Search results for: German energy transition
6410 Electronic, Optical, and Thermodynamic Properties of a Quantum Spin Liquid Candidate NaRuO₂: Ab-initio Investigation
Authors: A. Bouhmouche, I. Rhrissi, A. Jabar, R. Moubah
Abstract:
Quantum spin liquids (QSLs), known for their competing interactions that prevent conventional ordering, exhibit emergent phenomena and exotic properties resulting from quantum correlations. Despite these recent advancements in QSLs, a significant portion of the optical and thermodynamic properties in the Kagome lattice remains unknown. In addition, the thermodynamic phenomenology of NaRuO₂ bears a resemblance to that of highly frustrated magnets. Here, we employed ab-initio calculations to explore the electronic, optical and thermodynamic properties of NaRuO₂, a new QSL candidate. NaRuO₂ was identified as a semiconductor with a small bandgap energy of 0.69 eV. Our results reveal huge anisotropic optical properties, in which a distinct refractive index within the ab-plane indicating an impressive birefringent character of the NaRuO₂ system and a significant enhancement of the optical absorption coefficient and optical conductivity in the in-plane with respect to the c-axis. The investigation also examines the electronic anisotropy of the gap energy; by applying strain, the gap energy displays significant variations in the ab-plane compared to the out-of-plane direction. Conversely, calculations of the thermodynamic properties reveal a low thermal conductivity (2.5-0.5 W.m-¹. K-¹) and specific heat, which suggests the existence of strong interactions among the NaRuO₂ quantum spins. The linear specific heat behavior observed in NaRuO₂ suggests the fractionalization of electrons and the presence of a spinons Fermi surface. These findings hold promising potential for future quantum applications.Keywords: quantum spin liquids, anisotropy, hybrid-DFT, applied strain, optoelectronic and thermodynamic properties
Procedia PDF Downloads 226409 An Exploration of the Technical and Economic Feasibility of a Stand Alone Solar PV Generated DC Distribution System over AC Distribution System for Use in the Modern as Well as Future Houses of Isolated Areas
Authors: Alpesh Desai, Indrajit Mukhopadhyay
Abstract:
Standalone Photovoltaic (PV) systems are designed and sized to supply certain AC and/or DC electrical loads. In computers, consumer electronics and many small appliances as well as LED lighting the actual power consumed is DC. The DC system, which requires only voltage control, has many advantages such as feasible connection of the distributed energy sources and reduction of the conversion losses for DC-based loads. Also by using the DC power directly the cost of the size of the Inverter and Solar panel reduced hence the overall cost of the system reduced. This paper explores the technical and economic feasibility of supplying electrical power to homes/houses using DC voltage mains within the house. Theoretical calculated results are presented to demonstrate the advantage of DC system over AC system with PV on sustainable rural/isolated development.Keywords: distribution system, energy efficiency, off-grid, stand-alone PV system, sustainability, techno-socio-economic
Procedia PDF Downloads 2656408 Heat and Humidity Induced Plastic Changes in Body Lipids and Starvation Resistance in the Tropical Zaprionus indianus of Wet-Dry Seasons
Authors: T. N. Girish, B. E. Pradeep, Ravi Parkash
Abstract:
Insects from tropical wet or dry seasons are likely to cope starvation stress through seasonal phenotypic plasticity in energy metabolites. Accordingly, we analyzed such plastic changes in Zaprionus indianus flies reared under wet or dry season-specific conditions; and also after adult acclimation at 32℃ for 1 to 6 days; and to low (40% RH) or high (70% RH) humidity. Both thermal or humidity acclimation revealed significant accumulation of body lipids for wet season flies but low humidity acclimation did not change the level of body lipids in dry season flies. Developmental and adult acclimation showed sex specific differences i.e., starvation resistance and body lipids were higher in the males of dry season but in females of wet season. We found seasonal and sex specific differences in the relative level for body lipids at death; and in the rates of accumulation or utilization of energy metabolites (body lipids, carbohydrates and proteins). Body lipids constitute the preferred energy source under starvation for flies of both the seasons. However, utilization of carbohydrates (~20% to 30%) and proteins (~20% to 25%) was evident only in dry season flies. Higher starvation resistance after thermal or humidity acclimation is achieved by increased accumulation of lipids. Adult acclimation of wet or dry season flies revealed plastic changes in mean daily fecundity despite reduction in fecundity under starvation. Thus, thermal or humidity induced plastic responses in body lipids support starvation resistance under wet or dry seasons.Keywords: heat or humidity acclimation, plastic changes in body lipids and starvation resistance, tropical drosophilid, Wet- or Dry seasons, Zaprionus indianus
Procedia PDF Downloads 1566407 Improvement of Energy Efficiency and Cost Management for Household Refrigerators Under Different Climate Classes and Examination of Effect of VIP Ageing and Usage of Electronic Expansion Valve Technology
Authors: Yesim Guzel, Mert Akbiyik
Abstract:
Energy consumption (EC) and costs due to the usage of refrigerators are increasing continuously. This creates a disadvantage not only on the budget of customers but also to global warming. This study aims to decrease EC and cost due to refrigerator EC all around the world. Research about the effect of climate classes on industrial cabinets, supermarket refrigerators or room air conditioning systems can be found in open literature; however, to the best of authors' knowledge, there is no study that includes the effect of climate classes, vacuum insulation panels (VIP) and polyurethane (PU) aging, and electronic expansion valve (EEV) technology for home refrigerators. For this purpose, 4 configurations are examined for household refrigerators for ST (subtropical) and T (tropical) climates. The aging of VIP and PU and the annual interest rate of electricity cost (%5) are considered to obtain more accurate results in calculations. Heat gain (Q), EC, and CO₂ emission are calculated. Config. 1, 2, 3 and 4 are with NO VIP, FULL VIP, NO VIP+ EEV, and FULL VIP+EEV, respectively. As a result, it is observed that Q for Config. 1 and 2 increase as Temp increases. Moreover, from ST to T climates, for all the configurations, EC increases. Additionally, the payback period (t) is based on reference cabinet Config. 1 is calculated. It is considered that annual electricity cost as constant for every climate. When ts are compared with Config. 1 for both climates, it is seen that the minimum t of 2 years is Config. 3. This study shows not only is EEV a better alternative option than VIPs. Hence, EEVs are way cheaper than VIPs and have shorter t, but it also allows us to compare Ec, Q, CO₂ emissions, and cost.Keywords: energy, thermodynamics, ageing, VIP, polyurethane, expansion valve, EEV, PU, climate, refrigerating, cooling, efficiency
