Search results for: fast simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6579

Search results for: fast simulation

2919 Effect of Short-Term Enriching of Algae with Selenium and Zinc on Growth and Mineral Composition of Marine Rotifer

Authors: Sirwe Ghaderpour, Nasrollah Ahmadifard, Naser Agh, Zakaria Vahabzadeh

Abstract:

Rotifers are used in many hatcheries for feeding the earliest stages of fish larvae and crustaceans due to their small size, slow movements, fast reproduction, and easy cultivation. One of the disadvantages of using rotifers as live prey is their lower content of some nutrients compared to copepods, so it is necessary to increase the amounts of these nutrients by means of enrichment. Minerals are a group of micro-elements, essential to fish, that is lacking in the rotifers, for example, selenium (30 fold) and zinc (5 fold) are present in lower quantities than the minimum amounts found in copepods. In this study, the condensed Isochrysis aff. galbana (T-ISO) and Nannochloropsis oculata were suspended at concentration of 18 × 109 cell mL⁻¹ of water with 20 ppt of salinity. Four different levels (0, 1000, 2000, and 4000 mg L⁻¹) of each Na₂SeO₃ and ZnSO₄.7H₂O separately were prepared, and 1 mL of each stock was poured to the algae enrichment vessels for 1 h simultaneously. After that, the material was centrifuged (at 4000 rpm for 5 min), and the precipitated enriched algae was used for rotifer feeding. The contents of Se, Zn, Cu, and Mn were determined in enriched microalgae and rotifer by Atomic absorption. The highest content of both minerals was observed in 0.4 Zn + 0.4 Se treatment and also rotifer enriched with these enriched microalgae. The enrichment of microalgae with Zn and Se does not affect the content of Cu in the microalgae. Also, the content of Cu in rotifer fed with the enriched microalgae showed the highest Cu content in the treatments than the control. But, the enrichment with both minerals had a negative effect on the content Mn in enriched mixed microalgae except 0.4 Zn + 0.4 Se. The Mn content in enriched rotifer decreased in the treatments than the control except for 0.1 Zn + 0.1 Se. There was no significant effect on rotifer growth in combined enrichment with both minerals (p < 0.05). Overall, rotifers enrichment with Se and Zn mixed microalgae resulted in increasing Se, Zn, and Cu. This will allow Se and Zn microalgae enriched rotifers to be used as the minerals delivery method for fish larvae nutritional requirements.

Keywords: enrichment, larvae, microalgae, mineral, rotifer

Procedia PDF Downloads 121
2918 Fiber Orientation Measurements in Reinforced Thermoplastics

Authors: Ihsane Modhaffar

Abstract:

Fiber orientation is essential for the physical properties of composite materials. The theoretical parameters of a given reinforcement are usually known and widely used to predict the behavior of the material. In this work, we propose an image processing approach to estimate true principal directions and fiber orientation during injection molding processes of short fiber reinforced thermoplastics. Generally, a group of fibers are described in terms of probability distribution function or orientation tensor. Numerical techniques for the prediction of fiber orientation are also considered for concentrated situations. The flow was considered to be incompressible, and behave as Newtonian fluid containing suspensions of short-fibers. The governing equations, of this problem are: the continuity, the momentum and the energy. The obtained results were compared to available experimental findings. A good agreement between the numerical results and the experimental data was achieved.

Keywords: injection, composites, short-fiber reinforced thermoplastics, fiber orientation, incompressible fluid, numerical simulation

Procedia PDF Downloads 519
2917 Analytical Study Of Holographic Polymer Dispersed Liquid Crystals Using Finite Difference Time Domain Method

Authors: N. R. Mohamad, H. Ono, H. Haroon, A. Salleh, N. M. Z. Hashim

Abstract:

In this research, we have studied and analyzed the modulation of light and liquid crystal in HPDLCs using Finite Domain Time Difference (FDTD) method. HPDLCs are modeled as a mixture of polymer and liquid crystals (LCs) that categorized as an anisotropic medium. FDTD method is directly solves Maxwell’s equation with less approximation, so this method can analyze more flexible and general approach for the arbitrary anisotropic media. As the results from FDTD simulation, the highest diffraction efficiency occurred at ±19 degrees (Bragg angle) using p polarization incident beam to Bragg grating, Q > 10 when the pitch is 1µm. Therefore, the liquid crystal is assumed to be aligned parallel to the grating constant vector during these parameters.

Keywords: birefringence, diffraction efficiency, finite domain time difference, nematic liquid crystals

Procedia PDF Downloads 451
2916 Analysis of Some Produced Inhibitors for Corrosion of J55 Steel in NaCl Solution Saturated with CO₂

Authors: Ambrish Singh

Abstract:

The corrosion inhibition performance of pyran (AP) and benzimidazole (BI) derivatives on J55 steel in 3.5% NaCl solution saturated with CO₂ was investigated by electrochemical, weight loss, surface characterization, and theoretical studies. The electrochemical studies included electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), electrochemical frequency modulation (EFM), and electrochemical frequency modulation trend (EFMT). Surface characterization was done using contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. DFT and molecular dynamics (MD) studies were done using Gaussian and Materials Studio softwares. All the studies suggested the good inhibition by the synthesized inhibitors on J55 steel in 3.5% NaCl solution saturated with CO₂ due to the formation of a protective film on the surface. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface.

