision of parameter estimators in the Gaussian linear model is traditionally accounted by the variance-covariance matrix of the asymptotic distribution. However, this measure can underestimate the true variance, specially for small samples. Traditionally, optimal design theory pays attention to this variance through its relationship with the model's information matrix. For this reason it seems convenient, at least in some cases, adapt the optimality criteria in order to get the best designs for the actual variance structure, otherwise the loss in efficiency of the designs obtained with the traditional approach may be very important.Keywords: correlated observations, information matrix, optimality criteria, variance-covariance matrix
Procedia PDF Downloads 44265 On Multiobjective Optimization to Improve the Scalability of Fog Application Deployments Using Fogtorch
Authors: Suleiman Aliyu
Abstract:
Integrating IoT applications with Fog systems presents challenges in optimization due to diverse environments and conflicting objectives. This study explores achieving Pareto optimal deployments for Fog-based IoT systems to address growing QoS demands. We introduce Pareto optimality to balance competing performance metrics. Using the FogTorch optimization framework, we propose a hybrid approach (Backtracking search with branch and bound) for scalable IoT deployments. Our research highlights the advantages of Pareto optimality over single-objective methods and emphasizes the role of FogTorch in this context. Initial results show improvements in IoT deployment cost in Fog systems, promoting resource-efficient strategies.Keywords: pareto optimality, fog application deployment, resource allocation, internet of things
Procedia PDF Downloads 8764 Optimization of Fourth Order Discrete-Approximation Inclusions
Authors: Elimhan N. Mahmudov
Abstract:
The paper concerns the necessary and sufficient conditions of optimality for Cauchy problem of fourth order discrete (PD) and discrete-approximate (PDA) inclusions. The main problem is formulation of the fourth order adjoint discrete and discrete-approximate inclusions and transversality conditions, which are peculiar to problems including fourth order derivatives and approximate derivatives. Thus the necessary and sufficient conditions of optimality are obtained incorporating the Euler-Lagrange and Hamiltonian forms of inclusions. Derivation of optimality conditions are based on the apparatus of locally adjoint mapping (LAM). Moreover in the application of these results we consider the fourth order linear discrete and discrete-approximate inclusions.Keywords: difference, optimization, fourth, approximation, transversality
Procedia PDF Downloads 37463 Optimality Conditions and Duality for Semi-Infinite Mathematical Programming Problems with Equilibrium Constraints, Using Convexificators
Authors: Shashi Kant Mishra
Abstract:
In this paper, we consider semi-infinite mathematical programming problems with equilibrium constraints (SIMPEC). We establish necessary and sufficient optimality conditions for the SIMPEC, using convexificators. We study the Wolfe type dual problem for the SIMPEC under the ∂∗convexity assumptions. A Mond-Weir type dual problem is also formulated and studied for the SIMPEC under the ∂∗-convexity, ∂∗-pseudoconvexity and ∂∗quasiconvexity assumptions. Weak duality theorems are established to relate the SIMPEC and two dual programs in the framework of convexificators. Further, strong duality theorems are obtained under generalized standard Abadie constraint qualification (GS-ACQ).Keywords: mathematical programming problems with equilibrium constraints, optimality conditions, semi-infinite programming, convexificators
Procedia PDF Downloads 32762 Optimality Theoretic Account of Indian Loanwords in Hadhrami Arabic
Authors: Mohammed Saleh Lahmdi, Hassan Obeid Alfadly
Abstract:
This study explores an optimality-theoretic account of Indian loanwords in Hadhrami Arabic (henceforth HA), a variety of Arabic spoken in Hadhramout Province in the coastal areas and Hadhramout Valley. The purpose of this paper is to find out how the phonological forms of Indian loanwords can be accounted for from an OT standpoint. To achieve this purpose, two main instruments were implemented: participant observation and interview. The sample of this study was selected carefully with certain characteristics by judgment sampling consisting of eleven informants. An ethnographic qualitative approach was employed to find out the phonological articulations that the researcher encountered during the implementation. Many phonological processes are used and several markedness and faithfulness constraints have been interacted in conflict in order to choose the optimal form of Hadhrami realisations. The findings of the study confirm that the Hadhrami syllable structure prevails over the donor language, i.e., the Indian (mainly Urdu) language. Specifically, markedness constraints dominate faithfulness ones when most of the Indian loanwords are incorporated into HA.Keywords: linguistic borrowing, optimality theory, Hadhrami Arabic, loanword, phonological processes
