Search results for: scanning electronic microscope (SEM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3946

Search results for: scanning electronic microscope (SEM)

286 Photovoltaic Modules Fault Diagnosis Using Low-Cost Integrated Sensors

Authors: Marjila Burhanzoi, Kenta Onohara, Tomoaki Ikegami

Abstract:

Faults in photovoltaic (PV) modules should be detected to the greatest extent as early as possible. For that conventional fault detection methods such as electrical characterization, visual inspection, infrared (IR) imaging, ultraviolet fluorescence and electroluminescence (EL) imaging are used, but they either fail to detect the location or category of fault, or they require expensive equipment and are not convenient for onsite application. Hence, these methods are not convenient to use for monitoring small-scale PV systems. Therefore, low cost and efficient inspection techniques with the ability of onsite application are indispensable for PV modules. In this study in order to establish efficient inspection technique, correlation between faults and magnetic flux density on the surface is of crystalline PV modules are investigated. Magnetic flux on the surface of normal and faulted PV modules is measured under the short circuit and illuminated conditions using two different sensor devices. One device is made of small integrated sensors namely 9-axis motion tracking sensor with a 3-axis electronic compass embedded, an IR temperature sensor, an optical laser position sensor and a microcontroller. This device measures the X, Y and Z components of the magnetic flux density (Bx, By and Bz) few mm above the surface of a PV module and outputs the data as line graphs in LabVIEW program. The second device is made of a laser optical sensor and two magnetic line sensor modules consisting 16 pieces of magnetic sensors. This device scans the magnetic field on the surface of PV module and outputs the data as a 3D surface plot of the magnetic flux intensity in a LabVIEW program. A PC equipped with LabVIEW software is used for data acquisition and analysis for both devices. To show the effectiveness of this method, measured results are compared to those of a normal reference module and their EL images. Through the experiments it was confirmed that the magnetic field in the faulted areas have different profiles which can be clearly identified in the measured plots. Measurement results showed a perfect correlation with the EL images and using position sensors it identified the exact location of faults. This method was applied on different modules and various faults were detected using it. The proposed method owns the ability of on-site measurement and real-time diagnosis. Since simple sensors are used to make the device, it is low cost and convenient to be sued by small-scale or residential PV system owners.

Keywords: fault diagnosis, fault location, integrated sensors, PV modules

Procedia PDF Downloads 208
285 Relaxor Ferroelectric Lead-Free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ Ceramic: Giant Electromechanical Response with Intrinsic Polarization and Resistive Leakage Analyses

Authors: Abid Hussain, Binay Kumar

Abstract:

Environment-friendly lead-free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ (NKLNTS) ceramic was synthesized by solid-state reaction method in search of a potential candidate to replace lead-based ceramics such as PbZrO₃-PbTiO₃ (PZT), Pb(Mg₁/₃Nb₂/₃)O₃-PbTiO₃ (PMN-PT) etc., for various applications. The ceramic was calcined at temperature 850 ᵒC and sintered at 1090 ᵒC. The powder X-Ray Diffraction (XRD) pattern revealed the formation of pure perovskite phase having tetragonal symmetry with space group P4mm of the synthesized ceramic. The surface morphology of the ceramic was studied using Field Emission Scanning Electron Microscopy (FESEM) technique. The well-defined grains with homogeneous microstructure were observed. The average grain size was found to be ~ 0.6 µm. A very large value of piezoelectric charge coefficient (d₃₃ ~ 754 pm/V) was obtained for the synthesized ceramic which indicated its potential for use in transducers and actuators. In dielectric measurements, a high value of ferroelectric to paraelectric phase transition temperature (Tm~305 ᵒC), a high value of maximum dielectric permittivity ~ 2110 (at 1 kHz) and a very small value of dielectric loss ( < 0.6) were obtained which suggested the utility of NKLNTS ceramic in high-temperature ferroelectric devices. Also, the degree of diffuseness (γ) was found to be 1.61 which confirmed a relaxor ferroelectric behavior in NKLNTS ceramic. P-E hysteresis loop was traced and the value of spontaneous polarization was found to be ~11μC/cm² at room temperature. The pyroelectric coefficient was obtained to be very high (p ∼ 1870 μCm⁻² ᵒC⁻¹) for the present case indicating its applicability in pyroelectric detector applications including fire and burglar alarms, infrared imaging, etc. NKLNTS ceramic showed fatigue free behavior over 107 switching cycles. Remanent hysteresis task was performed to determine the true-remanent (or intrinsic) polarization of NKLNTS ceramic by eliminating non-switchable components which showed that a major portion (83.10 %) of the remanent polarization (Pr) is switchable in the sample which makes NKLNTS ceramic a suitable material for memory switching devices applications. Time-Dependent Compensated (TDC) hysteresis task was carried out which revealed resistive leakage free nature of the ceramic. The performance of NKLNTS ceramic was found to be superior to many lead based piezoceramics and hence can effectively replace them for use in piezoelectric, pyroelectric and long duration ferroelectric applications.

Keywords: dielectric properties, ferroelectric properties , lead free ceramic, piezoelectric property, solid state reaction, true-remanent polarization

Procedia PDF Downloads 124
284 Carbon Dioxide Capture and Utilization by Using Seawater-Based Industrial Wastewater and Alkanolamine Absorbents

Authors: Dongwoo Kang, Yunsung Yoo, Injun Kim, Jongin Lee, Jinwon Park

Abstract:

Since industrial revolution, energy usage by human-beings has been drastically increased resulting in the enormous emissions of carbon dioxide into the atmosphere. High concentration of carbon dioxide is well recognized as the main reason for the climate change by breaking the heat equilibrium of the earth. In order to decrease the amount of carbon dioxide emission, lots of technologies have been developed. One of the methods is to capture carbon dioxide after combustion process using liquid type absorbents. However, for some nations, captured carbon dioxide cannot be treated and stored properly due to their geological structures. Also, captured carbon dioxide can be leaked out when crust activities are active. Hence, the method to convert carbon dioxide as stable and useful products were developed. It is usually called CCU, that is, Carbon Capture and Utilization. There are several ways to convert carbon dioxide into useful substances. For example, carbon dioxide can be converted and used as fuels such as diesel, plastics, and polymers. However, these types of technologies require lots of energy to make stable carbon dioxide into a reactive one. Hence, converting it into metal carbonates salts have been studied widely. When carbon dioxide is captured by alkanolamine-based liquid absorbents, it exists as ionic forms such as carbonate, carbamate, and bicarbonate. When adequate metal ions are added, metal carbonate salt can be produced by ionic reaction with fast reaction kinetics. However, finding metal sources can be one of the problems for this method to be commercialized. If natural resources such as calcium oxide were used to supply calcium ions, it is not thought to have the economic feasibility to use natural resources to treat carbon dioxide. In this research, high concentrated industrial wastewater produced from refined salt production facility have been used as metal supplying source, especially for calcium cations. To ensure purity of final products, calcium ions were selectively separated in the form of gypsum dihydrate. After that, carbon dioxide is captured using alkanolamine-based absorbents making carbon dioxide into reactive ionic form. And then, high purity calcium carbonate salt was produced. The existence of calcium carbonate was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) images. Also, carbon dioxide loading curves for absorption, conversion, and desorption were provided. Also, in order to investigate the possibility of the absorbent reuse, reabsorption experiments were performed either. Produced calcium carbonate as final products is seemed to have potential to be used in various industrial fields including cement and paper making industries and pharmaceutical engineering fields.

Keywords: alkanolamine, calcium carbonate, climate change, seawater, industrial wastewater

Procedia PDF Downloads 172
283 Assessment of the Properties of Microcapsules with Different Polymeric Shells Containing a Reactive Agent for their Suitability in Thermoplastic Self-healing Materials

Authors: Małgorzata Golonka, Jadwiga Laska

Abstract:

Self-healing polymers are one of the most investigated groups of smart materials. As materials engineering has recently focused on the design, production and research of modern materials and future technologies, researchers are looking for innovations in structural, construction and coating materials. Based on available scientific articles, it can be concluded that most of the research focuses on the self-healing of cement, concrete, asphalt and anticorrosion resin coatings. In our study, a method of obtaining and testing the properties of several types of microcapsules for use in self-healing polymer materials was developed. A method to obtain microcapsules exhibiting various mechanical properties, especially compressive strength was developed. The effect was achieved by using various polymer materials to build the shell: urea-formaldehyde resin (UFR), melamine-formaldehyde resin (MFR), melamine-urea-formaldehyde resin (MUFR). Dicyclopentadiene (DCPD) was used as the core material due to the possibility of its polymerization according to the ring-opening olefin metathesis (ROMP) mechanism in the presence of a solid Grubbs catalyst showing relatively high chemical and thermal stability. The ROMP of dicyclopentadiene leads to a polymer with high impact strength, high thermal resistance, good adhesion to other materials and good chemical and environmental resistance, so it is potentially a very promising candidate for the self-healing of materials. The capsules were obtained by condensation polymerization of formaldehyde with urea, melamine or copolymerization with urea and melamine in situ in water dispersion, with different molar ratios of formaldehyde, urea and melamine. The fineness of the organic phase dispersed in water, and consequently the size of the microcapsules, was regulated by the stirring speed. In all cases, to establish such synthesis conditions as to obtain capsules with appropriate mechanical strength. The microcapsules were characterized by determining the diameters and their distribution and measuring the shell thickness using digital optical microscopy and scanning electron microscopy, as well as confirming the presence of the active substance in the core by FTIR and SEM. Compression tests were performed to determine mechanical strength of the microcapsules. The highest repeatability of microcapsule properties was obtained for UFR resin, while the MFR resin had the best mechanical properties. The encapsulation efficiency of MFR was much lower compared to UFR, though. Therefore, capsules with a MUFR shell may be the optimal solution. The chemical reaction between the active substance present in the capsule core and the catalyst placed outside the capsules was confirmed by FTIR spectroscopy. The obtained autonomous repair systems (microcapsules + catalyst) were introduced into polyethylene in the extrusion process and tested for the self-repair of the material.