Keywords: corrosion, inhibitor, EFM, AFM, DFT, MD

Procedia PDF Downloads 93
2915 Microwave Freeze Drying of Fruit Foams for the Production of Healthy Snacks

Authors: Sabine Ambros, Mine Oezcelik, Evelyn Dachmann, Ulrich Kulozik

Abstract:

Nutritional quality and taste of dried fruit products is still often unsatisfactory and does not meet anymore the current consumer trends. Dried foams from fruit puree could be an attractive alternative. Due to their open-porous structure, a new sensory perception with a sudden and very intense aroma release could be generated. To make such high quality fruit snacks affordable for the consumer, a gentle but at the same time fast drying process has to be applied. Therefore, microwave-assisted freeze drying of raspberry foams was investigated in this work and compared with the conventional freeze drying technique in terms of nutritional parameters such as antioxidative capacity, anthocyanin content and vitamin C and the physical parameters colour and wettability. The following process settings were applied: 0.01 kPa chamber pressure and a maximum temperature of 30 °C for both freeze and microwave freeze drying. The influence of microwave power levels on the dried foams was investigated between 1 and 5 W/g. Intermediate microwave power settings led to the highest nutritional values, a colour appearance comparable to the undried foam and a proper wettability. A proper process stability could also be guaranteed for these power levels. By the volumetric energy input of the microwaves drying time could be reduced from 24 h in conventional freeze drying to about 6 h. The short drying times further resulted in an equally high maintenance of the above mentioned parameters in both drying techniques. Hence, microwave assisted freeze drying could lead to a process acceleration in comparison to freeze drying and be therefore an interesting alternative drying technique which on industrial scale enables higher efficiency and higher product throughput.

Keywords: foam drying, freeze drying, fruit puree, microwave freeze drying, raspberry

Procedia PDF Downloads 326
2914 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems

Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini

Abstract:

Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.

Keywords: quantum, machine learning, kernel, non-markovianity

Procedia PDF Downloads 165
2913 Numerical Simulation of Filtration Gas Combustion: Front Propagation Velocity

Authors: Yuri Laevsky, Tatyana Nosova

Abstract:

The phenomenon of filtration gas combustion (FGC) had been discovered experimentally at the beginning of 80’s of the previous century. It has a number of important applications in such areas as chemical technologies, fire-explosion safety, energy-saving technologies, oil production. From the physical point of view, FGC may be defined as the propagation of region of gaseous exothermic reaction in chemically inert porous medium, as the gaseous reactants seep into the region of chemical transformation. The movement of the combustion front has different modes, and this investigation is focused on the low-velocity regime. The main characteristic of the process is the velocity of the combustion front propagation. Computation of this characteristic encounters substantial difficulties because of the strong heterogeneity of the process. The mathematical model of FGC is formed by the energy conservation laws for the temperature of the porous medium and the temperature of gas and the mass conservation law for the relative concentration of the reacting component of the gas mixture. In this case the homogenization of the model is performed with the use of the two-temperature approach when at each point of the continuous medium we specify the solid and gas phases with a Newtonian heat exchange between them. The construction of a computational scheme is based on the principles of mixed finite element method with the usage of a regular mesh. The approximation in time is performed by an explicit–implicit difference scheme. Special attention was given to determination of the combustion front propagation velocity. Straight computation of the velocity as grid derivative leads to extremely unstable algorithm. It is worth to note that the term ‘front propagation velocity’ makes sense for settled motion when some analytical formulae linking velocity and equilibrium temperature are correct. The numerical implementation of one of such formulae leading to the stable computation of instantaneous front velocity has been proposed. The algorithm obtained has been applied in subsequent numerical investigation of the FGC process. This way the dependence of the main characteristics of the process on various physical parameters has been studied. In particular, the influence of the combustible gas mixture consumption on the front propagation velocity has been investigated. It also has been reaffirmed numerically that there is an interval of critical values of the interfacial heat transfer coefficient at which a sort of a breakdown occurs from a slow combustion front propagation to a rapid one. Approximate boundaries of such an interval have been calculated for some specific parameters. All the results obtained are in full agreement with both experimental and theoretical data, confirming the adequacy of the model and the algorithm constructed. The presence of stable techniques to calculate the instantaneous velocity of the combustion wave allows considering the semi-Lagrangian approach to the solution of the problem.