Procedia PDF Downloads 506406 Investigation on Properties and Applications of Graphene as Single Layer of Carbon Atoms
Authors: Ali Ashjaran
Abstract:
Graphene is undoubtedly emerging as one of the most promising materials because of its unique combination of superb properties, which opens a way for its exploitation in a wide spectrum of applications ranging from electronics to optics, sensors, and biodevices. In addition, Graphene-based nanomaterials have many promising applications in energy-related areas. Graphene a single layer of carbon atoms, combines several exceptional properties, which makes it uniquely suited as a coating material: transparency, excellent mechanical stability, low chemical reactivity, Optical, impermeability to most gases, flexibility, and very high thermal and electrical conductivity. Graphene is a material that can be utilized in numerous disciplines including, but not limited to: bioengineering, composite materials, energy technology and nanotechnology, biological engineering, optical electronics, ultrafiltration, photovoltaic cells. This review aims to provide an overiew of graphene structure, properties and some applications.Keywords: graphene, carbon, anti corrosion, optical and electrical properties, sensors
Procedia PDF Downloads 2746405 Numerical Simulation of Phase Transfer during Cryosurgery for an Irregular Tumor Using Hybrid Approach
Authors: Rama Bhargava
Abstract:
In the current paper, numerical simulation has been performed for the two-dimensional time dependent Pennes’ heat transfer model which is solved for irregular diseased tumor cells. An elliptic cryoprobe of varying sizes is taken at the center of the computational domain in such a manner that the location of the probe is fixed throughout the computation. The phase transition occurs due to the effect of probe with infusion of different nanoparticles Au, Al₂O₃, Fe₃O₄. The cooling performance of these nanoparticles injected at very low temperature, has been studied by implementing a hybrid FEM/EFGM method in which the whole domain is decomposed into two subdomains. The results are shown in terms of temperature profile inside the computational domain. Rate of cooling is obtained for various nanoparticles and it is observed that infusion of Au nanoparticles is very much efficient in increasing the heating rate than other nanoparticles. Such numerical scheme has direct applications where the domain is irregular.Keywords: cryosurgery, hybrid EFGM/FEM, nanoparticles, simulation
Procedia PDF Downloads 2466404 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks
Procedia PDF Downloads 2836403 Structural Design of Sonochemical Reactor to Enhance Energy Transfer Efficiency and Anticorrosion Effect
Authors: Jin-Ho Han, Kyong-Ho Ri, Ju-Yong Hwang, Song-Guk Kim, Sang-Jin Kim
Abstract:
This study focuses on the design of a sonochemical reactor that has excellent anticorrosion effect and acoustic pressure distribution by optimization of the reaction vessel. Sonochemical reactors using the Barbell horn transducer have advantages, including high efficiency of energy conversion, large amplitude of the transducer and low damping. Meanwhile, we performed COMSOL optimization simulations to minimize the corrosion of the horn and the inner wall of the reaction vessel by cavitation bubbles during the sonochemical reaction. It was experimentally verified that the immersion depth of the horn obtained by simulation and the geometric parameters of the vessel are suitable for optimization purposes. In this way, a sonochemical reactor with good acoustic pressure distribution and suitable for obtaining a purer reaction product can be designed.Keywords: sonochemical reactor, COMSOL optimization simulation, immersion type, barbell horn
Procedia PDF Downloads 96402 Virtual Process Hazard Analysis (Pha) Of a Nuclear Power Plant (Npp) Using Failure Mode and Effects Analysis (Fmea) Technique
Authors: Lormaine Anne A. Branzuela, Elysa V. Largo, Monet Concepcion M. Detras, Neil C. Concibido
Abstract:
The electricity demand is still increasing, and currently, the Philippine government is investigating the feasibility of operating the Bataan Nuclear Power Plant (BNPP) to address the country’s energy problem. However, the lack of process safety studies on BNPP focused on the effects of hazardous substances on the integrity of the structure, equipment, and other components, have made the plant operationalization questionable to the public. The three major nuclear power plant incidents – TMI-2, Chernobyl, and Fukushima – have made many people hesitant to include nuclear energy in the energy matrix. This study focused on the safety evaluation of possible operations of a nuclear power plant installed with a Pressurized Water Reactor (PWR), which is similar to BNPP. Failure Mode and Effects Analysis (FMEA) is one of the Process Hazard Analysis (PHA) techniques used for the identification of equipment failure modes and minimizing its consequences. Using the FMEA technique, this study was able to recognize 116 different failure modes in total. Upon computation and ranking of the risk priority number (RPN) and criticality rating (CR), it showed that failure of the reactor coolant pump due to earthquakes is the most critical failure mode. This hazard scenario could lead to a nuclear meltdown and radioactive release, as identified by the FMEA team. Safeguards and recommended risk reduction strategies to lower the RPN and CR were identified such that the effects are minimized, the likelihood of occurrence is reduced, and failure detection is improved.Keywords: PHA, FMEA, nuclear power plant, bataan nuclear power plant
Procedia PDF Downloads 1336401 Finite Element Analysis of Hollow Structural Shape (HSS) Steel Brace with Infill Reinforcement under Cyclic Loading
Authors: Chui-Hsin Chen, Yu-Ting Chen
Abstract:
Special concentrically braced frames is one of the seismic load resisting systems, which dissipates seismic energy when bracing members within the frames undergo yielding and buckling while sustaining their axial tension and compression load capacities. Most of the inelastic deformation of a buckling bracing member concentrates in the mid-length region. While experiencing cyclic loading, the region dissipates most of the seismic energy being input into the frame. Such a concentration makes the braces vulnerable to failure modes associated with low-cycle fatigue. In this research, a strategy to improve the cyclic behavior of the conventional steel bracing member is proposed by filling the Hollow Structural Shape (HSS) member with reinforcement. It prevents the local section from concentrating large plastic deformation caused by cyclic loading. The infill helps spread over the plastic hinge region into a wider area hence postpone the initiation of local buckling or even the rupture of the braces. The finite element method is introduced to simulate the complicated bracing member behavior and member-versus-infill interaction under cyclic loading. Fifteen 3-D-element-based models are built by ABAQUS software. The verification of the FEM model is done with unreinforced (UR) HSS bracing members’ cyclic test data and aluminum honeycomb plates’ bending test data. Numerical models include UR and