Keywords: autonomic self-healing system, dicyclopentadiene, melamine-urea-formaldehyde resin, microcapsules, thermoplastic materials

Procedia PDF Downloads 23
282 Structural and Morphological Characterization of the Biomass of Aquatics Macrophyte (Egeria densa) Submitted to Thermal Pretreatment

Authors: Joyce Cruz Ferraz Dutra, Marcele Fonseca Passos, Rubens Maciel Filho, Douglas Fernandes Barbin, Gustavo Mockaitis

Abstract:

The search for alternatives to control hunger in the world, generated a major environmental problem. Intensive systems of fish production can cause an imbalance in the aquatic environment, triggering the phenomenon of eutrophication. Currently, there are many forms of growth control aquatic plants, such as mechanical withdrawal, however some difficulties arise for their final destination. The Egeria densa is a species of submerged aquatic macrophyte-rich in cellulose and low concentrations of lignin. By applying the concept of second generation energy, which uses lignocellulose for energy production, the reuse of these aquatic macrophytes (Egeria densa) in the biofuels production can turn an interesting alternative. In order to make lignocellulose sugars available for effective fermentation, it is important to use pre-treatments in order to separate the components and modify the structure of the cellulose and thus facilitate the attack of the microorganisms responsible for the fermentation. Therefore, the objective of this research work was to evaluate the structural and morphological transformations occurring in the biomass of aquatic macrophytes (E.densa) submitted to a thermal pretreatment. The samples were collected in an intensive fish growing farm, in the low São Francisco dam, in the northeastern region of Brazil. After collection, the samples were dried in a 65 0C ventilation oven and milled in a 5mm micron knife mill. A duplicate assay was carried, comparing the in natural biomass with the pretreated biomass with heat (MT). The sample (MT) was submitted to an autoclave with a temperature of 1210C and a pressure of 1.1 atm, for 30 minutes. After this procedure, the biomass was characterized in terms of degree of crystallinity and morphology, using X-ray diffraction (XRD) techniques and scanning electron microscopy (SEM), respectively. The results showed that there was a decrease of 11% in the crystallinity index (% CI) of the pretreated biomass, leading to the structural modification in the cellulose and greater presence of amorphous structures. Increases in porosity and surface roughness of the samples were also observed. These results suggest that biomass may become more accessible to the hydrolytic enzymes of fermenting microorganisms. Therefore, the morphological transformations caused by the thermal pretreatment may be favorable for a subsequent fermentation and, consequently, a higher yield of biofuels. Thus, the use of thermally pretreated aquatic macrophytes (E.densa) can be an environmentally, financially and socially sustainable alternative. In addition, it represents a measure of control for the aquatic environment, which can generate income (biogas production) and maintenance of fish farming activities in local communities.

Keywords: aquatics macrophyte, biofuels, crystallinity, morphology, pretreatment thermal

Procedia PDF Downloads 317
281 Double Burden of Hypertension-Hyperalbuminuria in the Pregnant Women: Cross-Sectional Study of Prevalence and Risk Factors in Foumban, West Region, Cameroon

Authors: Pierre Mintom, Ebai Patricia, Merlin Dasse, Marlyse Chantal Nyangon Ndongo, Aicha Aretouyap Kouotou, Felix Essiben, Christine Fernande Nyangono Biyegue

Abstract:

Background: The death of women during and after pregnancy remains a major concern in public health policy in Cameroon. Among the causes of this mortality is eclampsia which is a consequence of the Pre-eclampsia characterized by the double burden of pregnancy-induced hypertension and albuminuria in pregnant women. Objective: To determine the various factors associated with the pre-eclampsia in pregnant women of Foumban. Methodology: A cross-sectional and analytical study was carried out during the period from July to August 2020 and supplemented by another study carried out from August 05 to September 05, 2022, at the Foumban district hospital. A questionnaire was administered to pregnant women. It focused on socio-demographic parameters, the state nutritional, health status, and maternal parameters. Blood pressure was taken using an electronic blood pressure monitor, and urinary albumin was measuring using urine dipstick. Pre-eclampsia was defined by three types of double burden: double burden systolic hypertension–hyperalbuminuria (SHH), defined for SBP≥140 mmHg and hyperalbuminuria ≥1+ on urine dipstick, double burden diastolic hypertension–hyperalbuminuria (DHH), defined for PAD≥90 mmHg and hyperalbuminuria ≥1+ on the urine dipstick, and the double burden systolodiastolic arterial hypertension– hyperalbuminuria (SDHH), defined for SBP ≥ 140mmHg, PAD≥90 mmHg and hyperalbuminuria ≥1+ on urine dipstick. IBM SPSS Software was used for statistical analysis. Results: The results of this study show that the prevalence of pre-eclampsia was 17.3% for the double burden SHH, 19.9% for the double burden DHH and 14.1% for double burden SDHH. Associated factors with pre-eclampsia according to the three types of double burden were marital status (P<0.05), religion (P<0.05), history of hypertension before pregnancy (P<0.05). Associated factors for the double burden of DHH and SDHH were the nutritional status before the pregnancy (P<0.05) and the number of prenatal consultations (P<0.05). In terms of food groups, regular consumption of spices significantly increased the risk of pre-eclampsia by 5.318, 6.277 and 11.271 times respectively for the SHH, DHH and SDHH double burdens, while regular consumption of sweets regular consumption of sweets increased by 2.42 times and 2.053 times respectively the double DHH and SDHH burdens respectively. Conclusion: Our study made it possible to redefine pre-eclampsia by considering the subtypes of hypertension. Certain socio-demographic parameters and certain dietary habits influence the occurrence of pre-eclampsia characterized by the double burden Hypertension-hyperalbuminuria in pregnant women, which may later lead to the occurrence of eclampsia. Moreover, albuminemia could be a good predicitive factor of pre-eclampsia and could be explored.

Keywords: hypertension, hyperalbuminuria, pregnant women, foumban

Procedia PDF Downloads 48
280 Ergonomic Assessment of Workplace Environment of Flour Mill Workers

Authors: Jayshree P. Zend, Ashatai B. Pawar

Abstract:

The study was carried out in Parbhani district of Maharashtra state, India with the objectives to study environmental problems faced by flour mill workers, prevalence of work-related health hazards and the physiological cost of workers while performing work in flour mill in traditional method as well as improved method. The use of flour presser, dust controlling bag and noise and dust controlling mask developed by AICRP College of Home Science, VNMKV, Parbhani was considered as an improved method. This investigation consisted survey and experiment which was conducted in the respective locations of flour mills. Healthy, non-smoking 30 flour mill workers ranged between the age group of 20-50 yrs comprising 16 female and 14 male working at flour mill for 4-8 hrs/ day and 6 days/ week and had minimum five years experience of work in flour mill were selected for the study. Pulmonary function test of flour mill workers was carried out by trained technician at Dr. ShankarraoChavan Government Medical College, Nanded by using Electronic Spirometer. The data regarding heart rate (resting, working and recovery), energy expenditure, musculoskeletal problems and occupational health hazards and accidents were recorded by using pretested questionnaire. Scientific equipment used in the experiment were polar sport test heart rate monitor, Hygrometer, Goniometer, Dialed Thermometer, Sound Level Meter, Lux Meter, Ambient Air Sampler and Air Quality Monitor. The collected data were subjected to appropriate statistical analysis such as 't' test and correlation coefficient test. Results indicated that improved method i.e. use of noise and dust controlling mask, flour presser and dust controlling bag were effective in reducing physiological cost of work of flour mill workers. Lung function test of flour mill workers showed decreased values of all parameters, hence the results of present study support paying attention to use of personal protective noise and dust controlling mask by flour mill workers and also to the working conditions in flour mill especially ventilation and illumination level needs to be enhanced in flour mill. The study also emphasizes the need to develop some mechanism for lifting load of grains and unloading in the hopper. It is also suggested that the flour mill workers should use flour presser suitable to their height to avoid frequent bending and should use dust controlling bag to flour outlet of machine to reduce inhalable flour dust level in the flour mill.

