Search results for: learning difficulty
4298 Teacher’s Perception of Dalcroze Method Course as Teacher’s Enhancement Course: A Case Study in Hong Kong
Authors: Ka Lei Au
Abstract:
The Dalcroze method has been emerging in music classrooms, and music teachers are encouraged to integrate music and movement in their teaching. Music programs in colleges in Hong Kong have been introducing method courses such as Orff and Dalcroze method in music teaching as teacher’s education program. Since the targeted students of the course are music teachers who are making the decision of what approach to use in their classroom, their perception is significantly valued to identify how this approach is applicable in their teaching in regards to the teaching and learning culture and environment. This qualitative study aims to explore how the Dalcroze method as a teacher’s education course is perceived by music teachers from three aspects: 1) application in music teaching, 2) self-enhancement, 3) expectation. Through the lens of music teachers, data were collected from 30 music teachers who are taking the Dalcroze method course in music teaching in Hong Kong by the survey. The findings reveal the value and their intention of the Dalcroze method in Hong Kong. It also provides a significant reference for better development of such courses in the future in adaption to the culture, teaching and learning environment and teacher’s, student’s and parent’s perception of this approach.Keywords: Dalcroze method, music teaching, perception, self-enhancement, teacher’s education
Procedia PDF Downloads 4104297 Children in Opera: Sociological and Musicological Trends
Authors: Andrew Sutherland
Abstract:
In many ways, opera is not a natural domain for children. It is hardly surprising that from the thousands of works, comparatively few include roles for children. There are several possibilities for this, the dramatic themes in opera are often about the human condition from the adult perspective; the need for developed voices to project in large, theatrical spaces underpinned by orchestral accompaniment does not naturally suit the child’s voice, and enabling children to cope with long runs of performances on top of their education requires vocal and physical stamina. In more recent times, the involvement of children contributes another layer of difficulty in terms of having access to young singers while adhering to laws that protect their working rights. Despite these points, children have been in opera since its inception in a variety of ways, but their contribution is often undervalued or ignored by musicologists and even the industry itself. In this paper, the phenomenon of children in opera from the late 16th century to the present day is explored through empirical, socio-musicological observations with reference to score analysis. Conclusions are drawn regarding the changing attitudes of composers when scoring for children’s voices in relation to societal developments. From the use of ‘kindertruppen’ in the pre-enlightenment period to Handel’s virtuosic writing for William Savage, to the darkness of the inter-war eras which saw a proliferation of operatic characters for children and the post-war era which saw children as the new frontier of building audiences for opera, the links between changes in society and the inclusion, portrayal and scoring for children in opera are largely congruent.Keywords: children, musical analysis, opera, sociology
Procedia PDF Downloads 1144296 Developing an Accurate AI Algorithm for Histopathologic Cancer Detection
Authors: Leah Ning
Abstract:
This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.Keywords: breast cancer detection, AI, machine learning, algorithm
Procedia PDF Downloads 964295 Physical Interaction Mappings: Utilizing Cognitive Load Theory in Order to Enhance Physical Product Interaction
Authors: Bryan Young, Andrew Wodehouse, Marion Sheridan
Abstract:
The availability of working memory has long been identified as a critical aspect of an instructional design. Many conventional instructional procedures impose irrelevant or unrelated cognitive loads on the learner due to the fact that they were created without contemplation, or understanding, of cognitive work load. Learning to physically operate traditional products can be viewed as a learning process akin to any other. As such, many of today's products, such as cars, boats, and planes, which have traditional controls that predate modern user-centered design techniques may be imposing irrelevant or unrelated cognitive loads on their operators. The goal of the research was to investigate the fundamental relationships between physical inputs, resulting actions, and learnability. The results showed that individuals can quickly adapt to input/output reversals across dimensions, however, individuals struggle to cope with the input/output when the dimensions are rotated due to the resulting increase in cognitive load.Keywords: cognitive load theory, instructional design, physical product interactions, usability design