filled HSS bracing members with various compactness ratios based on the specification of AISC-2016 and AISC-1989. The primary variables to be investigated include the relative bending stiffness and the material of the filling reinforcement. The distributions of von Mises stress and equivalent plastic strain (PEEQ) are used as indices to tell the strengths and shortcomings of each model. The result indicates that the change of relative bending stiffness of the infill is much more influential than the change of material in use to increase the energy dissipation capacity. Strengthen the relative bending stiffness of the reinforcement results in additional energy dissipation capacity to the extent of 24% and 46% in model based on AISC-2016 (16-series) and AISC-1989 (89-series), respectively. HSS members with infill show growth in 𝜂Local Buckling, normalized energy cumulated until the happening of local buckling, comparing to UR bracing members. The 89-series infill-reinforced members have more energy dissipation capacity than unreinforced 16-series members by 117% to 166%. The flexural rigidity of infills should be less than 29% and 13% of the member section itself for 16-series and 89-series bracing members accordingly, thereby guaranteeing the spread over of the plastic hinge and the happening of it within the reinforced section. If the parameters are properly configured, the ductility, energy dissipation capacity, and fatigue-life of HSS SCBF bracing members can be improved prominently by the infill-reinforced method.Keywords: special concentrically braced frames, HSS, cyclic loading, infill reinforcement, finite element analysis, PEEQ
Procedia PDF Downloads 946400 Performance Validation of Model Predictive Control for Electrical Power Converters of a Grid Integrated Oscillating Water Column
Authors: G. Rajapakse, S. Jayasinghe, A. Fleming
Abstract:
This paper aims to experimentally validate the control strategy used for electrical power converters in grid integrated oscillating water column (OWC) wave energy converter (WEC). The particular OWC’s unidirectional air turbine-generator output power results in discrete large power pulses. Therefore, the system requires power conditioning prior to integrating to the grid. This is achieved by using a back to back power converter with an energy storage system. A Li-Ion battery energy storage is connected to the dc-link of the back-to-back converter using a bidirectional dc-dc converter. This arrangement decouples the system dynamics and mitigates the mismatch between supply and demand powers. All three electrical power converters used in the arrangement are controlled using finite control set-model predictive control (FCS-MPC) strategy. The rectifier controller is to regulate the speed of the turbine at a set rotational speed to uphold the air turbine at a desirable speed range under varying wave conditions. The inverter controller is to maintain the output power to the grid adhering to grid codes. The dc-dc bidirectional converter controller is to set the dc-link voltage at its reference value. The software modeling of the OWC system and FCS-MPC is carried out in the MATLAB/Simulink software using actual data and parameters obtained from a prototype unidirectional air-turbine OWC developed at Australian Maritime College (AMC). The hardware development and experimental validations are being carried out at AMC Electronic laboratory. The designed FCS-MPC for the power converters are separately coded in Code Composer Studio V8 and downloaded into separate Texas Instrument’s TIVA C Series EK-TM4C123GXL Launchpad Evaluation Boards with TM4C123GH6PMI microcontrollers (real-time control processors). Each microcontroller is used to drive 2kW 3-phase STEVAL-IHM028V2 evaluation board with an intelligent power module (STGIPS20C60). The power module consists of a 3-phase inverter bridge with 600V insulated gate bipolar transistors. Delta standard (ASDA-B2 series) servo drive/motor coupled to a 2kW permanent magnet synchronous generator is served as the turbine-generator. This lab-scale setup is used to obtain experimental results. The validation of the FCS-MPC is done by comparing these experimental results to the results obtained by MATLAB/Simulink software results in similar scenarios. The results show that under the proposed control scheme, the regulated variables follow their references accurately. This research confirms that FCS-MPC fits well into the power converter control of the OWC-WEC system with a Li-Ion battery energy storage.Keywords: dc-dc bidirectional converter, finite control set-model predictive control, Li-ion battery energy storage, oscillating water column, wave energy converter
Procedia PDF Downloads 1156399 Development of Single Layer of WO3 on Large Spatial Resolution by Atomic Layer Deposition Technique
Authors: S. Zhuiykov, Zh. Hai, H. Xu, C. Xue
Abstract:
Unique and distinctive properties could be obtained on such two-dimensional (2D) semiconductor as tungsten trioxide (WO3) when the reduction from multi-layer to one fundamental layer thickness takes place. This transition without damaging single-layer on a large spatial resolution remained elusive until the atomic layer deposition (ALD) technique was utilized. Here we report the ALD-enabled atomic-layer-precision development of a single layer WO3 with thickness of 0.77±0.07 nm on a large spatial resolution by using (tBuN)2W(NMe2)2 as tungsten precursor and H2O as oxygen precursor, without affecting the underlying SiO2/Si substrate. Versatility of ALD is in tuning recipe in order to achieve the complete WO3 with desired number of WO3 layers including monolayer. Governed by self-limiting surface reactions, the ALD-enabled approach is versatile, scalable and applicable for a broader range of 2D semiconductors and various device applications.Keywords: Atomic Layer Deposition (ALD), tungsten oxide, WO₃, two-dimensional semiconductors, single fundamental layer
Procedia PDF Downloads 2436398 Use of Microbial Fuel Cell for Metal Recovery from Wastewater
Authors: Surajbhan Sevda
Abstract:
Metal containing wastewater is generated in large quintiles due to rapid industrialization. Generally, the metal present in wastewater is not biodegradable and can be accumulated in living animals, humans and plant tissue, causing disorder and diseases. The conventional metal recovery methods include chemical, physical and biological methods, but these are chemical and energy intensive. The recent development in microbial fuel cell (MFC) technology provides a new approach for metal recovery; this technology offers a flexible platform for both reduction and oxidation reaction oriented process. The use of MFCs will be a new platform for more efficient and low energy approach for metal recovery from the wastewater. So far metal recover was extensively studied using chemical, physical and biological methods. The MFCs present a new and efficient approach for removing and recovering metals from different wastewater, suggesting the use of different electrode for metal recovery can be a new efficient and effective approach.Keywords: metal recovery, microbial fuel cell, wastewater, bioelectricity
Procedia PDF Downloads 2186397 Do Persistent and Transitory Hybrid Entrepreneurs Differ?