Keywords: physiological cost, energy expenditure, musculoskeletal problems

Procedia PDF Downloads 387
279 Improvement in Oral Health-Related Quality of Life of Adult Patients After Rehabilitation With Partial Dentures: A Systematic Review and Meta-Analysis

Authors: Adama NS Bah

Abstract:

Background: Loss of teeth has a negative influence on essential oral functions such as phonetics, mastication, and aesthetics. Dentists treat people with prosthodontic rehabilitation to recover essential oral functions. The oral health quality of life inventory reflects the success of prosthodontic rehabilitation. In many countries, the current conventional care delivered to replace missing teeth for adult patients involves the provision of removable partial dentures. Aim: The aim of this systematic review and meta-analysis is to gather the best available evidence to determine patients’ oral health-related quality of life improvement after treatment with partial dentures. Methods: We searched electronic databases from January 2010 to September 2019, including PubMed, ProQuest, Science Direct, Scopus and Google Scholar. In this paper, studies were included only if the average age was 30 years and above and also published in English. Two reviewers independently screened and selected all the references based on inclusion criteria using the PRISMA guideline, and assessed the quality of the included references using the Joanna Briggs Institute quality assessment tools. Data extracted were analyzed in RevMan 5.0 software, the heterogeneity between the studies was assessed using Forest plot, I2 statistics and chi-square test with a statistical P value less than 0.05 to indicate statistical significance. Random effect models were used in case of moderate or high heterogeneity. Four studies were included in the systematic review and three studies were pooled for meta-analysis. Results: Four studies included in the systematic review and three studies included in the meta-analysis with a total of 285 patients comparing the improvement in oral health-related quality of life before and after rehabilitation with partial denture, the pooled results showed a better improvement of oral health-related quality of life after treatment with partial dentures (mean difference 5.25; 95% CI [3.81, 6.68], p < 0.00001) favoring the wearing of partial dentures. In order to ascertain the reliability of the included studies for meta-analysis risk of bias was assessed and found to be low in all included studies for meta-analysis using the Cochrane collaboration tool for risk of bias assessment. Conclusion: There is high evidence that rehabilitation with partial dentures can improve the patient’s oral health-related quality of life measured with Oral Health Impact Profile 14. This review has clinical evidence value for dentists treating the expanding vulnerable adult population.

Keywords: meta-analysis, oral health impact profile, partial dentures, systematic review

Procedia PDF Downloads 93
278 Effect of Particle Size Variations on the Tribological Properties of Porcelain Waste Added Epoxy Composites

Authors: B. Yaman, G. Acikbas, N. Calis Acikbas

Abstract:

Epoxy based materials have advantages in tribological applications due to their unique properties such as light weight, self-lubrication capacity and wear resistance. On the other hand, their usage is often limited by their low load bearing capacity and low thermal conductivity values. In this study, it is aimed to improve tribological and also mechanical properties of epoxy by reinforcing with ceramic based porcelain waste. It is well-known that the reuse or recycling of waste materials leads to reduction in production costs, ease of manufacturing, saving energy, etc. From this perspective, epoxy and epoxy matrix composites containing 60wt% porcelain waste with different particle size in the range of below 90µm and 150-250µm were fabricated, and the effect of filler particle size on the mechanical and tribological properties was investigated. The microstructural characterization was carried out by scanning electron microscopy (SEM), and phase analysis was determined by X-ray diffraction (XRD). The Archimedes principle was used to measure the density and porosity of the samples. The hardness values were measured using Shore-D hardness, and bending tests were performed. Microstructural investigations indicated that porcelain particles were homogeneously distributed and no agglomerations were encountered in the epoxy resin. Mechanical test results showed that the hardness and bending strength were increased with increasing particle size related to low porosity content and well embedding to the matrix. Tribological behavior of these composites was evaluated in terms of friction, wear rates and wear mechanisms by ball-on-disk contact with dry and rotational sliding at room temperature against WC ball with a diameter of 3mm. Wear tests were carried out at room temperature (23–25°C) with a humidity of 40 ± 5% under dry-sliding conditions. The contact radius of cycles was set to 5 mm at linear speed of 30 cm/s for the geometry used in this study. In all the experiments, 3N of constant test load was applied at a frequency of 8 Hz and prolonged to 400m wear distance. The friction coefficient of samples was recorded online by the variation in the tangential force. The steady-state CoFs were changed in between 0,29-0,32. The dimensions of the wear tracks (depth and width) were measured as two-dimensional profiles by a stylus profilometer. The wear volumes were calculated by integrating these 2D surface areas over the diameter. Specific wear rates were computed by dividing the wear volume by the applied load and sliding distance. According to the experimental results, the use of porcelain waste in the fabrication of epoxy resin composites can be suggested to be potential materials due to allowing improved mechanical and tribological properties and also providing reduction in production cost.

Keywords: epoxy composites, mechanical properties, porcelain waste, tribological properties

Procedia PDF Downloads 183
277 Brand Resonance Strategy For Long-term Market Survival: Does The Brand Resonance Matter For Smes? An Investigation In Smes Digital Branding (Facebook, Twitter, Instagram And Blog) Activities And Strong Brand Development

Authors: Noor Hasmini Abd Ghani

Abstract:

Brand resonance is among of new focused strategy that getting more attention in nowadays by larger companies for their long-term market survival. The brand resonance emphasizing of two main characteristics that are intensity and activity able to generate psychology bond and enduring relationship between a brand and consumer. This strong attachment relationship has represented brand resonance with the concept of consumer brand relationship (CBR) that exhibit competitive advantage for long-term market survival. The main consideration toward this brand resonance approach is not only in the context of larger companies but also can be adapted in Small and Medium Enterprises (SMEs) as well. The SMEs have been recognized as vital pillar to the world economy in both developed and emergence countries are undeniable due to their economic growth contributions, such as opportunity for employment, wealth creation, and poverty reduction. In particular, the facts that SMEs in Malaysia are pivotal to the well-being of the Malaysian economy and society are clearly justified, where the SMEs competent in provided jobs to 66% of the workforce and contributed 40% to the GDP. As regards to it several sectors, the SMEs service category that covers the Food & Beverage (F&B) sector is one of the high-potential industries in Malaysia. For that reasons, SMEs strong brand or brand equity is vital to be developed for their long-term market survival. However, there’s still less appropriate strategies in develop their brand equity. The difficulties have never been so evident until Covid-19 swept across the globe from 2020. Since the pandemic began, more than 150,000 SMEs in Malaysia have shut down, leaving more than 1.2 million people jobless. Otherwise, as the SMEs are the pillar of any economy for the countries in the world, and with negative effect of COVID-19 toward their economic growth, thus, their protection has become important more than ever. Therefore, focusing on strategy that able to develop SMEs strong brand is compulsory. Hence, this is where the strategy of brand resonance is introduced in this study. Mainly, this study aims to investigate the impact of CBR as a predictor and mediator in the context of social media marketing (SMM) activities toward SMEs e-brand equity (or strong brand) building. The study employed the quantitative research design concerning on electronic survey method with the valid response rate of 300 respondents. Interestingly, the result revealed the importance role of CBR either as predictor or mediator in the context of SMEs SMM as well as brand equity development. Further, the study provided several theoretical and practical implications that can benefit the SMEs in enhancing their strategic marketing decision.

Keywords: SME brand equity, SME social media marketing, SME consumer brand relationship, SME brand resonance

Procedia PDF Downloads 47
276 Sintering of YNbO3:Eu3+ Compound: Correlation between Luminescence and Spark Plasma Sintering Effect

Authors: Veronique Jubera, Ka-Young Kim, U-Chan Chung, Amelie Veillere, Jean-Marc Heintz

Abstract:

Emitting materials and all solid state lasers are widely used in the field of optical applications and materials science as a source of excitement, instrumental measurements, medical applications, metal shaping etc. Recently promising optical efficiencies were recorded on ceramics which result from a cheaper and faster ways to obtain crystallized materials. The choice and optimization of the sintering process is the key point to fabricate transparent ceramics. It includes a high control on the preparation of the powder with the choice of an adequate synthesis, a pre-heat-treatment, the reproducibility of the sintering cycle, the polishing and post-annealing of the ceramic. The densification is the main factor needed to reach a satisfying transparency, and many technologies are now available. The symmetry of the unit cell plays a crucial role in the diffusion rate of the material. Therefore, the cubic symmetry compounds having an isotropic refractive index is preferred. The cubic Y3NbO7 matrix is an interesting host which can accept a high concentration of rare earth doping element and it has been demonstrated that SPS is an efficient way to sinter this material. The optimization of diffusion losses requires a microstructure of fine ceramics, generally less than one hundred nanometers. In this case, grain growth is not an obstacle to transparency. The ceramics properties are then isotropic thereby to free-shaping step by orienting the ceramics as this is the case for the compounds of lower symmetry. After optimization of the synthesis route, several SPS parameters as heating rate, holding, dwell time and pressure were adjusted in order to increase the densification of the Eu3+ doped Y3NbO7 pellets. The luminescence data coupled with X-Ray diffraction analysis and electronic diffraction microscopy highlight the existence of several distorted environments of the doping element in the studied defective fluorite-type host lattice. Indeed, the fast and high crystallization rate obtained to put in evidence a lack of miscibility in the phase diagram, being the final composition of the pellet driven by the ratio between niobium and yttrium elements. By following the luminescence properties, we demonstrate a direct impact on the SPS process on this material.