Procedia PDF Downloads 4261 Proposal of Optimality Evaluation for Quantum Secure Communication Protocols by Taking the Average of the Main Protocol Parameters: Efficiency, Security and Practicality
Authors: Georgi Bebrov, Rozalina Dimova
Abstract:
In the field of quantum secure communication, there is no evaluation that characterizes quantum secure communication (QSC) protocols in a complete, general manner. The current paper addresses the problem concerning the lack of such an evaluation for QSC protocols by introducing an optimality evaluation, which is expressed as the average over the three main parameters of QSC protocols: efficiency, security, and practicality. For the efficiency evaluation, the common expression of this parameter is used, which incorporates all the classical and quantum resources (bits and qubits) utilized for transferring a certain amount of information (bits) in a secure manner. By using criteria approach whether or not certain criteria are met, an expression for the practicality evaluation is presented, which accounts for the complexity of the QSC practical realization. Based on the error rates that the common quantum attacks (Measurement and resend, Intercept and resend, probe attack, and entanglement swapping attack) induce, the security evaluation for a QSC protocol is proposed as the minimum function taken over the error rates of the mentioned quantum attacks. For the sake of clarity, an example is presented in order to show how the optimality is calculated.Keywords: quantum cryptography, quantum secure communcation, quantum secure direct communcation security, quantum secure direct communcation efficiency, quantum secure direct communcation practicality
Procedia PDF Downloads 18260 On the Design of Robust Governors of Steam Power Systems Using Polynomial and State-Space Based H∞ Techniques: A Comparative Study
Authors: Rami A. Maher, Ibraheem K. Ibraheem
Abstract:
This work presents a comparison study between the state-space and polynomial methods for the design of the robust governor for load frequency control of steam turbine power systems. The robust governor is synthesized using the two approaches and the comparison is extended to include time and frequency domains performance, controller order, and uncertainty representation, weighting filters, optimality and sub-optimality. The obtained results are represented through tables and curves with reasons of similarities and dissimilarities.Keywords: robust control, load frequency control, steam turbine, H∞-norm, system uncertainty, load disturbance
Procedia PDF Downloads 40659 A Hybrid Tabu Search Algorithm for the Multi-Objective Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a hybrid Tabu Search (TS) algorithm is suggested for the multi-objective job shop scheduling problems (MO-JSSPs). The algorithm integrates several shifting bottleneck based neighborhood structures with the Giffler & Thompson algorithm, which improve efficiency of the search. Diversification and intensification are provided with local and global left shift algorithms application and also new semi-active, active, and non-delay schedules creation. The suggested algorithm is tested in the MO-JSSPs benchmarks from the literature based on the Pareto optimality concept. Different performances criteria are used for the multi-objective algorithm evaluation. The proposed algorithm is able to find the Pareto solutions of the test problems in shorter time than other algorithm of the literature.Keywords: tabu search, heuristics, job shop scheduling, multi-objective optimization, Pareto optimality
Procedia PDF Downloads 44258 Controlled Chemotherapy Strategy Applied to HIV Model
Authors: Shohel Ahmed, Md. Abdul Alim, Sumaiya Rahman
Abstract:
Optimal control can be helpful to test and compare different vaccination strategies of a certain disease. The mathematical model of HIV we consider here is a set of ordinary differential equations (ODEs) describing the interactions of CD4+T cells of the immune system with the human immunodeficiency virus (HIV). As an early treatment setting, we investigate an optimal chemotherapy strategy where control represents the percentage of effect the chemotherapy has on the system. The aim is to obtain a new optimal chemotherapeutic strategy where an isoperimetric constraint on the chemotherapy supply plays a crucial role. We outline the steps in formulating an optimal control problem, derive optimality conditions and demonstrate numerical results of an optimal control for the model. Numerical results illustrate how such a constraint alters the optimal vaccination schedule and its effect on cell-virus interactions.Keywords: chemotherapy of HIV, optimal control involving ODEs, optimality conditions, Pontryagin’s maximum principle
Procedia PDF Downloads 32957 On the Optimality of Blocked Main Effects Plans
Authors: Rita SahaRay, Ganesh Dutta
Abstract:
In this article, experimental situations are considered where a main effects plan is to be used to study m two-level factors using n runs which are partitioned into b blocks, not necessarily of same size. Assuming the block sizes to be even for all blocks, for the case n ≡ 2 (mod 4), optimal designs are obtained with respect to type 1 and type 2 optimality criteria in the class of designs providing estimation of all main effects orthogonal to the block effects. In practice, such orthogonal estimation of main effects is often a desirable condition. In the wider class of all available m two level even sized blocked main effects plans, where the factors do not occur at high and low levels equally often in each block, E-optimal designs are also characterized. Simple construction methods based on Hadamard matrices and Kronecker product for these optimal designs are presented.Keywords: design matrix, Hadamard matrix, Kronecker product, type 1 criteria, type 2 criteria
Procedia PDF Downloads 36556 Joint Training Offer Selection and Course Timetabling Problems: Models and Algorithms
Authors: Gianpaolo Ghiani, Emanuela Guerriero, Emanuele Manni, Alessandro Romano
Abstract:
In this article, we deal with a variant of the classical course timetabling problem that has a practical application in many areas of education. In particular, in this paper we are interested in high schools remedial courses. The purpose of such courses is to provide under-prepared students with the skills necessary to succeed in their studies. In particular, a student might be under prepared in an entire course, or only in a part of it. The limited availability of funds, as well as the limited amount of time and teachers at disposal, often requires schools to choose which courses and/or which teaching units to activate. Thus, schools need to model the training offer and the related timetabling, with the goal of ensuring the highest possible teaching quality, by meeting the above-mentioned financial, time and resources constraints. Moreover, there are some prerequisites between the teaching units that must be satisfied. We first present a Mixed-Integer Programming (MIP) model to solve this problem to optimality. However, the presence of many peculiar constraints contributes inevitably in increasing the complexity of the mathematical model. Thus, solving it through a general purpose solver may be performed for small instances only, while solving real-life-sized instances of such model requires specific techniques or heuristic approaches. For this purpose, we also propose a heuristic approach, in which we make use of a fast constructive procedure to obtain a feasible solution. To assess our exact and heuristic approaches we perform extensive computational results on both real-life instances (obtained from a high school in Lecce, Italy) and randomly generated instances. Our tests show that the MIP model is never solved to optimality, with an average optimality gap of 57%. On the other hand, the heuristic algorithm is much faster (in about the 50% of the considered instances it converges in approximately half of the time limit) and in many cases allows achieving an improvement on the objective function value obtained by the MIP model. Such an improvement ranges between 18% and 66%.Keywords: heuristic, MIP model, remedial course, school, timetabling
Procedia PDF Downloads 60555 Optimal Design of Step-Stress Partially Life Test Using Multiply Censored Exponential Data with Random Removals
Authors: Showkat Ahmad Lone, Ahmadur Rahman, Ariful Islam
Abstract:
The major assumption in accelerated life tests (ALT) is that the mathematical model relating the lifetime of a test unit and the stress are known or can be assumed. In some cases, such life–stress relationships are not known and cannot be assumed, i.e. ALT data cannot be extrapolated to use condition. So, in such cases, partially accelerated life test (PALT) is a more suitable test to be performed for which tested units are subjected to both normal and accelerated conditions. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests using progressive failure-censored hybrid data with random removals. The life data of the units under test is considered to follow exponential life distribution. The removals from the test are assumed to have binomial distributions. The point and interval maximum likelihood estimations are obtained for unknown distribution parameters and tampering coefficient. An optimum test plan is developed using the D-optimality criterion. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.Keywords: binomial distribution, d-optimality, multiple censoring, optimal design, partially accelerated life testing, simulation study
Procedia PDF Downloads 31754 Optimal Tetra-Allele Cross Designs Including Specific Combining Ability Effects
Authors: Mohd Harun, Cini Varghese, Eldho Varghese, Seema Jaggi
Abstract:
Hybridization crosses find a vital role in breeding experiments to evaluate the combining abilities of individual parental lines or crosses for creation of lines with desirable qualities. There are various ways of obtaining progenies and further studying the combining ability effects of the lines taken in a breeding programme. Some of the most common methods are diallel or two-way cross, triallel or three-way cross, tetra-allele or four-way cross. These techniques help the breeders to improve the quantitative traits which are of economical as well as nutritional importance in crops and animals. Amongst these methods, tetra-allele cross provides extra information in terms of the higher specific combining ability (sca) effects and the hybrids thus produced exhibit individual as well as population buffering mechanism because of the broad genetic base. Most of the common commercial hybrids in corn are either three-way or four-way cross hybrids. Tetra-allele cross came out as the most practical and acceptable scheme for the production of slaughter pigs having fast growth rate, good feed efficiency, and carcass quality. Tetra-allele crosses are mostly used for exploitation of heterosis in case of commercial silkworm production. Experimental designs involving tetra-allele crosses have been studied extensively in literature. Optimality of designs has also been considered as a researchable issue. In practical situations, it is advisable to include sca effects in the model as this information is needed by the breeder to improve economically and nutritionally important quantitative traits. Thus, a model that provides information regarding the specific traits by utilizing sca effects along with general combining ability (gca) effects may help the breeders to deal with the problem of various stresses. In this paper, a model for experimental designs involving tetra-allele crosses that incorporates both gca and sca has been defined. Optimality aspects of such designs have been discussed incorporating sca effects in the model. Orthogonality conditions have been derived for block designs ensuring estimation of contrasts among the gca effects, after eliminating the nuisance factors, independently from sca effects. User friendly SAS macro and web solution (webPTC) have been developed for the generation and analysis of such designs.Keywords: general combining ability, optimality, specific combining ability, tetra-allele cross, webPTC
Procedia PDF Downloads 13753 Uvulars Alternation in Hasawi Arabic: A Harmonic Serialism Approach
Authors: Huda Ahmed Al Taisan
Abstract:
This paper investigates a phonological phenomenon, which exhibits variation ‘alternation’ in terms of the uvular consonants [q] and [ʁ] in Hasawi Arabic. This dialect is spoken in Alahsa city, which is located in the Eastern province of Saudi Arabia. To the best of our knowledge, no such research has systematically studied this phenomenon in Hasawi Arabic dialect. This paper is significant because it fills the gap in the literature about this alternation phenomenon in this understudied dialect. A large amount of the data is extracted from several interviews the author has conducted with 10 participants, native speakers of the dialect, and complemented by additional forms from social media. The latter method of collecting the data adds to the significance of the research. The analysis of the data is carried out in Harmonic Serialism Optimality Theory (HS-OT), a version of the Optimality Theoretic (OT) framework, which holds that linguistic forms are the outcome of the interaction among violable universal constraints, and in the recent development of OT into a model that accounts for linguistic variation in harmonic derivational steps. This alternation process is assumed to be phonologically unconditioned and in free variation in other varieties of Arabic dialects in the area. The goal of this paper is to investigate whether this phenomenon is in free variation or governed, what governs this alternation between [q] and [ʁ] and whether the alternation is phonological or other linguistic constraints are in action. The results show that the [q] and [ʁ] alternation is not free and it occurs due to different assimilation processes. Positional, segmental sequence and vowel adjacency factors are in action in Hasawi Arabic.Keywords: harmonic serialism, Hasawi, uvular, variation
Procedia PDF Downloads 50052 On the Optimality Assessment of Nano-Particle Size Spectrometry and Its Association to the Entropy Concept
Authors: A. Shaygani, R. Saifi, M. S. Saidi, M. Sani
Abstract:
Particle size distribution, the most important characteristics of aerosols, is obtained through electrical characterization techniques. The dynamics of charged nano-particles under the influence of electric field in electrical mobility spectrometer (EMS) reveals the size distribution of these particles. The accuracy of this measurement is influenced by flow conditions, geometry, electric field and particle charging process, therefore by the transfer function (transfer matrix) of the instrument. In this work, a wire-cylinder corona charger was designed and the combined field-diffusion charging process of injected poly-disperse aerosol particles was numerically simulated as a prerequisite for the study of a multi-channel EMS. The result, a cloud of particles with non-uniform charge distribution, was introduced to the EMS. The flow pattern and electric field in the EMS were simulated using computational fluid dynamics (CFD) to obtain particle trajectories in the device and therefore to calculate the reported signal by each electrometer. According to the output signals (resulted from bombardment of particles and transferring their charges as currents), we proposed a modification