Authors: Anmari Viljamaa, Elina Varamäki
Abstract:
In this study we compare the profiles of transitory hybrid entrepreneurs and persistent hybrid entrepreneurs to determine how they differ. Hybrid entrepreneurs (HEs) represent a significant share of entrepreneurial activity yet little is known about them. We define HEs as individuals who are active as entrepreneurs but do no support themselves primarily by their enterprise. Persistent HEs (PHEs) are not planning to transition to fulltime entrepreneurship whereas transitory HEs (THEs) consider it probable. Our results show that THEs and PHEs are quite similar in background. THEs are more interested in increasing their turnover than PHEs, as expected, but also emphasize self-fulfillment as a motive for entrepreneurship more than PHEs. The clearest differences between THEs and PHEs are found in their views on how well their immediate circle supports full-time entrepreneurship, and their views of their own entrepreneurial abilities and the market potential of their firm. Our results support earlier arguments that hybrids should be considered separately in research on entrepreneurial entry and self-employment.Keywords: hybrid entrepreneurship, part-time entrepreneurship, self-employment, Theory of Planned Behavior
Procedia PDF Downloads 4136396 Mg and MgN₃ Cluster in Diamond: Quantum Mechanical Studies
Authors: T. S. Almutairi, Paul May, Neil Allan
Abstract:
The geometrical, electronic and magnetic properties of the neutral Mg center and MgN₃ cluster in diamond have been studied theoretically in detail by means of an HSE06 Hamiltonian that includes a fraction of the exact exchange term; this is important for a satisfactory picture of the electronic states of open-shell systems. Another batch of the calculations by GGA functionals have also been included for comparison, and these support the results from HSE06. The local perturbations in the lattice by introduced Mg defect are restricted in the first and second shell of atoms before eliminated. The formation energy calculated with HSE06 and GGA of single Mg agrees with the previous result. We found the triplet state with C₃ᵥ is the ground state of Mg center with energy lower than the singlet with C₂ᵥ by ~ 0.1 eV. The recent experimental ZPL (557.4 nm) of Mg center in diamond has been discussed in the view of present work. The analysis of the band-structure of the MgN₃ cluster confirms that the MgN₃ defect introduces a shallow donor level in the gap lying within the conduction band edge. This observation is supported by the EMM that produces n-type levels shallower than the P donor level. The formation energy of MgN₂ calculated from a 2NV defect (~ 3.6 eV) is a promising value from which to engineer MgN₃ defects inside the diamond. Ion-implantation followed by heating to about 1200-1600°C might induce migration of N related defects to the localized Mg center. Temperature control is needed for this process to restore the damage and ensure the mobilities of V and N, which demands a more precise experimental study.Keywords: empirical marker method, generalised gradient approximation, Heyd–Scuseria–Ernzerhof screened hybrid functional, zero phono line
Procedia PDF Downloads 1176395 Characterization and Properties of Novel Flame Retardants Based on s-Triazine
Authors: Sameh M. Osman, El-Refaie Kenawy, Zeid A. Al-Othman, Mohamed H. El-Newehy, El-Saied A. Aly, Sherine N. Khattab, Ayman El-Faham
Abstract:
Recently, there has been a huge interest in using cyanuric chloride in a wide range of functional group transformations, as Cyanuric chloride has temperature-dependent differential reactivity for displacement of chlorides with various nucleophiles In the present work, some copolymers based on s-triazine Unit were prepared by microwave-assisted synthesis. For comparison study, the copolymers were synthesized by the conventional method. Synthesized Copolymers were characterized by MP, IR, TGA, DSC and GPC. The result indicated that copolymers are thermally stable and in good in composition and yield. Further studies that involve the test for selected removal of transition elements such as Cu (II), Zn (II) and Mn (II). Moreover, the effects of the polymeric triazine derivatives containing different functional groups which expected to have a good thermal stability and char formation ability on thermal degradation and flame retardancy.Keywords: flame retardants, heavy metals, microwave-assisted synthesis, s-triazine
Procedia PDF Downloads 3636394 The Influence of Parenting Patterns on Adolescent Deliquincy
Authors: Salsabila Rizka Pratama
Abstract:
In this day and age, delinquency has become common to young children, and it is a violation of the norms, and legal systems of a society that are carried out during adolescenceIt is the transition from childhood to adulthood. PerversionYouth from criminal law are a common problem among adolescents in homes, schools, and communities. Without proper treatment, delinquency can turn into a crime and is likely to send a child to prison. If dug deeper, the development of delinquency is strongly influenced by family and community life. Families play an important role in the prevention of delinquency. One way a family can help prevent delinquency is by using the proper upbringing. The upbringing that parents use affects children's behavior. Improper parenting can lead to delinquency. On the other hand, proper parenting will prevent delinquency. But delinquency is not influenced only by parental upbringing, the appearance of delinquency can be influenced by the environment, religion, economic factors, information technology factors.Keywords: parenting, parents, juvenile delinquency, family, youth, crime, environment, religion, economy, information technology
Procedia PDF Downloads 1566393 An Approach to Electricity Production Utilizing Waste Heat of a Triple-Pressure Cogeneration Combined Cycle Power Plant
Authors: Soheil Mohtaram, Wu Weidong, Yashar Aryanfar
Abstract:
This research investigates the points with heat recovery potential in a triple-pressure cogeneration combined cycle power plant and determines the amount of waste heat that can be recovered. A modified cycle arrangement is then adopted for accessing thermal potentials. Modeling the energy system is followed by thermodynamic and energetic evaluation, and then the price of the manufactured products is also determined using the Total Revenue Requirement (TRR) method and term economic analysis. The results of optimization are then presented in a Pareto chart diagram by implementing a new model with dual objective functions, which include power cost and produce heat. This model can be utilized to identify the optimal operating point for such power plants based on electricity and heat prices in different regions.Keywords: heat loss, recycling, unused energy, efficient production, optimization, triple-pressure cogeneration
Procedia PDF Downloads 836392 Crushing Behaviour of Thin Tubes with Various Corrugated Sections Using Finite Element Modelling