Procedia PDF Downloads 5414294 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data
Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder
Abstract:
Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods
Procedia PDF Downloads 2544293 Image Classification with Localization Using Convolutional Neural Networks
Authors: Bhuyain Mobarok Hossain
Abstract:
Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).Keywords: image classification, object detection, localization, particle filter
Procedia PDF Downloads 3134292 Learners’ Perceptions of Tertiary Level Teachers’ Code Switching: A Vietnamese Perspective
Authors: Hoa Pham
Abstract:
The literature on language teaching and second language acquisition has been largely driven by monolingual ideology with a common assumption that a second language (L2) is best taught and learned in the L2 only. The current study challenges this assumption by reporting learners' positive perceptions of tertiary level teachers' code switching practices in Vietnam. The findings of this study contribute to our understanding of code switching practices in language classrooms from a learners' perspective. Data were collected from student participants who were working towards a Bachelor degree in English within the English for Business Communication stream through the use of focus group interviews. The literature has documented that this method of interviewing has a number of distinct advantages over individual student interviews. For instance, group interactions generated by focus groups create a more natural environment than that of an individual interview because they include a range of communicative processes in which each individual may influence or be influenced by others - as they are in their real life. The process of interaction provides the opportunity to obtain the meanings and answers to a problem that are "socially constructed rather than individually created" leading to the capture of real-life data. The distinct feature of group interaction offered by this technique makes it a powerful means of obtaining deeper and richer data than those from individual interviews. The data generated through this study were analysed using a constant comparative approach. Overall, the students expressed positive views of this practice indicating that it is a useful teaching strategy. Teacher code switching was seen as a learning resource and a source supporting language output. This practice was perceived to promote student comprehension and to aid the learning of content and target language knowledge. This practice was also believed to scaffold the students' language production in different contexts. However, the students indicated their preference for teacher code switching to be constrained, as extensive use was believed to negatively impact on their L2 learning and trigger cognitive reliance on the L1 for L2 learning. The students also perceived that when the L1 was used to a great extent, their ability to develop as autonomous learners was negatively impacted. This study found that teacher code switching was supported in certain contexts by learners, thus suggesting that there is a need for the widespread assumption about the monolingual teaching approach to be re-considered.Keywords: codeswitching, L1 use, L2 teaching, learners’ perception
Procedia PDF Downloads 3304291 Multi-Label Approach to Facilitate Test Automation Based on Historical Data
Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally
Abstract:
The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.Keywords: machine learning, multi-class, multi-label, supervised learning, test automation
Procedia PDF Downloads 1364290 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils
Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente
Abstract:
Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.Keywords: artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L., Schinus terebinthifolius Raddi
Procedia PDF Downloads 5474289 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques
Authors: Masoomeh Alsadat Mirshafaei
Abstract:
The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest
Procedia PDF Downloads 454288 The End Justifies the Means: Using Programmed Mastery Drill to Teach Spoken English to Spanish Youngsters, without Relying on Homework
Authors: Robert Pocklington
Abstract:
Most current language courses expect students to be ‘vocational’, sacrificing their free time in order to learn. However, pupils with a full-time job, or bringing up children, hardly have a spare moment. Others just need the language as a tool or a qualification, as if it were book-keeping or a driving license. Then there are children in unstructured families whose stressful life makes private study almost impossible. And the countless parents whose evenings and weekends have become a nightmare, trying to get the children to do their homework. There are many arguments against homework being a necessity (rather than an optional extra for more ambitious or dedicated students), making a clear case for teaching methods which facilitate full learning of the key content within the classroom. A methodology which could be described as Programmed Mastery Learning has been used at Fluency Language Academy (Spain) since 1992, to teach English to over 4000 pupils yearly, with a staff of around 100 teachers, barely requiring homework. The course is structured according to the tenets of Programmed Learning: small manageable teaching steps, immediate feedback, and constant successful activity. For the Mastery component (not stopping until everyone has learned), the memorisation and practice are entrusted to flashcard-based drilling in the classroom, leading all students to progress together and develop a permanently growing knowledge base. Vocabulary and expressions are memorised using flashcards as stimuli, obliging the brain to constantly recover words from the long-term memory and converting them into reflex knowledge, before they are deployed in sentence building. The use of grammar rules is practised with ‘cue’ flashcards: the brain refers consciously to the grammar rule each time it produces a phrase until it comes easily. This automation of lexicon and correct grammar use greatly facilitates all other language and conversational activities. The full B2 course consists of 48 units each of which takes a class an average of 17,5 hours to complete, allowing the vast majority of students to reach B2 level in 840 class hours, which is corroborated by an 85% pass-rate in the Cambridge University B2 exam (First Certificate). In the past, studying for qualifications was just one of many different options open to young people. Nowadays, youngsters need to stay at school and obtain qualifications in order to get any kind of job. There are many students in our classes who have little intrinsic interest in what they are studying; they just need the certificate. In these circumstances and with increasing government pressure to minimise failure, teachers can no longer think ‘If they don’t study, and fail, its their problem’. It is now becoming the teacher’s problem. Teachers are ever more in need of methods which make their pupils successful learners; this means assuring learning in the classroom. Furthermore, homework is arguably the main divider between successful middle-class schoolchildren and failing working-class children who drop out: if everything important is learned at school, the latter will have a much better chance, favouring inclusiveness in the language classroom.Keywords: flashcard drilling, fluency method, mastery learning, programmed learning, teaching English as a foreign language
Procedia PDF Downloads 1114287 Integrating Lessons in Sustainable Development and Sustainability in Undergraduate Education: The CLASIC Way
Authors: Intan Azura Mokhtar, Yaacob Ibrahim
Abstract:
In recent years, learning about sustainable development and sustainability has become an increasingly significant component in universities’ degree programmes and curricula. As the world comes together and races to fulfil the 17 United Nations’ sustainable development goals (SDGs) by the year 2030, our educational curricula and landscapes simultaneously evolve to integrate lessons and opportunities for sustainable development and sustainability to redefine our university education and set the trajectory for our young people to take the lead in co-creating solutions for a better world. In this paper, initiatives and projects that revolved around themes of sustainable development and sustainability in a young university in Singapore are discussed. These initiatives and projects were curated by a new centre in the university that focuses on community leadership, social innovation, and service learning and was led by the university’s academic staff. The university’s undergraduate students were also involved in these initiatives and projects and played an active role in reaching out to and engaging members of different segments of the community – to better understand their needs and concerns and to co-create with them relevant and sustainable solutions that generate positive social impact.Keywords: singapore, sustainable development, sustainability, undergraduate education
Procedia PDF Downloads 1014286 Learning And Teaching Conditions For Students With Special Needs: Asset-Oriented Perspectives And Approaches
Authors: Dr. Luigi Iannacci
Abstract:
This research critically explores the current educational landscape with respect to special education and dominant deficit/medical model discourses that continue to forward unresponsive problematic approaches to teaching students with disabilities. Asset-oriented perspectives and social/critical models of disability are defined and explicated in order to offer alternatives to these dominant discourses. To that end, a framework that draws on Brian Camborne’s conditions of learning and applications of his work in relation to instruction conceptualize learning conditions and their significance to students with special needs. Methodologically, the research is designed as Critical Narrative Inquiry (CNI). Critical incidents, interviews, documents, artefacts etc. are drawn on and narratively constructed to explore how disability is presently configured in language, discourses, pedagogies and interactions with students deemed disabled. This data was collected using ethnographic methods and as such, through participant-observer field work that occurred directly in classrooms. This narrative approach aims to make sense of complex classroom interactions and ways of reconceptualizing approaches to students with special needs. CNI is situated in the critical paradigm and primarily concerned with culture, language and participation as issues of power in need of critique with the intent of change in the direction of social justice. Research findings highlight the ways in which Cambourne’s learning conditions, such as demonstration, approximation, engagement, responsibility, immersion, expectation, employment (transfer, use), provide a clear understanding of what is central to and constitutes a responsive and inclusive this instructional frame. Examples of what each of these conditions look like in practice are therefore offered in order to concretely demonstrate the ways in which various pedagogical choices and questions can enable classroom spaces to be responsive to the assets and challenges students with special needs have and experience. These particular approaches are also illustrated through an exploration of multiliteracies theory and pedagogy and what this research and approach allows educators to draw on, facilitate and foster in terms of the ways in which students with special needs can make sense of and demonstrate their understanding of skills, content and knowledge. The contextual information, theory, research and instructional frame focused on throughout this inquiry ultimately demonstrate what inclusive classroom spaces and practice can look like. These perspectives and conceptualizations are in stark contrast to dominant deficit driven approaches that ensure current pedagogically impoverished teaching focused on narrow, limited and limiting understandings of special needs learners and their ways of knowing and acquiring/demonstrating knowledge.Keywords: asset-oriented approach, social/critical model of disability, conditions for learning and teaching, students with special needs
Procedia PDF Downloads 734285 Influence of the Molecular Architecture of a Polycarboxylate-Based Superplasticizer on the Rheological and Physicomechanical Properties of Cement Pastes
Authors: Alya Harichane, Abderraouf Achour, Abdelbaki Benmounah
Abstract:
The main difficulty encountered in the formulation of high-performance concrete (HPC) consists in choosing the most efficient cement-superplasticizer pair allowing to obtain maximum water reduction, good workability of the concrete in the fresh state, and very good mechanical resistance in the hardened state. The aim of this work is to test the efficiency of three polycarboxylate ether-based superplasticizers (PCE) marketed in Algeria with CEMI 52.5 R cement and to study the effect of chemical structure of PCE on zeta potential, rheological and mechanical properties of cement pastes. The property of the polymers in cement was tested by a Malvern Zetasizer 2000 apparatus and VT 550 viscometer. Results showed that the zeta potential and its rheological properties are related to the molecular weight and the density carboxylic of PCE. The PCE with a moderate molecular weight and the highest carboxylic groups had the best dispersion (high value of zeta potential) and lowest viscosity. The effect of the chemical structure of PCEs on mechanical properties is evaluated by the formulation of cement mortar with these PCEs. The result shows that there is a correlation between the zeta potential of polymer and the compressive strength of cement paste.Keywords: molecular weight, polycarboxylate-ether superplasticizer, rheology, zeta potential
Procedia PDF Downloads 954284 Machine Learning Methods for Flood Hazard Mapping
Authors: Stefano Zappacosta, Cristiano Bove, Maria Carmela Marinelli, Paola di Lauro, Katarina Spasenovic, Lorenzo Ostano, Giuseppe Aiello, Marco Pietrosanto
Abstract:
This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment
Procedia PDF Downloads 1854283 Integrating and Evaluating Computational Thinking in an Undergraduate Marine Science Course
Authors: Dana Christensen
Abstract:
Undergraduate students, particularly in the environmental sciences, have difficulty displaying quantitative skills in their laboratory courses. Students spend time sampling in the field, often using new methods, and are expected to make sense of the data they collect. Computational thinking may be used to navigate these new experiences. We developed a curriculum for the marine science department at a small liberal arts college in the Northeastern United States based on previous computational thinking frameworks. This curriculum incorporates marine science data sets with specific objectives and topics selected by the faculty at the College. The curriculum was distributed to all students enrolled in introductory marine science classes as a mandatory module. Two pre-tests and post-tests will be used to quantitatively assess student progress on both content-based and computational principles. Student artifacts are being collected with each lesson to be coded for content-specific and computational-specific items in qualitative assessment. There is an overall gap in marine science education research, especially curricula that focus on computational thinking and associated quantitative assessment. The curricula itself, the assessments, and our results may be modified and applied to other environmental science courses due to the nature of the inquiry-based laboratory components that use quantitative skills to understand nature.Keywords: marine science, computational thinking, curriculum assessment, quantitative skills
Procedia PDF Downloads 634282 Instructional Consequences of the Transiency of Spoken Words
Authors: Slava Kalyuga, Sujanya Sombatteera
Abstract:
In multimedia learning, written text is often transformed into spoken (narrated) text. This transient information may overwhelm limited processing capacity of working memory and inhibit learning instead of improving it. The paper reviews recent empirical studies in modality and verbal redundancy effects within a cognitive load framework and outlines conditions under which negative effects of transiency may occur. According to the modality effect, textual information accompanying pictures should be presented in an auditory rather than visual form in order to engage two available channels of working memory – auditory and visual - instead of only one of them. However, some studies failed to replicate the modality effect and found differences opposite to those expected. Also, according to the multimedia redundancy effect, the same information should not be presented simultaneously in different modalities to avoid unnecessary cognitive load imposed by the integration of redundant sources of information. However, a few studies failed to replicate the multimedia redundancy effect too. Transiency of information is used to explain these controversial results.Keywords: cognitive load, transient information, modality effect, verbal redundancy effect
Procedia PDF Downloads 3824281 Demand of Media and Information for the Public Relation Media for Local Learning Resource Salaya, Nakhon Pathom
Authors: Patsara Sirikamonsin, Sathapath Kilaso
Abstract:
This research aims to study the media and information demand for public relations in Salaya, Nakhonpathom. The research objectives are: 1. to research on conflicts of communication and seeking solutions and improvements of media information in Salaya, Nakhonpathom; 2. to study about opinions and demand for media information to reach out the improvements of people communications among Salaya, Nakhonpathom; 3. to explore the factors related to relationship and behaviors on obtaining media information for public relations among Salaya, Nakhonpathom. The research is conducted by questionnaire which is interpreted by statistical analysis concluding with analysis, frequency, percentage, average and standard deviations. The research results demonstrate: 1. The conflicts of communications among Salaya, Nakhonpathom are lacking equipment and technological knowledge and public relations. 2. Most people have demand on media improvements for vastly broadcasting public relations in order to nourish the social values. This research intentionally is to create the infographic media which are easily accessible, uncomplicated and popular, in the present.Keywords: media and information, the public relation printed media, local learning resource
Procedia PDF Downloads 1644280 Teachers of the Pandemic: Retention, Resilience, and Training
Authors: Theoni Soublis
Abstract:
The COVID-19 pandemic created a severe interruption in teaching and learning in K-12 schools. It is essential that educational researchers, teachers, and administrators understand the long term effects that COVID-19 had on a variety of stakeholders in education. This investigation aims to analyze the research since the beginning of the pandemic that focuses specifically on teacher retention, resilience, and training. The results of this investigation will help to inform future research in order to better understand how the institution of education can continue to be prepared and to better prepare for future significant shifts in the modalities of instruction. The results of this analysis will directly impact the field of education as it will broaden the scope of understanding regarding how COVID- 19 impacted teaching and learning. The themes that will emerge from the data analysis will directly inform policy makers, administrators, and researchers about how to best implement training and curriculum design in order to support teacher effectiveness this