Keywords: emission, niobate of rare earth, Spark plasma sintering, lack of miscibility

Procedia PDF Downloads 246
275 Spectroscopy and Electron Microscopy for the Characterization of CdSxSe1-x Quantum Dots in a Glass Matrix

Authors: C. Fornacelli, P. Colomban, E. Mugnaioli, I. Memmi Turbanti

Abstract:

When semiconductor particles are reduced in scale to nanometer dimension, their optical and electro-optical properties strongly differ from those of bulk crystals of the same composition. Since sampling is often not allowed concerning cultural heritage artefacts, the potentialities of two non-invasive techniques, such as Raman and Fiber Optic Reflectance Spectroscopy (FORS), have been investigated and the results of the analysis on some original glasses of different colours (from yellow to orange and deep red) and periods (from the second decade of the 20th century to present days) are reported in the present study. In order to evaluate the potentialities of the application of non-invasive techniques to the investigation of the structure and distribution of nanoparticles dispersed in a glass matrix, Scanning Electron Microscopy (SEM) and energy-disperse spectroscopy (EDS) mapping, together with Transmission Electron Microscopy (TEM) and Electron Diffraction Tomography (EDT) have also been used. Raman spectroscopy allows a fast and non-destructive measure of the quantum dots composition and size, thanks to the evaluation of the frequencies and the broadening/asymmetry of the LO phonons bands, respectively, though the important role of the compressive strain arising from the glass matrix and the possible diffusion of zinc from the matrix to the nanocrystals should be taken into account when considering the optical-phonons frequency values. The incorporation of Zn has been assumed by an upward shifting of the LO band related to the most abundant anion (S or Se), while the role of the surface phonons as well as the confinement-induced scattering by phonons with a non-zero wavevectors on the Raman peaks broadening has been verified. The optical band gap varies from 2.42 eV (pure CdS) to 1.70 eV (CdSe). For the compositional range between 0.5≤x≤0.2, the presence of two absorption edges has been related to the contribution of both pure CdS and the CdSxSe1-x solid solution; this particular feature is probably due to the presence of unaltered cubic zinc blende structures of CdS that is not taking part to the formation of the solid solution occurring only between hexagonal CdS and CdSe. Moreover, the band edge tailing originating from the disorder due to the formation of weak bonds and characterized by the Urbach edge energy has been studied and, together with the FWHM of the Raman signal, has been assumed as a good parameter to evaluate the degree of topological disorder. SEM-EDS mapping showed a peculiar distribution of the major constituents of the glass matrix (fluxes and stabilizers), especially concerning those samples where a layered structure has been assumed thanks to the spectroscopic study. Finally, TEM-EDS and EDT were used to get high-resolution information about nanocrystals (NCs) and heterogeneous glass layers. The presence of ZnO NCs (< 4 nm) dispersed in the matrix has been verified for most of the samples, while, for those samples where a disorder due to a more complex distribution of the size and/or composition of the NCs has been assumed, the TEM clearly verified most of the assumption made by the spectroscopic techniques.

Keywords: CdSxSe1-x, EDT, glass, spectroscopy, TEM-EDS

Procedia PDF Downloads 289
274 The Use of Information and Communication Technology within and between Emergency Medical Teams during a Disaster: A Qualitative study

Authors: Badryah Alshehri, Kevin Gormley, Gillian Prue, Karen McCutcheon

Abstract:

In a disaster event, sharing patient information between the pre-hospital Emergency Medical Services (EMS) and Emergency Department (ED) hospitals is a complex process during which important information may be altered or lost due to poor communication. The aim of this study was to critically discuss the current evidence base in relation to communication between pre- EMS hospital and ED hospital professionals by the use of Information and Communication Systems (ICT). This study followed the systematic approach; six electronic databases were searched: CINAHL, Medline, Embase, PubMed, Web of Science, and IEEE Xplore Digital Library were comprehensively searched in January 2018 and a second search was completed in April 2020 to capture more recent publications. The study selection process was undertaken independently by the study authors. Both qualitative and quantitative studies were chosen that focused on factors that are positively or negatively associated with coordinated communication between pre-hospital EMS and ED teams in a disaster event. These studies were assessed for quality, and the data were analyzed according to the key screening themes which emerged from the literature search. Twenty-two studies were included. Eleven studies employed quantitative methods, seven studies used qualitative methods, and four studies used mixed methods. Four themes emerged on communication between EMTs (pre-hospital EMS and ED staff) in a disaster event using the ICT. (1) Disaster preparedness plans and coordination. This theme reported that disaster plans are in place in hospitals, and in some cases, there are interagency agreements with pre-hospital and relevant stakeholders. However, the findings showed that the disaster plans highlighted in these studies lacked information regarding coordinated communications within and between the pre-hospital and hospital. (2) Communication systems used in the disaster. This theme highlighted that although various communication systems are used between and within hospitals and pre-hospitals, technical issues have influenced communication between teams during disasters. (3) Integrated information management systems. This theme suggested the need for an integrated health information system that can help pre-hospital and hospital staff to record patient data and ensure the data is shared. (4) Disaster training and drills. While some studies analyzed disaster drills and training, the majority of these studies were focused on hospital departments other than EMTs. These studies suggest the need for simulation disaster training and drills, including EMTs. This review demonstrates that considerable gaps remain in the understanding of the communication between the EMS and ED hospital staff in relation to response in disasters. The review shows that although different types of ICTs are used, various issues remain which affect coordinated communication among the relevant professionals.

Keywords: emergency medical teams, communication, information and communication technologies, disaster

Procedia PDF Downloads 113
273 An Automated Magnetic Dispersive Solid-Phase Extraction Method for Detection of Cocaine in Human Urine

Authors: Feiyu Yang, Chunfang Ni, Rong Wang, Yun Zou, Wenbin Liu, Chenggong Zhang, Fenjin Sun, Chun Wang

Abstract:

Cocaine is the most frequently used illegal drug globally, with the global annual prevalence of cocaine used ranging from 0.3% to 0.4 % of the adult population aged 15–64 years. Growing consumption trend of abused cocaine and drug crimes are a great concern, therefore urine sample testing has become an important noninvasive sampling whereas cocaine and its metabolites (COCs) are usually present in high concentrations and relatively long detection windows. However, direct analysis of urine samples is not feasible because urine complex medium often causes low sensitivity and selectivity of the determination. On the other hand, presence of low doses of analytes in urine makes an extraction and pretreatment step important before determination. Especially, in gathered taking drug cases, the pretreatment step becomes more tedious and time-consuming. So developing a sensitive, rapid and high-throughput method for detection of COCs in human body is indispensable for law enforcement officers, treatment specialists and health officials. In this work, a new automated magnetic dispersive solid-phase extraction (MDSPE) sampling method followed by high performance liquid chromatography-mass spectrometry (HPLC-MS) was developed for quantitative enrichment of COCs from human urine, using prepared magnetic nanoparticles as absorbants. The nanoparticles were prepared by silanizing magnetic Fe3O4 nanoparticles and modifying them with divinyl benzene and vinyl pyrrolidone, which possesses the ability for specific adsorption of COCs. And this kind of magnetic particle facilitated the pretreatment steps by electromagnetically controlled extraction to achieve full automation. The proposed device significantly improved the sampling preparation efficiency with 32 samples in one batch within 40mins. Optimization of the preparation procedure for the magnetic nanoparticles was explored and the performances of magnetic nanoparticles were characterized by scanning electron microscopy, vibrating sample magnetometer and infrared spectra measurements. Several analytical experimental parameters were studied, including amount of particles, adsorption time, elution solvent, extraction and desorption kinetics, and the verification of the proposed method was accomplished. The limits of detection for the cocaine and cocaine metabolites were 0.09-1.1 ng·mL-1 with recoveries ranging from 75.1 to 105.7%. Compared to traditional sampling method, this method is time-saving and environmentally friendly. It was confirmed that the proposed automated method was a kind of highly effective way for the trace cocaine and cocaine metabolites analyses in human urine.