Authors: Shagil Akhtar, Syed Muneeb Iqbal, Mohammed R. Rahim
Abstract:
Common steel tubes with similar confines were used in simulation of tubes with distinctive type of corrugated sections. These corrugated cross-sections were arc-tangent, triangular, trapezoidal and square corrugated sections. The outcome of fluctuating structures of tube cross-section shape on the deformation feedback, collapse form and energy absorption characteristics of tubes under quasi-static axial compression have been prepared numerically. The finite element package of ANSYS Workbench was applied in the current analysis. The axial load-displacement products accompanied by the fold formation of disparate tubes were inspected and compared. Deviation of the initial peak load and the mean crushing force of the tubes with distinctive cross-sections were conscientiously examined.Keywords: absorbed energy, axial loading, corrugated tubes, finite element, initial peak load, mean crushing force
Procedia PDF Downloads 3896391 Reduced Power Consumption by Randomization for DSI3
Authors: David Levy
Abstract:
The newly released Distributed System Interface 3 (DSI3) Bus Standard specification defines 3 modulation levels from which 16 valid symbols are coded. This structure creates power consumption variations depending on the transmitted data of a factor of more than 2 between minimum and maximum. The power generation unit has to consider therefore the worst case maximum consumption all the time and be built accordingly. This paper proposes a method to reduce both the average current consumption and worst case current consumption. The transmitter randomizes the data using several pseudo-random sequences. It then estimates the energy consumption of the generated frames and selects to transmit the one which consumes the least. The transmitter also prepends the index of the pseudo-random sequence, which is not randomized, to allow the receiver to recover the original data using the correct sequence. We show that in the case that the frame occupies most of the DSI3 synchronization period, we achieve average power consumption reduction by up to 13% and the worst case power consumption is reduced by 17.7%.Keywords: DSI3, energy, power consumption, randomization
Procedia PDF Downloads 5386390 Multi-Criteria Assessment of Biogas Feedstock
Authors: Rawan Hakawati, Beatrice Smyth, David Rooney, Geoffrey McCullough
Abstract:
Targets have been set in the EU to increase the share of renewable energy consumption to 20% by 2020, but developments have not occurred evenly across the member states. Northern Ireland is almost 90% dependent on imported fossil fuels. With such high energy dependency, Northern Ireland is particularly susceptible to the security of supply issues. Linked to fossil fuels are greenhouse gas emissions, and the EU plans to reduce emissions by 20% by 2020. The use of indigenously produced biomass could reduce both greenhouse gas emissions and external energy dependence. With a wide range of both crop and waste feedstock potentially available in Northern Ireland, anaerobic digestion has been put forward as a possible solution for renewable energy production, waste management, and greenhouse gas reduction. Not all feedstock, however, is the same, and an understanding of feedstock suitability is important for both plant operators and policy makers. The aim of this paper is to investigate biomass suitability for anaerobic digestion in Northern Ireland. It is also important that decisions are based on solid scientific evidence. For this reason, the methodology used is multi-criteria decision matrix analysis which takes multiple criteria into account simultaneously and ranks alternatives accordingly. The model uses the weighted sum method (which follows the Entropy Method to measure uncertainty using probability theory) to decide on weights. The Topsis method is utilized to carry out the mathematical analysis to provide the final scores. Feedstock that is currently available in Northern Ireland was classified into two categories: wastes (manure, sewage sludge and food waste) and energy crops, specifically grass silage. To select the most suitable feedstock, methane yield, feedstock availability, feedstock production cost, biogas production, calorific value, produced kilowatt-hours, dry matter content, and carbon to nitrogen ratio were assessed. The highest weight (0.249) corresponded to production cost reflecting a variation of £41 gate fee to 22£/tonne cost. The weights calculated found that grass silage was the most suitable feedstock. A sensitivity analysis was then conducted to investigate the impact of weights. The analysis used the Pugh Matrix Method which relies upon The Analytical Hierarchy Process and pairwise comparisons to determine a weighting for each criterion. The results showed that the highest weight (0.193) corresponded to biogas production indicating that grass silage and manure are the most suitable feedstock. Introducing co-digestion of two or more substrates can boost the biogas yield due to a synergistic effect induced by the feedstock to favor positive biological interactions. A further benefit of co-digesting manure is that the anaerobic digestion process also acts as a waste management strategy. From the research, it was concluded that energy from agricultural biomass is highly advantageous in Northern Ireland because it would increase the country's production of renewable energy, manage waste production, and would limit the production of greenhouse gases (current contribution from agriculture sector is 26%). Decision-making methods based on scientific evidence aid policy makers in classifying multiple criteria in a logical mathematical manner in order to reach a resolution.Keywords: anaerobic digestion, biomass as feedstock, decision matrix, renewable energy
Procedia PDF Downloads 4636389 Preference Aggregation and Mechanism Design in the Smart Grid
Authors: Zaid Jamal Saeed Almahmoud
Abstract:
Smart Grid is the vision of the future power system that combines advanced monitoring and communication technologies to provide energy in a smart, efficient, and user-friendly manner. This proposal considers a demand response model in the Smart Grid based on utility maximization. Given a set of consumers with conflicting preferences in terms of consumption and a utility company that aims to minimize the peak demand and match demand to supply, we study the problem of aggregating these preferences while modelling the problem as a game. We also investigate whether an equilibrium can be reached to maximize the social benefit. Based on such equilibrium, we propose a dynamic pricing heuristic that computes the equilibrium and sets the prices accordingly. The developed approach was analysed theoretically and evaluated experimentally using real appliances data. The results show that our proposed approach achieves a substantial reduction in the overall energy consumption.Keywords: heuristics, smart grid, aggregation, mechanism design, equilibrium