to the size of detecting rings (which are connected to electrometers) in order to evaluate particle size distributions more accurately. Based on the capability of the system to transfer information contents about size distribution of the injected particles, we proposed a benchmark for the assessment of optimality of the design. This method applies the concept of Von Neumann entropy and borrows the definition of entropy from information theory (Shannon entropy) to measure optimality. Entropy, according to the Shannon entropy, is the ''average amount of information contained in an event, sample or character extracted from a data stream''. Evaluating the responses (signals) which were obtained via various configurations of detecting rings, the best configuration which gave the best predictions about the size distributions of injected particles, was the modified configuration. It was also the one that had the maximum amount of entropy. A reasonable consistency was also observed between the accuracy of the predictions and the entropy content of each configuration. In this method, entropy is extracted from the transfer matrix of the instrument for each configuration. Ultimately, various clouds of particles were introduced to the simulations and predicted size distributions were compared to the exact size distributions.Keywords: aerosol nano-particle, CFD, electrical mobility spectrometer, von neumann entropy
Procedia PDF Downloads 34251 Reduplication In Urdu-Hindi Nonsensical Words: An OT Analysis
Authors: Riaz Ahmed Mangrio
Abstract:
Reduplication in Urdu-Hindi affects all major word categories, particles, and even nonsensical words. It conveys a variety of meanings, including distribution, emphasis, iteration, adjectival and adverbial. This study will primarily discuss reduplicative structures of nonsensical words in Urdu-Hindi and then briefly look at some examples from other Indo-Aryan languages to introduce the debate regarding the same structures in them. The goal of this study is to present counter-evidence against Keane (2005: 241), who claims “the base in the cases of lexical and phrasal echo reduplication is always independently meaningful”. However, Urdu-Hindi reduplication derives meaningful compounds from nonsensical words e.g. gũ mgũ (A) ‘silent and confused’ and d̪əb d̪əb-a (N) ‘one’s fear over others’. This needs a comprehensive examination to see whether and how the various structures form patterns of a base-reduplicant relationship or, rather, they are merely sub lexical items joining together to form a word pattern of any grammatical category in content words. Another interesting theoretical question arises within the Optimality framework: in an OT analysis, is it necessary to identify one of the two constituents as the base and the other as reduplicant? Or is it best to consider this a pattern, but then how does this fit in with an OT analysis? This may be an even more interesting theoretical question. Looking for the solution to such questions can serve to make an important contribution. In the case at hand, each of the two constituents is an independent nonsensical word, but their echo reduplication is nonetheless meaningful. This casts significant doubt upon Keane’s (2005: 241) observation of some examples from Hindi and Tamil reduplication that “the base in cases of lexical and phrasal echo reduplication is always independently meaningful”. The debate on the point becomes further interesting when the triplication of nonsensical words in Urdu-Hindi e.g. aẽ baẽ ʃaẽ (N) ‘useless talk’ is also seen, which is equally important to discuss. The example is challenging to Harrison’s (1973) claim that only the monosyllabic verbs in their progressive forms reduplicate twice to result in triplication, which is not the case with the example presented. The study will consist of a thorough descriptive analysis of the data for the purpose of documentation, and then there will be OT analysis.Keywords: reduplication, urdu-hindi, nonsensical, optimality theory
Procedia PDF Downloads 7550 Approaches to Reduce the Complexity of Mathematical Models for the Operational Optimization of Large-Scale Virtual Power Plants in Public Energy Supply
Authors: Thomas Weber, Nina Strobel, Thomas Kohne, Eberhard Abele
Abstract:
In context of the energy transition in Germany, the importance of so-called virtual power plants in the energy supply continues to increase. The progressive dismantling of the large power plants and the ongoing construction of many new decentralized plants result in great potential for optimization through synergies between the individual plants. These potentials can be exploited by mathematical optimization algorithms to calculate the optimal application planning of decentralized power and heat generators and storage systems. This also includes linear or linear mixed integer optimization. In this paper, procedures for reducing the number of decision variables to be calculated are explained and validated. On the one hand, this includes combining n similar installation types into one aggregated unit. This aggregated unit is described by the same constraints and target function terms as