in the classroom. Educational researchers have written about how teacher morale plummeted and how many teachers reported early burnout and higher stress levels. Teachers’ stress and anxiety soared during the COVID-19 pandemic, but so has their resilience and dedication to the field of education. This research aims to understand how public-school teachers overcame teaching obstacles presented to them during COVID-19. Research has been conducted to identify a variety of information regarding the impact the pandemic has had on K-12 teachers, students, and families. This research aims to understand how teachers continued to pursue their teaching objectives without significant training of effective online instruction methods. Not many educators even heard of the video conferencing platform Zoom before the spring of 2020. Researchers are interested in understanding how teachers used their expertise, prior knowledge, and training to institute immediate and effective online learning environments, what types of relationships did teachers build with students while teaching 100% remotely, and how did relationships change with students while teaching remotely? Furthermore, did the teacher-student relationship propel teacher resolve to be successful while teaching during a pandemic. Recent world events have significantly impacted the field of public-school teaching. The pandemic forced teachers to shift their paradigm about how to maintain high academic expectations, meet state curriculum standards, and assess students learning gains to make data-informed decisions while simultaneously adapting modes of instruction through multiple outlets with little to no training on remote, synchronous, asynchronous, virtual, and hybrid teaching. While it would be very interesting to study how teaching positively impacted students learning during the pandemic, I am more interested in understanding how teaches stayed the course and maintained their mental health while dealing with the stress and pressure of teaching during COVID-19.Keywords: teacher retention, COVID-19, teacher education, teacher moral
Procedia PDF Downloads 894279 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates
Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe
Abstract:
Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.Keywords: machine learning, MTB, WGS, drug resistant TB
Procedia PDF Downloads 564278 From Research to Practice: Upcycling Cinema Icons
Authors: Mercedes Rodriguez Sanchez, Laura Luceño Casals
Abstract:
With the rise of social media, creative people and brands everywhere are constantly generating content. The students with Bachelor's Degrees in Fashion Design use platforms such as Instagram or TikTok to look for inspiration and entertainment, as well as a way to develop their own ideas and share them with a wide audience. Information and Communications Technologies (ICT) have become a central aspect of higher education, virtually affecting every aspect of the student experience. Following the current trend, during the first semester of the second year, a collaborative project across two subjects –Design Management and History of Fashion Design– was implemented. After an introductory class focused on the relationship between fashion and cinema, as well as a brief history of 20th-century fashion, the students freely chose a work team and an iconic look from a movie costume. They researched the selected movie and its sociocultural context, analyzed the costume and the work of the designer, and studied the style, fashion magazines and most popular films of the time. Students then redesigned and recreated the costume, for which they were compelled to recycle the materials they had available at home as an unavoidable requirement of the activity. Once completed the garment, students delivered in-class, team-based presentations supported by the final design, a project summary poster and a making-of video, which served as a documentation tool of the costume design process. The methodologies used include Challenge-Based Learning (CBL), debates, Internet research, application of Information and Communications Technologies, and viewing clips of classic films, among others. After finishing the projects, students were asked to complete two electronic surveys to measure the acquisition of transversal and specific competencies of each subject. Results reveal that this activity helped the students' knowledge acquisition, a deeper understanding of both subjects and their skills development. The classroom dynamic changed. The multidisciplinary approach encouraged students to collaborate with their peers, while educators were better able to keep students' interest and promote an engaging learning process. As a result, the activity discussed in this paper confirmed the research hypothesis: it is positive to propose innovative teaching projects that combine academic research with playful learning environments.Keywords: cinema, cooperative learning, fashion design, higher education, upcycling