Keywords: automatic magnetic dispersive solid-phase extraction, cocaine detection, magnetic nanoparticles, urine sample testing

Procedia PDF Downloads 185
272 Melt–Electrospun Polyprophylene Fabrics Functionalized with TiO2 Nanoparticles for Effective Photocatalytic Decolorization

Authors: Z. Karahaliloğlu, C. Hacker, M. Demirbilek, G. Seide, E. B. Denkbaş, T. Gries

Abstract:

Currently, textile industry has played an important role in world’s economy, especially in developing countries. Dyes and pigments used in textile industry are significant pollutants. Most of theirs are azo dyes that have chromophore (-N=N-) in their structure. There are many methods for removal of the dyes from wastewater such as chemical coagulation, flocculation, precipitation and ozonation. But these methods have numerous disadvantages and alternative methods are needed for wastewater decolorization. Titanium-mediated photodegradation has been used generally due to non-toxic, insoluble, inexpensive, and highly reactive properties of titanium dioxide semiconductor (TiO2). Melt electrospinning is an attractive manufacturing process for thin fiber production through electrospinning from PP (Polyprophylene). PP fibers have been widely used in the filtration due to theirs unique properties such as hydrophobicity, good mechanical strength, chemical resistance and low-cost production. In this study, we aimed to investigate the effect of titanium nanoparticle localization and amine modification on the dye degradation. The applicability of the prepared chemical activated composite and pristine fabrics for a novel treatment of dyeing wastewater were evaluated.In this study, a photocatalyzer material was prepared from nTi (titanium dioxide nanoparticles) and PP by a melt-electrospinning technique. The electrospinning parameters of pristine PP and PP/nTi nanocomposite fabrics were optimized. Before functionalization with nTi, the surface of fabrics was activated by a technique using glutaraldehyde (GA) and polyethyleneimine to promote the dye degredation. Pristine PP and PP/nTi nanocomposite melt-electrospun fabrics were characterized using scanning electron microscopy (SEM) and X-Ray Photon Spectroscopy (XPS). Methyl orange (MO) was used as a model compound for the decolorization experiments. Photocatalytic performance of nTi-loaded pristine and nanocomposite melt-electrospun filters was investigated by varying initial dye concentration 10, 20, 40 mg/L). nTi-PP composite fabrics were successfully processed into a uniform, fibrous network of beadless fibers with diameters of 800±0.4 nm. The process parameters were determined as a voltage of 30 kV, a working distance of 5 cm, a temperature of the thermocouple and hotcoil of 260–300 ºC and a flow rate of 0.07 mL/h. SEM results indicated that TiO2 nanoparticles were deposited uniformly on the nanofibers and XPS results confirmed the presence of titanium nanoparticles and generation of amine groups after modification. According to photocatalytic decolarization test results, nTi-loaded GA-treated pristine or nTi-PP nanocomposite fabric filtern have superior properties, especially over 90% decolorization efficiency at GA-treated pristine and nTi-PP composite PP fabrics. In this work, as a photocatalyzer for wastewater treatment, surface functionalized with nTi melt-electrospun fabrics from PP were prepared. Results showed melt-electrospun nTi-loaded GA-tretaed composite or pristine PP fabrics have a great potential for use as a photocatalytic filter to decolorization of wastewater and thus, requires further investigation.

Keywords: titanium oxide nanoparticles, polyprophylene, melt-electrospinning

Procedia PDF Downloads 253
271 The Risk of Bleeding in Knee or Shoulder Injections in Patients on Warfarin Treatment

Authors: Muhammad Yasir Tarar

Abstract:

Background: Intraarticular steroid injections are an effective option in alleviating the symptoms of conditions like osteoarthritis, rheumatoid arthritis, crystal arthropathy, and rotator cuff tendinopathy. Most of these injections are conducted in the elderly who are on polypharmacy, including anticoagulants at times. Up to 6% of patients aged 80-84 years have been reported to be taking Warfarin. The literature availability on safety quotient for patients undergoing intraarticular injections on Warfarin is scarce. It has remained debatable over the years which approach is safe for these patients. Continuing warfarin has a theoretical bleeding risk, and stopping it can lead to even severe life-threatening thromboembolic events in high-risk patients. Objectives: To evaluate the risk of bleeding complications in patients on warfarin undergoing intraarticular injections or arthrocentesis. Study Design & Methods: A literature search of MEDLINE (1946 to present), EMBASE (1974 to present), and Cochrane CENTRAL (1988 to present) databases were conducted using any combination of the keywords, Injection, Knee, Shoulder, Joint, Intraarticular, arthrocentesis, Warfarin, and Anticoagulation in November 2020 for articles published in any language with no publication year limit. The study inclusion criteria included reporting on the rate of bleeding complications following injection of the knee or shoulder in patients on warfarin treatment. Randomized control trials and prospective and retrospective study designs were included. An electronic standardized Performa for data extraction was made. The Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) the methodology was used. The articles were appraised using the methodological index for nonrandomized studies. The Cochrane Risk of Bias Tool used to assess the risk of bias in included RCTs and the MINORS tool for assessment of bias in observational studies. Results: The search of databases resulted in a total of 852 articles. Relevant articles as per the inclusion criteria were shortlisted, 7 articles deemed suitable to be include. A total of 1033 joints sample size was undertaken with specified knee and shoulder joints of a total of 820. Only 6 joints had bleeding complications, 5 early bleeding at the time of injection or aspiration, and one late bleeding complication with INR of 5, additionally, 2 patients complained of bruising, 3 of pain, and 1 managed for infection. Conclusions: The results of the metanalysis show that it is relatively safe to perform intraarticular injections in patients on Warfarin regardless of the INR range.

Keywords: arthrocentesis, warfarin, bleeding, injection

Procedia PDF Downloads 66
270 Biodsorption as an Efficient Technology for the Removal of Phosphate, Nitrate and Sulphate Anions in Industrial Wastewater

Authors: Angel Villabona-Ortíz, Candelaria Tejada-Tovar, Andrea Viera-Devoz

Abstract:

Wastewater treatment is an issue of vital importance in these times where the impacts of human activities are most evident, which have become essential tasks for the normal functioning of society. However, they put entire ecosystems at risk by time destroying the possibility of sustainable development. Various conventional technologies are used to remove pollutants from water. Agroindustrial waste is the product with the potential to be used as a renewable raw material for the production of energy and chemical products, and their use is beneficial since products with added value are generated from materials that were not used before. Considering the benefits that the use of residual biomass brings, this project proposes the use of agro-industrial residues from corn crops for the production of natural adsorbents whose purpose is aimed at the remediation of contaminated water bodies with large loads of nutrients. The adsorption capacity of two biomaterials obtained from the processing of corn stalks was evaluated by batch system tests. Biochar impregnated with sulfuric acid and thermally activated was synthesized. On the other hand, the cellulose was extracted from the corn stalks and chemically modified with cetyltrimethylammonium chloride in order to quaternize the surface of the adsorbent. The adsorbents obtained were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), infrared spectrometry with Fourier Transform (FTIR), analysis by Brunauer, Emmett and Teller method (BET) and X-ray Diffraction analysis ( XRD), which showed favorable characteristics for the cellulose extraction process. Higher adsorption capacities of the nutrients were obtained with the use of biochar, with phosphate being the anion with the best removal percentages. The effect of the initial adsorbate concentration was evaluated, with which it was shown that the Freundlich isotherm better describes the adsorption process in most systems. The adsorbent-phosphate / nitrate systems fit better to the Pseudo Primer Order kinetic model, while the adsorbent-sulfate systems showed a better fit to the Pseudo second-order model, which indicates that there are both physical and chemical interactions in the process. Multicomponent adsorption tests revealed that phosphate anions have a higher affinity for both adsorbents. On the other hand, the thermodynamic parameters standard enthalpy (ΔH °) and standard entropy (ΔS °) with negative results indicate the exothermic nature of the process, whereas the ascending values of standard Gibbs free energy (ΔG °). The adsorption process of anions with biocarbon and modified cellulose is spontaneous and exothermic. The use of the evaluated biomateriles is recommended for the treatment of industrial effluents contaminated with sulfate, nitrate and phosphate anions.