Keywords: filtration gas combustion, low-velocity regime, mixed finite element method, numerical simulation

Procedia PDF Downloads 292
2912 Mobile Agents-Based Framework for Dynamic Resource Allocation in Cloud Computing

Authors: Safia Rabaaoui, Héla Hachicha, Ezzeddine Zagrouba

Abstract:

Nowadays, cloud computing is becoming the more popular technology to various companies and consumers, which benefit from its increased efficiency, cost optimization, data security, unlimited storage capacity, etc. One of the biggest challenges of cloud computing is resource allocation. Its efficiency directly influences the performance of the whole cloud environment. Finding an effective method to address these critical issues and increase cloud performance was necessary. This paper proposes a mobile agents-based framework for dynamic resource allocation in cloud computing to minimize both the cost of using virtual machines and the makespan. Furthermore, its impact on the best response time and power consumption has been studied. The simulation showed that our method gave better results than here.

Keywords: cloud computing, multi-agent system, mobile agent, dynamic resource allocation, cost, makespan

Procedia PDF Downloads 88
2911 Mobi Navi Tour for Rescue Operations

Authors: V. R. Sadasivam, M. Vipin, P. Vineeth, M. Sajith, G. Sathiskumar, R. Manikandan, N. Vijayarangan

Abstract:

Global positioning system technology is what leads to such things as navigation systems, GPS tracking devices, GPS surveying and GPS mapping. All that GPS does is provide a set of coordinates which represent the location of GPS units with respect to its latitude, longitude and elevation on planet Earth. It also provides time, which is accurate. The tracking devices themselves come in different flavors. They will contain a GPS receiver, and GPS software, along with some way of transmitting the resulting coordinates. GPS in mobile tend to use radio waves to transmit their location to another GPS device. The purpose of this prototype “Mobi Navi Tour for Rescue Operation” timely communication, and lightning fast decision-making with a group of people located in different places with a common goal. Timely communication and tracking the people are a critical issue in many situations, environments. Expedited can find missing person by sending the location and other related information to them through mobile. Information must be drawn from the caller and entered into the system by the administrator or a group leader and transferred to the group leader. This system will locate the closest available person, a group of people working in an organization/company or vehicle to determine availability and their position to track them. Misinformation cannot lead to the wrong decision in the rapidly paced environment in a normal and an abnormal situation. In “Mobi Navi Tour for Rescue Operation” we use Google Cloud Messaging for android (GCM) which is a service that helps developers send data from servers to their android applications on android devices. The service provides a simple, lightweight mechanism that servers can use to tell mobile applications to contact the server directly, to fetch updated application or user data.

Keywords: android, gps, tour, communication, service

Procedia PDF Downloads 390
2910 Tactical Urbanism and Sustainability: Tactical Experiences in the Promotion of Active Transportation

Authors: Aline Fernandes Barata, Adriana Sansão Fontes

Abstract:

The overvaluation of the use of automobile has detrimentally affected the importance of pedestrians within the city and consequently its public spaces. As a way of treating contemporary urban paradigms, Tactical Urbanism aims to recover and activate spaces through fast and easily-applied actions that demonstrate the possibility of large-scale and long-term changes in cities. Tactical interventions have represented an important practice of redefining public spaces and urban mobility. The concept of Active Transportation coheres with the idea of sustainable urban mobility, characterizing the means of transportation through human propulsion, such as walking and cycling. This paper aims to debate the potential of Tactical Urbanism in promoting Active Transportation by revealing opportunities of transformation in the urban space of contemporary cities through initiatives that promote the protection and valorization of the presence of pedestrians and cyclists in cities, and that subvert the importance of motorized vehicles. In this paper, we present the character of these actions in two different ways: when they are used as tests for permanent interventions and when they have pre-defined start and end periods. Using recent initiatives to illustrate, we aim to discuss the role of small-scale actions in promoting and incentivizing a more active, healthy, sustainable and responsive urban way of life, presenting how some of them have developed through public policies. For that, we will present some examples of tactical actions that illustrate the encouragement of Active Transportation and trials to balance the urban opportunities for pedestrians and cyclists. These include temporary closure of streets, the creation of new alternatives and more comfortable areas for walking and cycling, and the subversion of uses in public spaces where the usage of cars are predominant.

Keywords: tactical urbanism, active transportation, sustainable mobility, non-motorized means

Procedia PDF Downloads 225
2909 Genetic Algorithm and Multi-Parametric Programming Based Cascade Control System for Unmanned Aerial Vehicles

Authors: Dao Phuong Nam, Do Trong Tan, Pham Tam Thanh, Le Duy Tung, Tran Hoang Anh

Abstract:

This paper considers the problem of cascade control system for unmanned aerial vehicles (UAVs). Due to the complicated modelling technique of UAV, it is necessary to separate them into two subsystems. The proposed cascade control structure is a hierarchical scheme including a robust control for inner subsystem based on H infinity theory and trajectory generator using genetic algorithm (GA), outer loop control law based on multi-parametric programming (MPP) technique to overcome the disadvantage of a big amount of calculations. Simulation results are presented to show that the equivalent path has been found and obtained by proposed cascade control scheme.