Procedia PDF Downloads 1176388 Political and Economic Transition of People with Disabilities Related to Globalization
Authors: Jihye Jeon
Abstract:
This paper analyzes the political and economic issues that people with disabilities face related to globalization; how people with disabilities have been adapting globalization and surviving under worldwide competition system. It explains that economic globalization exacerbates inequality and deprivation of people with disabilities. The rising tide of neo-liberal welfare policies emphasized efficiency, downsized social expenditure for people with disabilities, excluded people with disabilities against labor market, and shifted them from welfare system to nothing. However, there have been people with disabilities' political responses to globalization, which are characterized by a global network of people with disabilities as well as participation to global governance. Their resistance can be seen as an attempt to tackle the problems that economic globalization has produced. It is necessary paradigm shift of disability policy from dependency represented by disability benefits to independency represented by labor market policies for people with disabilities.Keywords: economic globalization, people with disability, deprivation, welfare cut, disability right movement, resistance
Procedia PDF Downloads 4676387 Sustainable Technology and the Production of Housing
Authors: S. Arias
Abstract:
New housing developments and the technological changes that this implies, adapt the styles of living of its residents, as well as new family structures and forms of work due to the particular needs of a specific group of people which involves different techniques of dealing with, organize, equip and use a particular territory. Currently, own their own space is increasingly important and the cities are faced with the challenge of providing the opportunity for such demands, as well as energy, water and waste removal necessary in the process of construction and occupation of new human settlements. Until the day of today, not has failed to give full response to these demands and needs, resulting in cities that grow without control, badly used land, avenues and congested streets. Buildings and dwellings have an important impact on the environment and on the health of the people, therefore environmental quality associated with the comfort of humans to the sustainable development of natural resources. Applied to architecture, this concept involves the incorporation of new technologies in all the constructive process of a dwelling, changing customs of developers and users, what must be a greater effort in planning energy savings and thus reducing the emissions Greenhouse Gases (GHG) depending on the geographical location where it is planned to develop. Since the techniques of occupation of the territory are not the same everywhere, must take into account that these depend on the geographical, social, political, economic and climatic-environmental circumstances of place, which in modified according to the degree of development reached. In the analysis that must be undertaken to check the degree of sustainability of the place, it is necessary to make estimates of the energy used in artificial air conditioning and lighting. In the same way is required to diagnose the availability and distribution of the water resources used for hygiene and for the cooling of artificially air-conditioned spaces, as well as the waste resulting from these technological processes. Based on the results obtained through the different stages of the analysis, it is possible to perform an energy audit in the process of proposing recommendations of sustainability in architectural spaces in search of energy saving, rational use of water and natural resources optimization. The above can be carried out through the development of a sustainable building code in develop technical recommendations to the regional characteristics of each study site. These codes would seek to build bases to promote a building regulations applicable to new human settlements looking for is generated at the same time quality, protection and safety in them. This building regulation must be consistent with other regulations both national and municipal and State, such as the laws of human settlements, urban development and zoning regulations.Keywords: building regulations, housing, sustainability, technology
Procedia PDF Downloads 3486386 A Comparative Study of the Impact of the Total Fertility Rate (TFR) on Trends in the Second Demographic Transition in Rwanda
Authors: Etienne Gatera
Abstract:
Many studies have been conducted on SDT. Most of them focus on developed countries because of influencing factors such as; education, health, labor force, female labor force participation, industrialization, urbanization and migration. However, this thesis project paper aims to assess the impact of the total fertility rate (TFR) on the trends of the SDR in Rwanda. We will mainly be based in Rwanda after the 1994 genocide. Rwanda is located in East Africa, with approximately 13 million inhabitants. Thus, after the 1994 Tutsi genocide. The population growth rate exploded out of control with 6.17 children per woman in 1995. However, it's declined to 4.2 in 2014-2015 and declining to 4.1% in 2019-2020. Respectively with 3.4 children per woman in urban areas and 4.3 in rural areas. According to the National Institute of Statistics of Rwanda. Rwanda's population is expected to continue to grow for the rest of the century and reach 33.35 million people in 2099, with 2.1 children per woman in 2050. However, this project document aims to demonstrate the impact of the TFR on SDT trends in Rwanda. Thus, the decline in the TFR in Rwanda began with the introduction of family planning practices, which now account for 47.5% in 2019. Childbearing with three children for rural women compared to two children in the city, the increase in Divorce and separation caused by the behavior called "Kuza n'ijoro" or "coming at night" similar to cohabitation in developed countries. The decline in remarriage is caused by single mothers behavior who prefer to raise their children rather than remarry. Therefore, the study used probability sampling with (Stratified random sampling) method with a survey questionnaire of 1067 respondents in the 5 Districts (3 in rural areas and two in urban areas), with the target group of women Age between 15-49. The study demonstrated that the age of marriage in rural areas is two years higher than in urban areas. Divorce is more common in urban is with 6.2% with 5.2% in rural areas. However, separation is more common in rural areas than in urban areas, with a lower rate of 3%, due to the higher system called "Kuza n'ijoro" or "come at night", similar to cohabitation in developed countries. The study revealed that more than 85% of divorced people prefer to remain single, which confirms the low remarriage rate. Childbearing has started to decrease, especially for young singles in urban areas, due to the economic situation, with national statistics showing that unemployment in the youth community is still 16% higher. Therefore, the study concluded by confirming the hypothesis based on the results of the TFR indicators such as marriage, remarriage, divorce, separation, divorce, Kuza n'ijoro, childbearing] and abortion. The study consists of four sections, an introduction and background, a review of the literature, a description of the data and methodology, an analysis of the data, discussion results and a conclusion.Keywords: Kuza n'ijoro, Rwanda, second demographic transition (SDT), total fertility rate (TFR)