Keywords: adsorption, biochar, modified cellulose, corn stalks

Procedia PDF Downloads 163
269 Loss of Green Space in Urban Metropolitan and Its Alarming Impacts on Teenagers' Life: A Case Study on Dhaka

Authors: Nuzhat Sharmin

Abstract:

Human being is the most integral part of the nature and responsible for maintaining ecological balance both in rural and urban areas. But unfortunately, we are not doing our job with a holistic approach. The rapid growth of urbanization is making human life more isolated from greenery. Nowadays modern urban living involves sensory deprivation and overloaded stress. In many cities and towns of the world are expanding unabated in the name of urbanization and industrialization and in fact becoming jungles of concrete. Dhaka is one of the examples of such cities where open and green spaces are decreasing because of accommodating the overflow of population. This review paper has been prepared based on interviewing 30 teenagers, both male and female in Dhaka city. There were 12 open-ended questions in the questionnaire. For the literature review information had been gathered from scholarly papers published in various peer-reviewed journals. Some information was collected from the newspapers and some from fellow colleagues working around the world. Ideally about 25% of an urban area should be kept open or with parks, fields and/or plants and vegetation. But currently Dhaka has only about 10-12% open space and these also are being filled up rapidly. Old Dhaka has only about 5% open space while the new Dhaka has about 12%. Dhaka is now one of the most populated cities in the world. Accommodating this huge influx of people Dhaka is continuously losing its open space. As a result, children and teenagers are losing their interest in playing games and making friends, rather they are mostly occupied by television, gadgets and social media. It has been known from the interview that only 28% of teenagers regularly play. But the majority of them have to play on the street and rooftop for the lack of open space. On an average they are occupied with electronic devices for 8.3 hours/day. 64% of them has chronic diseases and often visit doctors. Most shockingly 35% of them claimed for not having any friends. Green space offers relief from stress. Areas of natural environment in towns and cities are theoretically seen providing setting for recovery and recuperation from anxiety and strains of the urban environment. Good quality green spaces encourage people to walk, run, cycle and play. Green spaces improve air quality and reduce noise, while trees and shrubbery help to filter out dust and pollutants. Relaxation, contemplation and passive recreation are essential to stress management. All city governments that are losing its open spaces should immediately pay attention to this aesthetic issue for the benefit of urban people. All kinds of development must be sustainable both for human being and nature.

Keywords: greenery, health, human, urban

Procedia PDF Downloads 149
268 The Negative Implications of Childhood Obesity and Malnutrition on Cognitive Development

Authors: Stephanie Remedios, Linda Veronica Rios

Abstract:

Background. Pediatric obesity is a serious health problem linked to multiple physical diseases and ailments, including diabetes, heart disease, and joint issues. While research has shown pediatric obesity can bring about an array of physical illnesses, it is less known how such a condition can affect children’s cognitive development. With childhood overweight and obesity prevalence rates on the rise, it is essential to understand the scope of their cognitive consequences. The present review of the literature tested the hypothesis that poor physical health, such as childhood obesity or malnutrition, negatively impacts a child’s cognitive development. Methodology. A systematic review was conducted to determine the relationship between poor physical health and lower cognitive functioning in children ages 4-16. Electronic databases were searched for studies dating back to ten years. The following databases were used: Science Direct, FIU Libraries, and Google Scholar. Inclusion criteria consisted of peer-reviewed academic articles written in English from 2012 to 2022 that analyzed the relationship between childhood malnutrition and obesity on cognitive development. A total of 17,000 articles were obtained, of which 16,987 were excluded for not addressing the cognitive implications exclusively. Of the acquired articles, 13 were retained. Results. Research suggested a significant connection between diet and cognitive development. Both diet and physical activity are strongly correlated with higher cognitive functioning. Cognitive domains explored in this work included learning, memory, attention, inhibition, and impulsivity. IQ scores were also considered objective representations of overall cognitive performance. Studies showed physical activity benefits cognitive development, primarily for executive functioning and language development. Additionally, children suffering from pediatric obesity or malnutrition were found to score 3-10 points lower in IQ scores when compared to healthy, same-aged children. Conclusion. This review provides evidence that the presence of physical activity and overall physical health, including appropriate diet and nutritional intake, has beneficial effects on cognitive outcomes. The primary conclusion from this research is that childhood obesity and malnutrition show detrimental effects on cognitive development in children, primarily with learning outcomes. Assuming childhood obesity and malnutrition rates continue their current trade, it is essential to understand the complete physical and psychological implications of obesity and malnutrition in pediatric populations. Given the limitations encountered through our research, further studies are needed to evaluate the areas of cognition affected during childhood.

Keywords: childhood malnutrition, childhood obesity, cognitive development, cognitive functioning

Procedia PDF Downloads 104
267 Magnetron Sputtered Thin-Film Catalysts with Low Noble Metal Content for Proton Exchange Membrane Water Electrolysis

Authors: Peter Kus, Anna Ostroverkh, Yurii Yakovlev, Yevheniia Lobko, Roman Fiala, Ivan Khalakhan, Vladimir Matolin

Abstract:

Hydrogen economy is a concept of low-emission society which harvests most of its energy from renewable sources (e.g., wind and solar) and in case of overproduction, electrochemically turns the excess amount into hydrogen, which serves as an energy carrier. Proton exchange membrane water electrolyzers (PEMWE) are the backbone of this concept. By fast-response electricity to hydrogen conversion, the PEMWEs will not only stabilize the electrical grid but also provide high-purity hydrogen for variety of fuel cell powered devices, ranging from consumer electronics to vehicles. Wider commercialization of PEMWE technology is however hindered by high prices of noble metals which are necessary for catalyzing the redox reactions within the cell. Namely, platinum for hydrogen evolution reaction (HER), running on cathode, and iridium for oxygen evolution reaction (OER) on anode. Possible way of how to lower the loading of Pt and Ir is by using conductive high-surface nanostructures as catalyst supports in conjunction with thin-film catalyst deposition. The presented study discusses unconventional technique of membrane electron assembly (MEA) preparation. Noble metal catalysts (Pt and Ir) were magnetron sputtered in very low loadings onto the surface of porous sublayers (located on gas diffusion layer or directly on membrane), forming so to say localized three-phase boundary. Ultrasonically sprayed corrosion resistant TiC-based sublayer was used as a support material on anode, whereas magnetron sputtered nanostructured etched nitrogenated carbon (CNx) served the same role on cathode. By using this configuration, we were able to significantly decrease the amount of noble metals (to thickness of just tens of nanometers), while keeping the performance comparable to that of average state-of-the-art catalysts. Complex characterization of prepared supported catalysts includes in-cell performance and durability tests, electrochemical impedance spectroscopy (EIS) as well as scanning electron microscopy (SEM) imaging and X-ray photoelectron spectroscopy (XPS) analysis. Our research proves that magnetron sputtering is a suitable method for thin-film deposition of electrocatalysts. Tested set-up of thin-film supported anode and cathode catalysts with combined loading of just 120 ug.cm⁻² yields remarkable values of specific current. Described approach of thin-film low-loading catalyst deposition might be relevant when noble metal reduction is the topmost priority.

Keywords: hydrogen economy, low-loading catalyst, magnetron sputtering, proton exchange membrane water electrolyzer

Procedia PDF Downloads 149
266 The Effect of Nanocomposite on the Release of Imipenem on Bacteria Causing Infections with Implants

Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri

Abstract:

—Results The prudent administration of antibiotics aims to avoid the side effects and the microbes' resistance to antibiotics. An approach developing methods of local administration of antibiotics is especially required for localized infections caused by bacterial colonization of medical devices or implant materials. Among the wide variety of materials used as drug delivery systems, bioactive glasses (BG) have large utilization in regenerative medicine . firstly, the production of bioactive glass/nickel oxide/tin dioxide nanocomposite using sol-gel method, and then, the controlled release of imipenem from the double metal oxide/bioactive glass nanocomposite, and finally, the investigation of the antibacterial property of the nanocomposite. against a number of implant-related infectious agents. In this study, BG/SnO2 and BG/NiO single systema with different metal oxide present and BG/NiO/SnO2 nanocomposites were synthesized by sol-gel as drug carriers for tetracycline and imepinem. These two antibiotics were widely used for osteomyelitis because of its favorable penetration and bactericidal effect on all the probable osteomyelitis pathogens. The antibacterial activity of synthesized samples were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa as bacteria model using disk diffusion method. The BG modification using metal oxides results to antibacterial property of samples containing metal oxide with highest efficiency for nancomposite. bioactivity of all samples was assessed by determining the surface morphology, structural and composition changes using scanning electron microscopy (SEM), FTIR and X-ray diffraction (XRD) spectroscopy, respectively, after soaking in simulated body fluid (SBF) for 28 days. The hydroxyapatite formation was clearly observed as a bioactivity measurement. Then, BG nanocomposite sample was loaded using two antibiotics, separately and their release profiles were studied. The BG nancomposite sample was shown the slow and continuous drug releasing for a period of 72 hours which is desirable for a drug delivery system. The loaded antibiotic nanocomposite sample retaining antibacterial property and showing inactivation effect against bacteria under test. The modified bioactive glass forming hydroxyapatite with controlled release drug and effective against bacterial infections can be introduced as scaffolds for bone implants after clinical trials for biomedical applications . Considering the formation of biofilm by infectious bacteria after sticking on the surfaces of implants, medical devices, etc. Also, considering the complications of traditional methods, solving the problems caused by the above-mentioned microorganisms in technical and biomedical industries was one of the necessities of this research.