Keywords: genetic algorithm, GA, H infinity, multi-parametric programming, MPP, unmanned aerial vehicles, UAVs

Procedia PDF Downloads 206
2908 Study on Impact of Road Loads on Full Vehicle Squeak and Rattle Performance

Authors: R. Praveen, B. R. Chandan Ravi, M. Harikrishna

Abstract:

Squeak and rattle noises are the most annoying transient vehicle noises produced due to different terrain conditions. Interpretation and prohibition of squeak and rattle noises are the dominant aspects of a vehicle refinement. This paper describes the computer-aided engineering (CAE) approach to evaluating the full vehicle squeak and rattle performance with the measured road surface profile as enforced excitation at the tire patch points. The E-Line methodology has been used to predict the relative displacement at the interface points and the risk areas were identified. Squeak and rattle performance has been evaluated at different speeds and at different road conditions to understand the vehicle characteristics. The competence of the process in predicting the risk and root cause of the problems showcased us a pleasing conformity between the physical testing and CAE simulation results.

Keywords: e-line, enforced excitation, full vehicle, squeak and rattle, road excitation

Procedia PDF Downloads 135
2907 Experimental Investigation of Absorbent Regeneration Techniques to Lower the Cost of Combined CO₂ and SO₂ Capture Process

Authors: Bharti Garg, Ashleigh Cousins, Pauline Pearson, Vincent Verheyen, Paul Feron

Abstract:

The presence of SO₂ in power plant flue gases makes flue gas desulfurization (FGD) an essential requirement prior to post combustion CO₂ (PCC) removal facilities. Although most of the power plants worldwide deploy FGD in order to comply with environmental regulations, generally the achieved SO₂ levels are not sufficiently low for the flue gases to enter the PCC unit. The SO₂ level in the flue gases needs to be less than 10 ppm to effectively operate the PCC installation. The existing FGD units alone cannot bring down the SO₂ levels to or below 10 ppm as required for CO₂ capture. It might require an additional scrubber along with the existing FGD unit to bring the SO₂ to the desired levels. The absence of FGD units in Australian power plants brings an additional challenge. SO₂ concentrations in Australian power station flue gas emissions are in the range of 100-600 ppm. This imposes a serious barrier on the implementation of standard PCC technologies in Australia. CSIRO’s developed CS-Cap process is a unique solution to capture SO₂ and CO₂ in a single column with single absorbent which can potentially bring cost-effectiveness to the commercial deployment of carbon capture in Australia, by removing the need for FGD. Estimated savings of removing SO₂ through a similar process as CS-Cap is around 200 MMUSD for a 500 MW Australian power plant. Pilot plant trials conducted to generate the proof of concept resulted in 100% removal of SO₂ from flue gas without utilising standard limestone-based FGD. In this work, removal of absorbed sulfur from aqueous amine absorbents generated in the pilot plant trials has been investigated by reactive crystallisation and thermal reclamation. More than 95% of the aqueous amines can be reclaimed back from the sulfur loaded absorbent via reactive crystallisation. However, the recovery of amines through thermal reclamation is limited and depends on the sulfur loading on the spent absorbent. The initial experimental work revealed that reactive crystallisation is a better fit for CS-Cap’s sulfur-rich absorbent especially when it is also capable of generating K₂SO₄ crystals of highly saleable quality ~ 99%. Initial cost estimation carried on both the technologies resulted in almost similar capital expenditure; however, the operating cost is considerably higher in thermal reclaimer than that in crystalliser. The experimental data generated in the laboratory from both the regeneration techniques have been used to generate the simulation model in Aspen Plus. The simulation model illustrates the economic benefits which could be gained by removing flue gas desulfurization prior to standard PCC unit and replacing it with a CS-Cap absorber column co-capturing CO₂ and SO₂, and it's absorbent regeneration system which would be either reactive crystallisation or thermal reclamation.

Keywords: combined capture, cost analysis, crystallisation, CS-Cap, flue gas desulfurisation, regeneration, sulfur, thermal reclamation

Procedia PDF Downloads 117
2906 Aerodynamics of Nature Inspired Turbine Blade Using Computational Simulation

Authors: Seung Ki Lee, Richard Kyung

Abstract:

In the airfoil analysis, as the camber is greater, the minimal angle of attack causing the stall and maximum lift force increases. The shape of the turbine blades is similar to the shape of the wings of planes. After major wars, many remarkable blade shapes are made through researches about optimal blade shape. The blade shapes developed by National Advisory Committee for Aeronautics, NACA, is well known. In this paper, using computational and numerical analysis, the NACA airfoils are analyzed. This research shows that the blades vary with their thickness, which thinner blades are expected to be better. There is no significant difference of coefficient of lift due to the difference in thickness, but the coefficient of drag increases as the thickness increases.

Keywords: blades, drag force, national advisory committee for aeronautics airfoils, turbine

Procedia PDF Downloads 219
2905 Determination of Johnson-Cook Material and Failure Model Constants for High Tensile Strength Tendon Steel in Post-Tensioned Concrete Members

Authors: I. Gkolfinopoulos, N. Chijiwa

Abstract:

To evaluate the remaining capacity in concrete tensioned members, it is important to accurately estimate damage in precast concrete tendons. In this research Johnson-Cook model and damage parameters of high-strength steel material were calculated by static and dynamic uniaxial tensile tests. Replication of experimental results was achieved through finite element analysis for both single 8-noded three-dimensional element as well as the full-scale dob-bone shaped model and relevant model parameters are proposed. Finally, simulation results in terms of strain and deformation were verified using digital image correlation analysis.