Procedia PDF Downloads 1716385 Effects of Mechanical Test and Shape of Grain Boundary on Martensitic Transformation in Fe-Ni-C Steel
Authors: Mounir Gaci, Salim Meziani, Atmane Fouathia
Abstract:
The purpose of the present paper is to model the behavior of metal alloy, type TRIP steel (Transformation Induced Plasticity), during solid/solid phase transition. A two-dimensional micromechanical model is implemented in finite element software (ZEBULON) to simulate the martensitic transformation in Fe-Ni-C steel grain under mechanical tensile stress of 250 MPa. The effects of non-uniform grain boundary and the criterion of mechanical shear load on the transformation and on the TRIP value during martensitic transformation are studied. The suggested mechanical criterion is favourable to the influence of the shear phenomenon on the progression of the martensitic transformation (Magee’s mechanism). The obtained results are in satisfactory agreement with experimental ones and show the influence of the grain boundary shape and the chosen mechanical criterion (SMF) on the transformation parameters.Keywords: martensitic transformation, non-uniform Grain Boundary, TRIP, shear Mechanical force (SMF)
Procedia PDF Downloads 2616384 Influence of Temperature and Immersion on the Behavior of a Polymer Composite
Authors: Quentin C.P. Bourgogne, Vanessa Bouchart, Pierre Chevrier, Emmanuel Dattoli
Abstract:
This study presents an experimental and theoretical work conducted on a PolyPhenylene Sulfide reinforced with 40%wt of short glass fibers (PPS GF40) and its matrix. Thermoplastics are widely used in the automotive industry to lightweight automotive parts. The replacement of metallic parts by thermoplastics is reaching under-the-hood parts, near the engine. In this area, the parts are subjected to high temperatures and are immersed in cooling liquid. This liquid is composed of water and glycol and can affect the mechanical properties of the composite. The aim of this work was thus to quantify the evolution of mechanical properties of the thermoplastic composite, as a function of temperature and liquid aging effects, in order to develop a reliable design of parts. An experimental campaign in the tensile mode was carried out at different temperatures and for various glycol proportions in the cooling liquid, for monotonic and cyclic loadings on a neat and a reinforced PPS. The results of these tests allowed to highlight some of the main physical phenomena occurring during these solicitations under tough hydro-thermal conditions. Indeed, the performed tests showed that temperature and liquid cooling aging can affect the mechanical behavior of the material in several ways. The more the cooling liquid contains water, the more the mechanical behavior is affected. It was observed that PPS showed a higher sensitivity to absorption than to chemical aggressiveness of the cooling liquid, explaining this dominant sensitivity. Two kinds of behaviors were noted: an elasto-plastic type under the glass transition temperature and a visco-pseudo-plastic one above it. It was also shown that viscosity is the leading phenomenon above the glass transition temperature for the PPS and could also be important under this temperature, mostly under cyclic conditions and when the stress rate is low. Finally, it was observed that soliciting this composite at high temperatures is decreasing the advantages of the presence of fibers. A new phenomenological model was then built to take into account these experimental observations. This new model allowed the prediction of the evolution of mechanical properties as a function of the loading environment, with a reduced number of parameters compared to precedent studies. It was also shown that the presented approach enables the description and the prediction of the mechanical response with very good accuracy (2% of average error at worst), over a wide range of hydrothermal conditions. A temperature-humidity equivalence principle was underlined for the PPS, allowing the consideration of aging effects within the proposed model. Then, a limit of improvement of the reachable accuracy was determinate for all models using this set of data by the application of an artificial intelligence-based model allowing a comparison between artificial intelligence-based models and phenomenological based ones.Keywords: aging, analytical modeling, mechanical testing, polymer matrix composites, sequential model, thermomechanical
Procedia PDF Downloads 1176383 Toward the Decarbonisation of EU Transport Sector: Impacts and Challenges of the Diffusion of Electric Vehicles
Authors: Francesca Fermi, Paola Astegiano, Angelo Martino, Stephanie Heitel, Michael Krail
Abstract:
In order to achieve the targeted emission reductions for the decarbonisation of the European economy by 2050, fundamental contributions are required from both energy and transport sectors. The objective of this paper is to analyse the impacts of a largescale diffusion of e-vehicles, either battery-based or fuel cells, together with the implementation of transport policies aiming at decreasing the use of motorised private modes in order to achieve greenhouse gas emission reduction goals, in the context of a future high share of renewable energy. The analysis of the impacts and challenges of future scenarios on transport sector is performed with the ASTRA (ASsessment of TRAnsport Strategies) model. ASTRA is a strategic system-dynamic model at European scale (EU28 countries, Switzerland and Norway), consisting of different sub-modules related to specific aspects: the transport system (e.g. passenger trips, tonnes moved), the vehicle fleet (composition and evolution of technologies), the demographic system, the economic system, the environmental system (energy consumption, emissions). A key feature of ASTRA is that the modules are linked together: changes in one system are transmitted to other systems and can feed-back to the original source of variation. Thanks to its multidimensional structure, ASTRA is capable to simulate a wide range of impacts stemming from the application of transport policy measures: the model addresses direct impacts as well as second-level and third-level impacts. The simulation of the different scenarios is performed within the REFLEX project, where the ASTRA model is employed in combination with several energy models in a comprehensive Modelling System. From the transport sector