a single plant. This reduces the number of decision variables per time step and the complexity of the problem to be solved by a factor of n. The exact operating mode of the individual plants can then be calculated in a second optimization in such a way that the output of the individual plants corresponds to the calculated output of the aggregated unit. Another way to reduce the number of decision variables in an optimization problem is to reduce the number of time steps to be calculated. This is useful if a high temporal resolution is not necessary for all time steps. For example, the volatility or the forecast quality of environmental parameters may justify a high or low temporal resolution of the optimization. Both approaches are examined for the resulting calculation time as well as for optimality. Several optimization models for virtual power plants (combined heat and power plants, heat storage, power storage, gas turbine) with different numbers of plants are used as a reference for the investigation of both processes with regard to calculation duration and optimality.Keywords: CHP, Energy 4.0, energy storage, MILP, optimization, virtual power plant
Procedia PDF Downloads 17549 The Application of Pareto Local Search to the Single-Objective Quadratic Assignment Problem
Authors: Abdullah Alsheddy
Abstract:
This paper presents the employment of Pareto optimality as a strategy to help (single-objective) local search escaping local optima. Instead of local search, Pareto local search is applied to solve the quadratic assignment problem which is multi-objectivized by adding a helper objective. The additional objective is defined as a function of the primary one with augmented penalties that are dynamically updated.Keywords: Pareto optimization, multi-objectivization, quadratic assignment problem, local search
Procedia PDF Downloads 46648 Cost-Effective and Optimal Control Analysis for Mitigation Strategy to Chocolate Spot Disease of Faba Bean
Authors: Haileyesus Tessema Alemneh, Abiyu Enyew Molla, Oluwole Daniel Makinde
Abstract:
Introduction: Faba bean is one of the most important grown plants worldwide for humans and animals. Several biotic and abiotic elements have limited the output of faba beans, irrespective of their diverse significance. Many faba bean pathogens have been reported so far, of which the most important yield-limiting disease is chocolate spot disease (Botrytis fabae). The dynamics of disease transmission and decision-making processes for intervention programs for disease control are now better understood through the use of mathematical modeling. Currently, a lot of mathematical modeling researchers are interested in plant disease modeling. Objective: In this paper, a deterministic mathematical model for chocolate spot disease (CSD) on faba bean plant with an optimal control model was developed and analyzed to examine the best strategy for controlling CSD. Methodology: Three control interventions, quarantine (u2), chemical control (u3), and prevention (u1), are employed that would establish the optimal control model. The optimality system, characterization of controls, the adjoint variables, and the Hamiltonian are all generated employing Pontryagin’s maximum principle. A cost-effective approach is chosen from a set of possible integrated strategies using the incremental cost-effectiveness ratio (ICER). The forward-backward sweep iterative approach is used to run numerical simulations. Results: The Hamiltonian, the optimality system, the characterization of the controls, and the adjoint variables were established. The numerical results demonstrate that each integrated strategy can reduce the diseases within the specified period. However, due to limited resources, an integrated strategy of prevention and uprooting was found to be the best cost-effective strategy to combat CSD. Conclusion: Therefore, attention should be given to the integrated cost-effective and environmentally eco-friendly strategy by stakeholders and policymakers to control CSD and disseminate the integrated intervention to the farmers in order to fight the spread of CSD in the Faba bean population and produce the expected yield from the field.Keywords: CSD, optimal control theory, Pontryagin’s maximum principle, numerical simulation, cost-effectiveness analysis
Procedia PDF Downloads 8547 Relaxing Convergence Constraints in Local Priority Hysteresis Switching Logic
Authors: Mubarak Alhajri
Abstract:
This paper addresses certain inherent limitations of local priority hysteresis switching logic. Our main result establishes that under persistent excitation assumption, it is possible to relax constraints requiring strict positivity of local priority and hysteresis switching constants. Relaxing these constraints allows the adaptive system to reach optimality which implies the performance improvement. The unconstrained local priority hysteresis switching logic is examined and conditions for global convergence are derived.Keywords: adaptive control, convergence, hysteresis constant, hysteresis switching
Procedia PDF Downloads 39246 Solving Extended Linear Complementarity Problems (XLCP) - Wood and Environment