Keywords: antibacterial, bioglass, drug delivery system, sol- gel

Procedia PDF Downloads 41
265 Bioflavonoids Derived from Mandarin Processing Wastes: Functional Hydrogels as a Sustainable Food Systems

Authors: Niharika Kaushal, Minni Singh

Abstract:

Fruit crops are widely cultivated throughout the World, with citrus being one of the most common. Mandarins, oranges, grapefruits, lemons, and limes are among the most frequently grown varieties. Citrus cultivars are industrially processed into juice, resulting in approx. 25-40% by wt. of biomass in the form of peels and seeds, generally considered as waste. In consequence, a significant amount of this nutraceutical-enriched biomass goes to waste, which, if utilized wisely, could revolutionize the functional food industry, as this biomass possesses a wide range of bioactive compounds, mainly within the class of polyphenols and terpenoids, making them an abundant source of functional bioactive. Mandarin is a potential source of bioflavonoids with putative antioxidative properties, and its potential application for developing value-added products is obvious. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was studied for its flavonoid profile. For this, dried and pulverized peels were subjected to green and sustainable extraction techniques, namely, supercritical fluid extraction carried out under conditions pressure: 330 bar, temperature: 40 ̊ C and co-solvent: 10% ethanol. The obtained extract was observed to contain 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the prevalence of polymethoxyflavones (PMFs), chiefly tangeretin and nobiletin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which was estimated to be at an IC₅₀ of 0.55μg/ml. The pre-systemic metabolism of flavonoids limits their functionality, as was observed in this study through in vitro gastrointestinal studies where nearly 50.0% of the flavonoids were degraded within 2 hours of gastric exposure. We proposed nanoencapsulation as a means to overcome this problem, and flavonoids-laden polylactic-co-glycolic acid (PLGA) nano encapsulates were bioengineered using solvent evaporation method, and these were furnished to a particle size between 200-250nm, which exhibited protection of flavonoids in the gastric environment, allowing only 20% to be released in 2h. A further step involved impregnating the nano encapsulates within alginate hydrogels which were fabricated by ionic cross-linking, which would act as delivery vehicles within the gastrointestinal (GI) tract. As a result, 100% protection was achieved from the pre-systemic release of bioflavonoids. These alginate hydrogels had key significant features, i.e., less porosity of nearly 20.0%, and Cryo-SEM (Cryo-scanning electron microscopy) images of the composite corroborate the packing ability of the alginate hydrogel. As a result of this work, it is concluded that the waste can be used to develop functional biomaterials while retaining the functionality of the bioactive itself.

Keywords: bioflavonoids, gastrointestinal, hydrogels, mandarins

Procedia PDF Downloads 63
264 Polymeric Composites with Synergetic Carbon and Layered Metallic Compounds for Supercapacitor Application

Authors: Anukul K. Thakur, Ram Bilash Choudhary, Mandira Majumder

Abstract:

In this technologically driven world, it is requisite to develop better, faster and smaller electronic devices for various applications to keep pace with fast developing modern life. In addition, it is also required to develop sustainable and clean sources of energy in this era where the environment is being threatened by pollution and its severe consequences. Supercapacitor has gained tremendous attention in the recent years because of its various attractive properties such as it is essentially maintenance-free, high specific power, high power density, excellent pulse charge/discharge characteristics, exhibiting a long cycle-life, require a very simple charging circuit and safe operation. Binary and ternary composites of conducting polymers with carbon and other layered transition metal dichalcogenides have shown tremendous progress in the last few decades. Compared with bulk conducting polymer, these days conducting polymers have gained more attention because of their high electrical conductivity, large surface area, short length for the ion transport and superior electrochemical activity. These properties make them very suitable for several energy storage applications. On the other hand, carbon materials have also been studied intensively, owing to its rich specific surface area, very light weight, excellent chemical-mechanical property and a wide range of the operating temperature. These have been extensively employed in the fabrication of carbon-based energy storage devices and also as an electrode material in supercapacitors. Incorporation of carbon materials into the polymers increases the electrical conductivity of the polymeric composite so formed due to high electrical conductivity, high surface area and interconnectivity of the carbon. Further, polymeric composites based on layered transition metal dichalcogenides such as molybdenum disulfide (MoS2) are also considered important because they are thin indirect band gap semiconductors with a band gap around 1.2 to 1.9eV. Amongst the various 2D materials, MoS2 has received much attention because of its unique structure consisting of a graphene-like hexagonal arrangement of Mo and S atoms stacked layer by layer to give S-Mo-S sandwiches with weak Van-der-Waal forces between them. It shows higher intrinsic fast ionic conductivity than oxides and higher theoretical capacitance than the graphite.

Keywords: supercapacitor, layered transition-metal dichalcogenide, conducting polymer, ternary, carbon

Procedia PDF Downloads 235
263 Prenatal Genetic Screening and Counselling Competency Challenges of Nurse-Midwife

Authors: Girija Madhavanprabhakaran, Frincy Franacis, Sheeba Elizabeth John

Abstract:

Introduction: A wide range of prenatal genetic screening is introduced with increasing incidences of congenital anomalies even in low-risk pregnancies and is an emerging standard of care. Being frontline caretakers, the role and responsibilities of nurses and midwives are critical as they are working along with couples to provide evidence-based supportive educative care. The increasing genetic disorders and advances in prenatal genetic screening with limited genetic counselling facilities urge nurses and midwifery nurses with essential competencies to help couples to take informed decision. Objective: This integrative literature review aimed to explore nurse midwives’ knowledge and role in prenatal screening and genetic counselling competency and the challenges faced by them to cater to all pregnant women to empower their autonomy in decision making and ensuring psychological comfort. Method: An electronic search using keywords prenatal screening, genetic counselling, prenatal counselling, nurse midwife, nursing education, genetics, and genomics were done in the PUBMED, SCOPUS and Medline, Google Scholar. Finally, based on inclusion criteria, 8 relevant articles were included. Results: The main review results suggest that nurses and midwives lack essential support, knowledge, or confidence to be able to provide genetic counselling and help the couples ethically to ensure client autonomy and decision making. The majority of nurses and midwives reported inadequate levels of knowledge on genetic screening and their roles in obtaining family history, pedigrees, and providing genetic information for an affected client or high-risk families. The deficiency of well-recognized and influential clinical academic midwives in midwifery practice is also reported. Evidence recommended to update and provide sound educational training to improve nurse-midwife competence and confidence. Conclusion: Overcoming the challenges to achieving informed choices about fetal anomaly screening globally is a major concern. Lack of adequate knowledge and counselling competency, communication insufficiency, need for education and policy are major areas to address. Prenatal nurses' and midwives’ knowledge on prenatal genetic screening and essential counselling competencies can ensure services to the majority of pregnant women around the globe to be better-informed decision-makers and enhances their autonomy, and reduces ethical dilemmas.

Keywords: challenges, genetic counselling, prenatal screening, prenatal counselling

Procedia PDF Downloads 179
262 Magnetic SF (Silk Fibroin) E-Gel Scaffolds Containing bFGF-Conjugated Fe3O4 Nanoparticles

Authors: Z. Karahaliloğlu, E. Yalçın, M. Demirbilek, E.B. Denkbaş

Abstract:

Critical-sized bone defects caused by trauma, bone diseases, prosthetic implant revision or tumor excision cannot be repaired by physiological regenerative processes. Current orthopedic applications for critical-sized bone defects are to use autologous bone grafts, bone allografts, or synthetic graft materials. However, these strategies are unable to solve completely the problem, and motivate the development of novel effective biological scaffolds for tissue engineering applications and regenerative medicine applications. In particular, scaffolds combined with a variety of bio-agents as fundamental tools emerge to provide the regeneration of damaged bone tissues due to their ability to promote cell growth and function. In this study, a magnetic silk fibroin (SF) hydrogel scaffold was prepared by electrogelation process of the concentrated Bombxy mori silk fibroin (8 %wt) aqueous solution. For enhancement of osteoblast-like cells (SaOS-2) growth and adhesion, basal fibroblast growth factor (bFGF) were conjugated physically to the HSA-coated magnetic nanoparticles (Fe3O4) and magnetic SF e-gel scaffolds were prepared by incorporation of Fe3O4, HSA (human serum albumin)=Fe3O4 and HSA=Fe3O4-bFGF nanoparticles. HSA=Fe3O4, HSA=Fe3O4-bFGF loaded and bare SF e-gels scaffolds were characterized using scanning electron microscopy (SEM.) For cell studies, human osteoblast-like cell line (SaOS-2) was used and an MTT assay was used to assess the cytotoxicity of magnetic silk fibroin e-gel scaffolds and cell density on these surfaces. For the evaluation osteogenic activation, ALP (alkaline phosphatase), the amount of mineralized calcium, total protein and collagen were studied. Fe3O4 nanoparticles were successfully synthesized and bFGF was conjugated to HSA=Fe3O4 nanoparticles with %97.5 of binding yield which has a particle size of 71.52±2.3 nm. Electron microscopy images of the prepared HSA and bFGF incorporated SF e-gel scaffolds showed a 3D porous morphology. In terms of water uptake results, bFGF conjugated HSA=Fe3O4 nanoparticles has the best water absorbability behavior among all groups. In the in-vitro cell culture studies realized using SaOS-2 cell line, the coating of Fe3O4 nanoparticles surface with a protein enhance the cell viability and HSA coating and bFGF conjugation, the both have an inductive effect in the cell proliferation. One of the markers of bone formation and osteoblast differentiation, according to the ALP activity and total protein results, HSA=Fe3O4-bFGF loaded SF e-gels had significantly enhanced ALP activity. Osteoblast cultured HSA=Fe3O4-bFGF loaded SF e-gels deposited more calcium compared with SF e-gel. The proposed magnetic scaffolds seem to be promising for bone tissue regeneration and used in future work for various applications.