Keywords: DIC analysis, Johnson-Cook, quasi-static, dynamic, rupture, tendon

Procedia PDF Downloads 132
2904 A Kolmogorov-Smirnov Type Goodness-Of-Fit Test of Multinomial Logistic Regression Model in Case-Control Studies

Authors: Chen Li-Ching

Abstract:

The multinomial logistic regression model is used popularly for inferring the relationship of risk factors and disease with multiple categories. This study based on the discrepancy between the nonparametric maximum likelihood estimator and semiparametric maximum likelihood estimator of the cumulative distribution function to propose a Kolmogorov-Smirnov type test statistic to assess adequacy of the multinomial logistic regression model for case-control data. A bootstrap procedure is presented to calculate the critical value of the proposed test statistic. Empirical type I error rates and powers of the test are performed by simulation studies. Some examples will be illustrated the implementation of the test.

Keywords: case-control studies, goodness-of-fit test, Kolmogorov-Smirnov test, multinomial logistic regression

Procedia PDF Downloads 443
2903 Research on Architectural Steel Structure Design Based on BIM

Authors: Tianyu Gao

Abstract:

Digital architectures use computer-aided design, programming, simulation, and imaging to create virtual forms and physical structures. Today's customers want to know more about their buildings. They want an automatic thermostat to learn their behavior and contact them, such as the doors and windows they want to open with a mobile app. Therefore, the architectural display form is more closely related to the customer's experience. Based on the purpose of building informationization, this paper studies the steel structure design based on BIM. Taking the Zigan office building in Hangzhou as an example, it is divided into four parts, namely, the digital design modulus of the steel structure, the node analysis of the steel structure, the digital production and construction of the steel structure. Through the application of BIM software, the architectural design can be synergized, and the building components can be informationized. Not only can the architectural design be feedback in the early stage, but also the stability of the construction can be guaranteed. In this way, the monitoring of the entire life cycle of the building and the meeting of customer needs can be realized.

Keywords: digital architectures, BIM, steel structure, architectural design

Procedia PDF Downloads 182
2902 Theoretical Approach to Kinetics of Transient Plasticity of Metals under Irradiation

Authors: Pavlo Selyshchev, Tetiana Didenko

Abstract:

Within the framework of the obstacle radiation hardening and the dislocation climb-glide model a theoretical approach is developed to describe peculiarities of transient plasticity of metal under irradiation. It is considered nonlinear dynamics of accumulation of point defects (vacancies and interstitial atoms). We consider metal under such stress and conditions of irradiation at which creep is determined by dislocation motion: dislocations climb obstacles and glide between obstacles. It is shown that the rivalry between vacancy and interstitial fluxes to dislocation leads to fractures of plasticity time dependence. Simulation and analysis of this phenomenon are performed. Qualitatively different regimes of transient plasticity under irradiation are found. The fracture time is obtained. The theoretical results are compared with the experimental ones.

Keywords: climb and glide of dislocations, fractures of transient plasticity, irradiation, non-linear feed-back, point defects

Procedia PDF Downloads 192
2901 Multi-Agent Coverage Control with Bounded Gain Forgetting Composite Adaptive Controller

Authors: Mert Turanli, Hakan Temeltas

Abstract:

In this paper, we present an adaptive controller for decentralized coordination problem of multiple non-holonomic agents. The performance of the presented Multi-Agent Bounded Gain Forgetting (BGF) Composite Adaptive controller is compared against the tracking error criterion with a Feedback Linearization controller. By using the method, the sensor nodes move and reconfigure themselves in a coordinated way in response to a sensed environment. The multi-agent coordination is achieved through Centroidal Voronoi Tessellations and Coverage Control. Also, a consensus protocol is used for synchronization of the parameter vectors. The two controllers are given with their Lyapunov stability analysis and their stability is verified with simulation results. The simulations are carried out in MATLAB and ROS environments. Better performance is obtained with BGF Adaptive Controller.

Keywords: adaptive control, centroidal voronoi tessellations, composite adaptation, coordination, multi robots

Procedia PDF Downloads 337
2900 Optimisation of Metrological Inspection of a Developmental Aeroengine Disc

Authors: Suneel Kumar, Nanda Kumar J. Sreelal Sreedhar, Suchibrata Sen, V. Muralidharan,

Abstract:

Fan technology is very critical and crucial for any aero engine technology. The fan disc forms a critical part of the fan module. It is an airworthiness requirement to have a metrological qualified quality disc. The current study uses a tactile probing and scanning on an articulated measuring machine (AMM), a bridge type coordinate measuring machine (CMM) and Metrology software for intermediate and final dimensional and geometrical verification during the prototype development of the disc manufactured through forging and machining process. The circumferential dovetails manufactured through the milling process are evaluated based on the evaluated and analysed metrological process. To perform metrological optimization a change of philosophy is needed making quality measurements available as fast as possible to improve process knowledge and accelerate the process but with accuracy, precise and traceable measurements. The offline CMM programming for inspection and optimisation of the CMM inspection plan are crucial portions of the study and discussed. The dimensional measurement plan as per the ASME B 89.7.2 standard to reach an optimised CMM measurement plan and strategy are an important requirement. The probing strategy, stylus configuration, and approximation strategy effects on the measurements of circumferential dovetail measurements of the developmental prototype disc are discussed. The results were discussed in the form of enhancement of the R &R (repeatability and reproducibility) values with uncertainty levels within the desired limits. The findings from the measurement strategy adopted for disc dovetail evaluation and inspection time optimisation are discussed with the help of various analyses and graphical outputs obtained from the verification process.