Procedia PDF Downloads 824277 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based On a Motion Polymorph-Primitives Algorithm
Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba
Abstract:
Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real-time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.Keywords: robotics, aerial robots, motion primitives, helicopter
Procedia PDF Downloads 6194276 Use of Visual, Animating Narrative in an Entrepreneurial Storytelling: A Case Study of Greenesignit! Card Game, Educational and Brainstorming Tool for Development of Sustainable Products
Authors: Maja S. Todorovic
Abstract:
This paper aims to promote entrepreneurial storytelling by exploring new ideas and learning practices. An entrepreneur needs to be a ‘storyteller’, an ‘epic hero’, capable of offering an emotional connection to his audience, a character with whom audience can identify with, rejoice, suffer, celebrate, fail – simply experience everything. In other words, a successful entrepreneur is giving tangible experience through his business story and that’s what makes his story and business alive. Use of mythology, eulogy, metaphor, epic, fairytales and cartoons, permeated with humor and sudden twists is a winning recipe for a business story that captures attention. In the business case of the Greenesignit! Card game, (educational and brainstorming tool for development of sustainable products) we will demonstrate how an entrepreneur successfully used visual narrative to communicate his story and at the same time as a vehicle to transmute his message in learning tool and product development.Keywords: animating narrative, entrepreneur, Greeneisgnit! card game, visual storytelling
Procedia PDF Downloads 3964275 A Comparison between the McGrath Video Laryngoscope and the Macintosh Laryngoscopy in Children with Expected Normal Airway
Authors: Jong Yeop Kim, Ji Eun Kim, Hyun Jeong Kwak, Sook Young Lee
Abstract:
Background: This prospective, randomized, controlled study was performed to evaluate the usefulness of the McGrath VL compared to Macintosh laryngoscopy in children with expected normal airway during endotracheal intubation, by comparing the time to intubation and ease of intubation. Methods: Eighty-four patients, aged 1-10 years undergoing endotracheal intubation for elective surgery were randomly assigned to McGrath group (n = 42) or Macintosh group (n = 42). Anesthesia was induced with propofol 2.5-3.0 mg/kg and sevoflurane 5-8 vol%. Orotracheal intubation was performed 2 minutes after injection of rocuronium 0.6 mg/kg with McGrath VL or Macintosh laryngoscope. The primary outcome was time to intubation. The Cormack and Lehane glottic grade, intubation difficulty score (IDS), and success rate of intubation were assessed. Hemodynamic changes also were recorded. Results: Median time to intubation [interquartile range] was not different between the McGrath group and the Macintosh group (25.0 [22.8-28.3] s vs. 26.0 [24.0-29.0] s, p = 0.301). The incidence of grade I glottic view was significantly higher in theMcGrath group than in the Macintosh group (95% vs. 74%, p = 0.013). Median IDS was lower in the McGrath group than in the Macintosh group (0 [0-0] vs. 0 [0-1], p = 0.018). There were no significant differences in success rate on intubation or hemodynamics between the two groups. Conclusions: McGrath VL provides better laryngeal views and lower IDS, but similar intubation times and success rates compared to the Macintosh laryngoscope in children with the normal airway.Keywords: intubation, Macintosh laryngoscopy, Mcgrath videolaryngoscopy, pediatrics
Procedia PDF Downloads 2334274 Detecting Elderly Abuse in US Nursing Homes Using Machine Learning and Text Analytics
Authors: Minh Huynh, Aaron Heuser, Luke Patterson, Chris Zhang, Mason Miller, Daniel Wang, Sandeep Shetty, Mike Trinh, Abigail Miller, Adaeze Enekwechi, Tenille Daniels, Lu Huynh
Abstract:
Machine learning and text analytics have been used to analyze child abuse, cyberbullying, domestic abuse and domestic violence, and hate speech. However, to the authors’ knowledge, no research to date has used these methods to study elder abuse in nursing homes or skilled nursing facilities from field inspection reports. We used machine learning and text analytics methods to analyze 356,000 inspection reports, which have been extracted from CMS Form-2567 field inspections of US nursing homes and skilled nursing facilities between 2016 and 2021. Our algorithm detected occurrences of the various types of abuse, including physical abuse, psychological abuse, verbal abuse, sexual abuse, and passive and active neglect. For example, to detect physical abuse, our algorithms search for combinations or phrases and words suggesting willful infliction of damage (hitting, pinching or burning, tethering, tying), or consciously ignoring an emergency. To detect occurrences of elder neglect, our algorithm looks for combinations or phrases and words suggesting both passive neglect (neglecting vital needs, allowing