Keywords: basic fibroblast growth factor (bFGF), e-gel, iron oxide nanoparticles, silk fibroin

Procedia PDF Downloads 272
261 Criticality of Adiabatic Length for a Single Branch Pulsating Heat Pipe

Authors: Utsav Bhardwaj, Shyama Prasad Das

Abstract:

To meet the extensive requirements of thermal management of the circuit card assemblies (CCAs), satellites, PCBs, microprocessors, any other electronic circuitry, pulsating heat pipes (PHPs) have emerged in the recent past as one of the best solutions technically. But industrial application of PHPs is still unexplored up to a large extent due to their poor reliability. There are several systems as well as operational parameters which not only affect the performance of an operating PHP, but also decide whether the PHP can operate sustainably or not. Functioning may completely be halted for some particular combinations of the values of system and operational parameters. Among the system parameters, adiabatic length is one of the important ones. In the present work, a simplest single branch PHP system with an adiabatic section has been considered. It is assumed to have only one vapour bubble and one liquid plug. First, the system has been mathematically modeled using film evaporation/condensation model, followed by the steps of recognition of equilibrium zone, non-dimensionalization and linearization. Then proceeding with a periodical solution of the linearized and reduced differential equations, stability analysis has been performed. Slow and fast variables have been identified, and averaging approach has been used for the slow ones. Ultimately, temporal evolution of the PHP is predicted by numerically solving the averaged equations, to know whether the oscillations are likely to sustain/decay temporally. Stability threshold has also been determined in terms of some non-dimensional numbers formed by different groupings of system and operational parameters. A combined analytical and numerical approach has been used, and it has been found that for each combination of all other parameters, there exists a maximum length of the adiabatic section beyond which the PHP cannot function at all. This length has been called as “Critical Adiabatic Length (L_ac)”. For adiabatic lengths greater than “L_ac”, oscillations are found to be always decaying sooner or later. Dependence of “L_ac” on some other parameters has also been checked and correlated at certain evaporator & condenser section temperatures. “L_ac” has been found to be linearly increasing with increase in evaporator section length (L_e), whereas the condenser section length (L_c) has been found to have almost no effect on it upto a certain limit. But at considerably large condenser section lengths, “L_ac” is expected to decrease with increase in “L_c” due to increased wall friction. Rise in static pressure (p_r) exerted by the working fluid reservoir makes “L_ac” rise exponentially whereas it increases cubically with increase in the inner diameter (d) of PHP. Physics of all such variations has been given a good insight too. Thus, a methodology for quantification of the critical adiabatic length for any possible set of all other parameters of PHP has been established.

Keywords: critical adiabatic length, evaporation/condensation, pulsating heat pipe (PHP), thermal management

Procedia PDF Downloads 212
260 Development of 3D Printed Natural Fiber Reinforced Composite Scaffolds for Maxillofacial Reconstruction

Authors: Sri Sai Ramya Bojedla, Falguni Pati

Abstract:

Nature provides the best of solutions to humans. One such incredible gift to regenerative medicine is silk. The literature has publicized a long appreciation for silk owing to its incredible physical and biological assets. Its bioactive nature, unique mechanical strength, and processing flexibility make us curious to explore further to apply it in the clinics for the welfare of mankind. In this study, Antheraea mylitta and Bombyx mori silk fibroin microfibers are developed by two economical and straightforward steps via degumming and hydrolysis for the first time, and a bioactive composite is manufactured by mixing silk fibroin microfibers at various concentrations with polycaprolactone (PCL), a biocompatible, aliphatic semi-crystalline synthetic polymer. Reconstructive surgery in any part of the body except for the maxillofacial region deals with replacing its function. But answering both the aesthetics and function is of utmost importance when it comes to facial reconstruction as it plays a critical role in the psychological and social well-being of the patient. The main concern in developing adequate bone graft substitutes or a scaffold is the noteworthy variation in each patient's bone anatomy. Additionally, the anatomical shape and size will vary based on the type of defect. The advent of additive manufacturing (AM) or 3D printing techniques to bone tissue engineering has facilitated overcoming many of the restraints of conventional fabrication techniques. The acquired patient's CT data is converted into a stereolithographic (STL)-file which is further utilized by the 3D printer to create a 3D scaffold structure in an interconnected layer-by-layer fashion. This study aims to address the limitations of currently available materials and fabrication technologies and develop a customized biomaterial implant via 3D printing technology to reconstruct complex form, function, and aesthetics of the facial anatomy. These composite scaffolds underwent structural and mechanical characterization. Atomic force microscopic (AFM) and field emission scanning electron microscopic (FESEM) images showed the uniform dispersion of the silk fibroin microfibers in the PCL matrix. With the addition of silk, there is improvement in the compressive strength of the hybrid scaffolds. The scaffolds with Antheraea mylitta silk revealed higher compressive modulus than that of Bombyx mori silk. The above results of PCL-silk scaffolds strongly recommend their utilization in bone regenerative applications. Successful completion of this research will provide a great weapon in the maxillofacial reconstructive armamentarium.

Keywords: compressive modulus, 3d printing, maxillofacial reconstruction, natural fiber reinforced composites, silk fibroin microfibers

Procedia PDF Downloads 170
259 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction

Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong

Abstract:

Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.

Keywords: data refinement, machine learning, mutual information, short-term latency prediction

Procedia PDF Downloads 155
258 Fast Detection of Local Fiber Shifts by X-Ray Scattering

Authors: Peter Modregger, Özgül Öztürk

Abstract:

Glass fabric reinforced thermoplastic (GFRT) are composite materials, which combine low weight and resilient mechanical properties rendering them especially suitable for automobile construction. However, defects in the glass fabric as well as in the polymer matrix can occur during manufacturing, which may compromise component lifetime or even safety. One type of these defects is local fiber shifts, which can be difficult to detect. Recently, we have experimentally demonstrated the reliable detection of local fiber shifts by X-ray scattering based on the edge-illumination (EI) principle. EI constitutes a novel X-ray imaging technique that utilizes two slit masks, one in front of the sample and one in front of the detector, in order to simultaneously provide absorption, phase, and scattering contrast. The principle of contrast formation is as follows. The incident X-ray beam is split into smaller beamlets by the sample mask, resulting in small beamlets. These are distorted by the interaction with the sample, and the distortions are scaled up by the detector masks, rendering them visible to a pixelated detector. In the experiment, the sample mask is laterally scanned, resulting in Gaussian-like intensity distributions in each pixel. The area under the curves represents absorption, the peak offset refraction, and the width of the curve represents the scattering occurring in the sample. Here, scattering is caused by the numerous glass fiber/polymer matrix interfaces. In our recent publication, we have shown that the standard deviation of the absorption and scattering values over a selected field of view can be used to distinguish between intact samples and samples with local fiber shift defects. The quantification of defect detection performance was done by using p-values (p=0.002 for absorption and p=0.009 for scattering) and contrast-to-noise ratios (CNR=3.0 for absorption and CNR=2.1 for scattering) between the two groups of samples. This was further improved for the scattering contrast to p=0.0004 and CNR=4.2 by utilizing a harmonic decomposition analysis of the images. Thus, we concluded that local fiber shifts can be reliably detected by the X-ray scattering contrasts provided by EI. However, a potential application in, for example, production monitoring requires fast data acquisition times. For the results above, the scanning of the sample masks was performed over 50 individual steps, which resulted in long total scan times. In this paper, we will demonstrate that reliable detection of local fiber shift defects is also possible by using single images, which implies a speed up of total scan time by a factor of 50. Additional performance improvements will also be discussed, which opens the possibility for real-time acquisition. This contributes a vital step for the translation of EI to industrial applications for a wide variety of materials consisting of numerous interfaces on the micrometer scale.

Keywords: defects in composites, X-ray scattering, local fiber shifts, X-ray edge Illumination

Procedia PDF Downloads 46
257 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams

Authors: Nidhi Sharotri, Dhiraj Sud

Abstract:

Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.

Keywords: quinalphos, doped-TiO2, mineralization, EPR

Procedia PDF Downloads 316