Keywords: coordinate measuring machine, CMM, aero engine, articulated measuring machine, fan disc

Procedia PDF Downloads 102
2899 Type 2 Diabetes Mellitus Among a St. Lucian Population: What We Know about Lifestyle Modification

Authors: Bradley Fevrier

Abstract:

Background: Type 2 diabetes mellitus, a non-communicable metabolic disorder, is a fast-growing problem for health, as it presents numerous complications and death worldwide. St. Lucia, much like most other emerging nation in the Caribbean, struggles with the management of type 2 diabetes mellitus (T2DM) among its populace. Good knowledge, attitude, and practices [KAP] of T2DM are essential in the prevention and management of this disease.Lifestyle adaptation, including increased knowledge, positive attitude, and efficient practice towards lifestyle modifications, can avert the advancement of difficulties associated with diabetes. Methods: An institutional-based cross-sectional study was conducted during the period June 15, 2022, to July15 2022. Data were collected by using the self-administered questionnaire designed to collect the required information from participants, and the data wasanalyzed using the statistical package for social science (SPSS) version 26. Knowledge, attitude, and practice of lifestyle modification among participants were determined using descriptive statistics. Results: A total of 402 participants completed the study, fully yielding an 84% response rate. Overall, the assessed levels of KAP relating to the life-threatening complications of T2DM were moderate. Results further indicated that women outnumbered men 68.4% to 31.6%, respectively. Significant positive correlation (r= 0.244, p<0.001) and (r=.203, p<0.001) were found between the knowledge level as well as the attitude level of study respondents. Conclusion: The overall study findings regarding the level of knowledge and attitude concerning lifestyle modifications among study participants were interpreted as generally high. However, the practice of healthy lifestyle modification habits was poor. The current findings suggest a need for structured educational campaigns prioritizing the importance of lifestyle modifications (weight loss, smoking cessation, physical exercise) to the general population.

Keywords: Diabetes, knowledge, lifestyle, survey

Procedia PDF Downloads 121
2898 Hybrid Control Strategy for Nine-Level Asymmetrical Cascaded H-Bridge Inverter

Authors: Bachir Belmadani, Rachid Taleb, M’hamed Helaimi

Abstract:

Multilevel inverters are well used in high power electronic applications because of their ability to generate a very good quality of waveforms, reducing switching frequency, and their low voltage stress across the power devices. This paper presents the hybrid pulse-width modulation (HPWM) strategy of a uniform step asymmetrical cascaded H-bridge nine-level Inverter (USACHB9LI). The HPWM approach is compared to the well-known sinusoidal pulse-width modulation (SPWM) strategy. Simulation results demonstrate the better performances and technical advantages of the HPWM controller in feeding a high power induction motor.

Keywords: uniform step asymmetrical cascaded h-bridge high-level inverter, hybrid pwm, sinusoidal pwm, high power induction motor

Procedia PDF Downloads 562
2897 Optimization of a Hybrid PV-Diesel Minigrid System: A Case Study of Vimtim-Mubi, Nigeria

Authors: Julius Agaka Yusufu, Tsutomu Dei, Hanif Ibrahim Awal

Abstract:

This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.

Keywords: Vimtim-Nigeria, Homer, renewable energy, PV-diesel hybrid system

Procedia PDF Downloads 70
2896 University Building: Discussion about the Effect of Numerical Modelling Assumptions for Occupant Behavior

Authors: Fabrizio Ascione, Martina Borrelli, Rosa Francesca De Masi, Silvia Ruggiero, Giuseppe Peter Vanoli

Abstract:

The refurbishment of public buildings is one of the key factors of energy efficiency policy of European States. Educational buildings account for the largest share of the oldest edifice with interesting potentialities for demonstrating best practice with regards to high performance and low and zero-carbon design and for becoming exemplar cases within the community. In this context, this paper discusses the critical issue of dealing the energy refurbishment of a university building in heating dominated climate of South Italy. More in detail, the importance of using validated models will be examined exhaustively by proposing an analysis on uncertainties due to modelling assumptions mainly referring to the adoption of stochastic schedules for occupant behavior and equipment or lighting usage. Indeed, today, the great part of commercial tools provides to designers a library of possible schedules with which thermal zones can be described. Very often, the users do not pay close attention to diversify thermal zones and to modify or to adapt predefined profiles, and results of designing are affected positively or negatively without any alarm about it. Data such as occupancy schedules, internal loads and the interaction between people and windows or plant systems, represent some of the largest variables during the energy modelling and to understand calibration results. This is mainly due to the adoption of discrete standardized and conventional schedules with important consequences on the prevision of the energy consumptions. The problem is surely difficult to examine and to solve. In this paper, a sensitivity analysis is presented, to understand what is the order of magnitude of error that is committed by varying the deterministic schedules used for occupation, internal load, and lighting system. This could be a typical uncertainty for a case study as the presented one where there is not a regulation system for the HVAC system thus the occupant cannot interact with it. More in detail, starting from adopted schedules, created according to questioner’ s responses and that has allowed a good calibration of energy simulation model, several different scenarios are tested. Two type of analysis are presented: the reference building is compared with these scenarios in term of percentage difference on the projected total electric energy need and natural gas request. Then the different entries of consumption are analyzed and for more interesting cases also the comparison between calibration indexes. Moreover, for the optimal refurbishment solution, the same simulations are done. The variation on the provision of energy saving and global cost reduction is evidenced. This parametric study wants to underline the effect on performance indexes evaluation of the modelling assumptions during the description of thermal zones.

Keywords: energy simulation, modelling calibration, occupant behavior, university building

Procedia PDF Downloads 134
2895 Efficient Relay Selection Scheme Utilizing OVSF Code in Cooperative Communication System

Authors: Yeong-Seop Ahn, Myoung-Jin Kim, Young-Min Ko, Hyoung-Kyu Song

Abstract:

This paper proposes a relay selection scheme utilizing an orthogonal variable spreading factor (OVSF) code in a cooperative communication. The relay selection scheme influences on the communication performance in the cooperative communication. Conventional relay selection schemes such as the best harmonic mean relay selection scheme or the threshold-based relay selection scheme should know information such as channel state information (CSI) in advance. The proposed relay selection scheme does not require information in advance by using a reference signal utilizing the OVSF code. The simulation result shows that bit error rate (BER) performance of proposed relay selection scheme is similar to the best harmonic mean relay selection scheme that is known as one of the optimal relay selection schemes.

Keywords: cooperative communication, relay selection, OFDM, OVSF code

Procedia PDF Downloads 626
2894 Reducing System Delay to Definitive Care For STEMI Patients, a Simulation of Two Different Strategies in the Brugge Area, Belgium

Authors: E. Steen, B. Dewulf, N. Müller, C. Vandycke, Y. Vandekerckhove

Abstract:

Introduction: The care for a ST-elevation myocardial infarction (STEMI) patient is time-critical. Reperfusion therapy within 90 minutes of initial medical contact is mandatory in the improvement of the outcome. Primary percutaneous coronary intervention (PCI) without previous fibrinolytic treatment, is the preferred reperfusion strategy in patients with STEMI, provided it can be performed within guideline-mandated times. Aim of the study: During a one year period (January 2013 to December 2013) the files of all consecutive STEMI patients with urgent referral from non-PCI facilities for primary PCI were reviewed. Special attention was given to a subgroup of patients with prior out-of-hospital medical contact generated by the 112-system. In an effort to reduce out-of-hospital system delay to definitive care a change in pre-hospital 112 dispatch strategies is proposed for these time-critical patients. Actual time recordings were compared with travel time simulations for two suggested scenarios. A first scenario (SC1) involves the decision by the on scene ground EMS (GEMS) team to transport the out-of-hospital diagnosed STEMI patient straight forward to a PCI centre bypassing the nearest non-PCI hospital. Another strategy (SC2) explored the potential role of helicopter EMS (HEMS) where the on scene GEMS team requests a PCI-centre based HEMS team for immediate medical transfer to the PCI centre. Methods and Results: 49 (29,1% of all) STEMI patients were referred to our hospital for emergency PCI by a non-PCI facility. 1 file was excluded because of insufficient data collection. Within this analysed group of 48 secondary referrals 21 patients had an out-of-hospital medical contact generated by the 112-system. The other 27 patients presented at the referring emergency department without prior contact with the 112-system. The table below shows the actual time data from first medical contact to definitive care as well as the simulated possible gain of time for both suggested strategies. The PCI-team was always alarmed upon departure from the referring centre excluding further in-hospital delay. Time simulation tools were similar to those used by the 112-dispatch centre. Conclusion: Our data analysis confirms prolonged reperfusion times in case of secondary emergency referrals for STEMI patients even with the use of HEMS. In our setting there was no statistical difference in gain of time between the two suggested strategies, both reducing the secondary referral generated delay with about one hour and by this offering all patients PCI within the guidelines mandated time. However, immediate HEMS activation by the on scene ground EMS team for transport purposes is preferred. This ensures a faster availability of the local GEMS-team for its community. In case these options are not available and the guideline-mandated times for primary PCI are expected to be exceeded, primary fibrinolysis should be considered in a non-PCI centre.