perspective, some of the impacts are driven by the trend of electricity price estimated from the energy modelling system. Nevertheless, the major drivers to a low carbon transport sector are policies related to increased fuel efficiency of conventional drivetrain technologies, improvement of demand management (e.g. increase of public transport and car sharing services/usage) and diffusion of environmentally friendly vehicles (e.g. electric vehicles). The final modelling results of the REFLEX project will be available from October 2018. The analysis of the impacts and challenges of future scenarios is performed in terms of transport, environmental and social indicators. The diffusion of e-vehicles produces a consistent reduction of future greenhouse gas emissions, although the decarbonisation target can be achieved only with the contribution of complementary transport policies on demand management and supporting the deployment of low-emission alternative energy for non-road transport modes. The paper explores the implications through time of transport policy measures on mobility and environment, underlying to what extent they can contribute to a decarbonisation of the transport sector. Acknowledgements: The results refer to the REFLEX project which has received grants from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 691685.Keywords: decarbonisation, greenhouse gas emissions, e-mobility, transport policies, energy
Procedia PDF Downloads 1556382 Influence of Mothers’ Knowledge, Attitude and Behavior on Diet and Physical Activity of Their Pre-School Children: A Cross-Sectional Study from a Semi-Urban Area of Nepal
Authors: Natalia Oli, Abhinav Vaidya, Katja Pahkala, Gabriele Eiben, Alexandra Krettek
Abstract:
The nutritional transition towards a high fat and energy dense diet, decreasing physical activity level, and poor cardiovascular health knowledge contributes to a rising burden of cardiovascular diseases in Nepal. Dietary and physical activity behaviors are formed early in life and influenced by family, particularly by mothers in the social context of Nepal. The purpose of this study was to explore knowledge, attitude and behavior of mothers regarding diet and physical activity of their pre-school children. Cross-sectional study was conducted in the semi-urban area of Duwakot and Jhaukhel communities near the capital Kathmandu. Between August and November 2014, nine trained enumerators interviewed all mothers having children aged 2 to 7 years in their homes. Questionnaire contained information about mothers’ socio-demographic characteristics; their knowledge, attitude, and behavior regarding diet and physical activity as well as their children’s diet and physical activity. Knowledge, attitude and behavior responses were scored. SPSS version 22.0 was used for data analyses. Out of the 1,052 eligible mothers, 962 consented to participate in the study. The mean age was 28.9 ± 4.5 years. The majority of them (73%) were housewives. Mothers with higher education and income had higher knowledge, attitude, and behavior scores (All p < 0.001) whereas housewives and farmers had low knowledge score (p < 0.001). They, along with laborers, also exhibited lower attitude (p<0.001) and behavior scores (p < 0.001). Children’s diet score increased with mothers’ level of education (p <0.001) and income (p=0.041). Their physical activity score, however, declined with increasing level of their mothers’ education (p < 0.001) and income (p < 0.001). Children’s overall behavior score correlated poorly with mothers’ knowledge (r = 0.009, p=0.003), attitude (r =0.012, p=0.001), and behavior (r = 0.007, p= 0.008). Such poor correlation can be due to existence of the barriers among mothers. Mothers reported such barriers as expensive healthy food, difficulty to give up favorite food, taste preference of others family members and lack of knowledge on healthy food. Barriers for physical activity were lack of leisure time, lack of parks and playgrounds, being busy by caring for children and old people, feeling lazy and embarrassed in front of others. Additionally, among the facilitators for healthy lifestyle, mentioned by mothers, were better information, family eating healthy food and supporting physical activity, advice of medical personnel regarding healthy lifestyle and own ill health. The study demonstrated poor correlation of mothers’ knowledge and attitude with children’s behavior regarding diet and physical activity. Hence improving mothers’ knowledge or attitude may not be enough to improve dietary and physical activity habits of their children. Barriers and facilitators that affect mothers’ practices towards their children should also be addressed due to future intervention.Keywords: attitude, behavior, diet, knowledge, mothers, physical activity
Procedia PDF Downloads 2906381 Exergetic Optimization on Solid Oxide Fuel Cell Systems
Authors: George N. Prodromidis, Frank A. Coutelieris
Abstract:
Biogas can be currently considered as an alternative option for electricity production, mainly due to its high energy content (hydrocarbon-rich source), its renewable status and its relatively low utilization cost. Solid Oxide Fuel Cell (SOFC) stacks convert fuel’s chemical energy to electricity with high efficiencies and reveal significant advantages on fuel flexibility combined with lower emissions rate, especially when utilize biogas. Electricity production by biogas constitutes a composite problem which incorporates an extensive parametric analysis on numerous dynamic variables. The main scope of the presented study is to propose a detailed thermodynamic model on the optimization of SOFC-based power plants’ operation based on fundamental thermodynamics, energy and exergy balances. This model named THERMAS (THERmodynamic MAthematical Simulation model) incorporates each individual process, during electricity production, mathematically simulated for different case studies that represent real life operational conditions. Also, THERMAS offers the opportunity to choose a great variety of different values for each operational parameter individually, thus allowing for studies within unexplored and experimentally impossible operational ranges. Finally, THERMAS innovatively incorporates a specific criterion concluded by the extensive energy analysis to identify the most optimal scenario per simulated system in exergy terms. Therefore, several dynamical parameters as well as several biogas mixture compositions have been taken into account, to cover all the possible incidents. Towards the optimization process in terms of an innovative OPF (OPtimization Factor), presented here, this research study reveals that systems supplied by low methane fuels can be comparable to these supplied by pure methane. To conclude, such an innovative simulation model indicates a perspective on the optimal design of a SOFC stack based system, in the direction of the commercialization of systems utilizing biogas.Keywords: biogas, exergy, efficiency, optimization
Procedia PDF Downloads 372