Authors: Liberto Pombal, Christian Dieter Jaekel
Abstract:
The objective of this work is to establish theoretical and numerical conditions for Solving Extended Linear Complementarity Problems (XLCP), with emphasis on the Horizontal Linear Complementarity Problem (HLCP). Two new strategies for solving complementarity problems are presented, using differentiable and penalized functions, which resulted in a natural formalization for the Linear Horizontal case. The computational results of all suggested strategies are also discussed in depth in this paper. The implication in practice allows solving and optimizing, in an innovative way, the (forestry) problems of the value chain of the industrial wood sector in Angola.Keywords: complementarity, box constrained, optimality conditions, wood and environment
Procedia PDF Downloads 5645 Descent Algorithms for Optimization Algorithms Using q-Derivative
Authors: Geetanjali Panda, Suvrakanti Chakraborty
Abstract:
In this paper, Newton-like descent methods are proposed for unconstrained optimization problems, which use q-derivatives of the gradient of an objective function. First, a local scheme is developed with alternative sufficient optimality condition, and then the method is extended to a global scheme. Moreover, a variant of practical Newton scheme is also developed introducing a real sequence. Global convergence of these schemes is proved under some mild conditions. Numerical experiments and graphical illustrations are provided. Finally, the performance profiles on a test set show that the proposed schemes are competitive to the existing first-order schemes for optimization problems.Keywords: Descent algorithm, line search method, q calculus, Quasi Newton method
Procedia PDF Downloads 39644 Consonant Harmony and the Challenges of Articulation and Perception
Authors: Froogh Shooshtaryzadeh, Pramod Pandey
Abstract:
The present study investigates place and manner harmony in typically developing (TD) children and children with phonological disorder (PD) who are acquiring Farsi as their first language. Five TD and five PD children are examined regarding their place and manner harmony patterns. Data is collected through a Picture-Naming Task using 132 pictures of different items designed to elicit the production of 132 different words. The examination of the data has indicated some similarities and differences in harmony patterns in PD and TD children. Moreover, the results of this study on the place and manner harmony have illustrated some differences with the results of the preceding studies on languages other than Farsi. The results of this study are discussed and compared with results from other studies. Optimality Theory is employed to explain some of the findings of this study.Keywords: place harmony, manner harmony, phonological development, Farsi
Procedia PDF Downloads 31243 Sparse Principal Component Analysis: A Least Squares Approximation Approach
Authors: Giovanni Merola
Abstract:
Sparse Principal Components Analysis aims to find principal components with few non-zero loadings. We derive such sparse solutions by adding a genuine sparsity requirement to the original Principal Components Analysis (PCA) objective function. This approach differs from others because it preserves PCA's original optimality: uncorrelatedness of the components and least squares approximation of the data. To identify the best subset of non-zero loadings we propose a branch-and-bound search and an iterative elimination algorithm. This last algorithm finds sparse solutions with large loadings and can be run without specifying the cardinality of the loadings and the number of components to compute in advance. We give thorough comparisons with the existing sparse PCA methods and several examples on real datasets.Keywords: SPCA, uncorrelated components, branch-and-bound, backward elimination
Procedia PDF Downloads 38042 A New Spell-Out Mechanism
Authors: Yusra Yahya
Abstract:
In this paper, a new spell-out mechanism is developed and defended. This mechanism builds on the role of phase heads as both the loci of spell-out features and the transfer triggers via either Phase Impenetrability Condition 1 (PIC1) and/or Phase Impenetrability Condition 2 (PIC2). The assumption here is that phase heads, mainly v*, can regulate the spell-out process by deciding both the type of spell-out applying and the timing of spell-out relevant. This paper also proposes a new form of the constraint Wrap call it Wrap-XP’ and it is assumed to apply to IP as a functional maximal projection. This extension is shown to fall as a natural result once we assume the new theory of phases and multiple spell-out. Moreover, it is proposed in this work that some forms of XP movement are not motivated by an EPP feature of a strong phase head mainly v*, but they are rather motivated by a last resort strategy to accomplish the spell-out instruction of this phase head.Keywords: linguistics, syntax, phonology, phase theory, optimality theory
Procedia PDF Downloads 51341 Isogeometric Topology Optimization in Cracked Structures Design
Authors: Dongkyu Lee, Thanh Banh Thien, Soomi Shin
Abstract:
In the present study, the isogeometric topology optimization is proposed for cracked structures through using Solid Isotropic Material with Penalization (SIMP) as a design model. Design density variables defined in the variable space are used to approximate the element analysis density by the bivariate B-spline basis functions. The mathematical formulation of topology optimization problem solving minimum structural compliance is an alternating active-phase algorithm with the Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to strain energy of cracked structure are proposed in terms of design density variables. Numerical examples demonstrate interactions of topology optimization to structures design with cracks.Keywords: topology optimization, isogeometric, NURBS, design
Procedia PDF Downloads 49140 Rim Size Optimization Using Mathematical Modelling
Authors: M. Tan, N. N. Wan, N. Ramli, N. H. Hassan
Abstract:
Car drivers would always like to have custom wheel on their car for two reasons; to improve their car's aesthetic beauty and to improve their car handling. As the size of the rims or wheels played an important role in influencing the way of car handles around turns, this paper aims to present the optimality of rim size that drivers should have known while changing their rim. There are three factors that drivers should have considered while changing their rim: rim size, its weight and material of which they are made. Using mathematical analysis, this paper will focus on only one factor, which is rim size. Factors that are considered in calculating the optimum rim size are the vehicle rim radius, tire height and weight, and aspect ratio. This paper has found that there are limitations in percentage change in rim size from the original tire size. Failure to have the right offset size may cause problems in maneuvering the vehicle.Keywords: mathematical analysis, optimum wheel size, percentage change, custom wheel
Procedia PDF Downloads 49039 Optimal Design of Profiled Steel Sheet for Composite Slab
Authors: Adinew Gebremeskel Tizazu
Abstract:
Nowadays, in our world of technological development, there is an enhanced intention imposed on the building construction industry to improve the time, economy, and structural efficiency of structures. Modern profiled steel sheets are mostly designed as formwork and tensile reinforcement. This research is concerned with the optimal design of profiled steel sheets for composite slabs. Apart from satisfying the safety requirement, the design should be economical. For a given condition, there might be a large number of alternatives that satisfy the requirement set by the codes. But the designer must be in a position to choose the design, which is optimal against certain measures of optimality. Therefore, the designers have to do some optimization to arrive at such a design. In this research, the optimal cross-sectional dimensions of profiled steel sheets will be determined by considering different spans, loadings, and materials.Keywords: profiled sheeting, optimal cross-sectional dimensions, cold-formed profiled sheets, composite slab
Procedia PDF Downloads 2238 Memetic Algorithm for Solving the One-To-One Shortest Path Problem
Authors: Omar Dib, Alexandre Caminada, Marie-Ange Manier
Abstract:
The purpose of this study is to introduce a novel approach to solve the one-to-one shortest path problem. A directed connected graph is assumed in which all edges’ weights are positive. Our method is based on a memetic algorithm in which we combine a genetic algorithm (GA) and a variable neighborhood search method (VNS). We compare our approximate method with two exact algorithms Dijkstra and Integer Programming (IP). We made experimentations using random generated, complete and real graph instances. In most case studies, numerical results show that our method outperforms exact methods with 5% average gap to the optimality. Our algorithm’s average speed is 20-times faster than Dijkstra and more than 1000-times compared to IP. The details of the experimental results are also discussed and presented in the paper.Keywords: shortest path problem, Dijkstra’s algorithm, integer programming, memetic algorithm
Procedia PDF Downloads 46537 Solving Optimal Control of Semilinear Elliptic Variational Inequalities Obstacle Problems using Smoothing Functions
Authors: El Hassene Osmani, Mounir Haddou, Naceurdine Bensalem
Abstract:
In this paper, we investigate optimal control problems governed by semilinear elliptic variational inequalities involving constraints on the state, and more precisely, the obstacle problem. We present a relaxed formulation for the problem using smoothing functions. Since we adopt a numerical point of view, we first relax the feasible domain of the problem, then using both mathematical programming methods and penalization methods, we get optimality conditions with smooth Lagrange multipliers. Some numerical experiments using IPOPT algorithm (Interior Point Optimizer) are presented to verify the efficiency of our approach.Keywords: complementarity problem, IPOPT, Lagrange multipliers, mathematical programming, optimal control, smoothing methods, variationally inequalities
Procedia PDF Downloads 171