Keywords: STEMI, system delay, HEMS, emergency medicine

Procedia PDF Downloads 314
2893 Laboratory Scale Purification of Water from Copper Waste

Authors: Mumtaz Khan, Adeel Shahid, Waqas Khan

Abstract:

Heavy metals presence in water streams is a big danger for aquatic life and ultimately effects human health. Removal of copper (Cu) by ispaghula husk, maize fibre, and maize oil cake from synthetic solution in batch conditions was studied. Different experimental parameters such as contact time, initial solution pH, agitation rate, initial Cu concentration, biosorbent concentration, and biosorbent particle size has been studied to quantify the Cu biosorption. The rate of adsorption of metal ions was very fast at the beginning and became slow after reaching the saturation point, followed by a slower active metabolic uptake of metal ions into the cells. Up to a certain point, (pH=4, concentration of Cu = ~ 640 mg/l, agitation rate = ~ 400 rpm, biosorbent concentration = ~ 0.5g, 3g, 3g for ispaghula husk, maize fiber and maize oil cake, respectively) increasing the pH, concentration of Cu, agitation rate, and biosorbent concentration, increased the biosorption rate; however the sorption capacity increased by decreasing the particle size. At optimized experimental parameters, the maximum Cu biosorption by ispaghula husk, maize fibre and maize oil cake were 86.7%, 59.6% and 71.3%, respectively. Moreover, the results of the kinetics studies demonstrated that the biosorption of copper on ispaghula husk, maize fibre, and maize oil cake followed pseudo-second order kinetics. The results of adsorption were fitted to both the Langmuir and Freundlich models. The Langmuir model represented the sorption process better than Freundlich, and R² value ~ 0.978. Optimizations of physical and environmental parameters revealed, ispaghula husk as more potent copper biosorbent than maize fibre, and maize oil cake. The sorbent is cheap and available easily, so this study can be applied to remove Cu impurities on pilot and industrial scale after certain modifications.

Keywords: biosorption, copper, ispaghula husk, maize fibre, maize oil cake, purification

Procedia PDF Downloads 398
2892 Fabricating Method for Complex 3D Microfluidic Channel Using Soluble Wax Mold

Authors: Kyunghun Kang, Sangwoo Oh, Yongha Hwang

Abstract:

PDMS (Polydimethylsiloxane)-based microfluidic device has been recently applied to area of biomedical research, tissue engineering, and diagnostics because PDMS is low cost, nontoxic, optically transparent, gas-permeable, and especially biocompatible. Generally, PDMS microfluidic devices are fabricated by conventional soft lithography. Microfabrication requires expensive cleanroom facilities and a lot of time; however, only two-dimensional or simple three-dimensional structures can be fabricated. In this study, we introduce fabricating method for complex three-dimensional microfluidic channels using soluble wax mold. Using the 3D printing technique, we firstly fabricated three-dimensional mold which consists of soluble wax material. The PDMS pre-polymer is cast around, followed by PDMS casting and curing. The three-dimensional casting mold was removed from PDMS by chemically dissolved with methanol and acetone. In this work, two preliminary experiments were carried out. Firstly, the solubility of several waxes was tested using various solvents, such as acetone, methanol, hexane, and IPA. We found the combination between wax and solvent which dissolves the wax. Next, side effects of the solvent were investigated during the curing process of PDMS pre-polymer. While some solvents let PDMS drastically swell, methanol and acetone let PDMS swell only 2% and 6%, respectively. Thus, methanol and acetone can be used to dissolve wax in PDMS without any serious impact. Based on the preliminary tests, three-dimensional PDMS microfluidic channels was fabricated using the mold which was printed out using 3D printer. With the proposed fabricating technique, PDMS-based microfluidic devices have advantages of fast prototyping, low cost, optically transparence, as well as having complex three-dimensional geometry. Acknowledgements: This research was supported by Supported by a Korea University Grant and Basic Science Research Program through the National Research Foundation of Korea(NRF).

Keywords: microfluidic channel, polydimethylsiloxane, 3D printing, casting

Procedia PDF Downloads 266
2891 An AK-Chart for the Non-Normal Data

Authors: Chia-Hau Liu, Tai-Yue Wang

Abstract:

Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.

Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data

Procedia PDF Downloads 414
2890 Multivariate Simulations of the Process of Forming the Automotive Connector Forging from ZK60 Alloy

Authors: Anna Dziubinska

Abstract:

The article presents the results of numerical simulations of the new forging process of the automotive connector forging from cast preform. The high-strength ZK60 alloy (belonging to the Mg-Zn-Zr group of Mg alloys) was selected for numerical tests. Currently, this part of the industry is produced by multi-stage forging consisting of operations: bending, preforming, and finishing. The use of the cast preform would enable forging this component in one operation. However, obtaining specific mechanical properties requires inducing a certain level of strain within the forged part. Therefore, the design of the preform, its shape, and volume are of paramount importance. In work presented in this article, preforms of different shapes were designed and assessed using Finite Element (FE) analysis. The research was funded by the Polish National Agency for Academic Exchange within the framework of the Bekker programme.

Keywords: automotive connector, forging, magnesium alloy, numerical simulation, preform, ZK60

Procedia PDF Downloads 125