malnutrition and dehydration, allowing decubiti, deprivation of information, limitation of freedom, negligence toward safety precautions) and active neglect (intimidation and name-calling, tying the victim up to prevent falls without consent, consciously ignoring an emergency, not calling a physician in spite of indication, stopping important treatments, failure to provide essential care, deprivation of nourishment, leaving a person alone for an inappropriate amount of time, excessive demands in a situation of care). We further compare the prevalence of abuse before and after Covid-19 related restrictions on nursing home visits. We also identified the facilities with the most number of cases of abuse with no abuse facilities within a 25-mile radius as most likely candidates for additional inspections. We also built an interactive display to visualize the location of these facilities.Keywords: machine learning, text analytics, elder abuse, elder neglect, nursing home abuse
Procedia PDF Downloads 1494273 Combined Treatment of Aged Rats with Donepezil and the Gingko Extract EGb 761® Enhances Learning and Memory Superiorly to Monotherapy
Authors: Linda Blümel, Bettina Bert, Jan Brosda, Heidrun Fink, Melanie Hamann
Abstract:
Age-related cognitive decline can eventually lead to dementia, the most common mental illness in elderly people and an immense challenge for patients, their families and caregivers. Cholinesterase inhibitors constitute the most commonly used antidementia prescription medication. The standardized Ginkgo biloba leaf extract EGb 761® is approved for treating age-associated cognitive impairment and has been shown to improve the quality of life in patients suffering from mild dementia. A clinical trial with 96 Alzheimer´s disease patients indicated that the combined treatment with donepezil and EGb 761® had fewer side effects than donepezil alone. In an animal model of cognitive aging, we compared the effect of combined treatment with EGb 761® or donepezil monotherapy and vehicle. We compared the effect of chronic treatment (15 days of pretreatment) with donepezil (1.5 mg/kg p. o.), EGb 761® (100 mg/kg p. o.), or the combination of the two drugs, or vehicle in 18 – 20 month old male OFA rats. Learning and memory performance were assessed by Morris water maze testing, motor behavior in an open field paradigm. In addition to chronic treatment, the substances were administered orally 30 minutes before testing. Compared to the first day and to the control group, only the combination group showed a significant reduction in latency to reach the hidden platform on the second day of testing. Moreover, from the second day of testing onwards, the donepezil, the EGb 761® and the combination group required less time to reach the hidden platform compared to the first day. The control group did not reach the same latency reduction until day three. There were no effects on motor behavior. These results suggest a superiority of the combined treatment of donepezil with EGb 761® compared to monotherapy.Keywords: age-related cognitive decline, dementia, ginkgo biloba leaf extract EGb 761®, learning and memory, old rats
Procedia PDF Downloads 3704272 The Impact of Anxiety on the Access to Phonological Representations in Beginning Readers and Writers
Authors: Regis Pochon, Nicolas Stefaniak, Veronique Baltazart, Pamela Gobin
Abstract:
Anxiety is known to have an impact on working memory. In reasoning or memory tasks, individuals with anxiety tend to show longer response times and poorer performance. Furthermore, there is a memory bias for negative information in anxiety. Given the crucial role of working memory in lexical learning, anxious students may encounter more difficulties in learning to read and spell. Anxiety could even affect an earlier learning, that is the activation of phonological representations, which are decisive for the learning of reading and writing. The aim of this study is to compare the access to phonological representations of beginning readers and writers according to their level of anxiety, using an auditory lexical decision task. Eighty students of 6- to 9-years-old completed the French version of the Revised Children's Manifest Anxiety Scale and were then divided into four anxiety groups according to their total score (Low, Median-Low, Median-High and High). Two set of eighty-one stimuli (words and non-words) have been auditory presented to these students by means of a laptop computer. Stimuli words were selected according to their emotional valence (positive, negative, neutral). Students had to decide as quickly and accurately as possible whether the presented stimulus was a real word or not (lexical decision). Response times and accuracy were recorded automatically on each trial. It was anticipated a) longer response times for the Median-High and High anxiety groups in comparison with the two others groups, b) faster response times for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups, c) lower response accuracy for Median-High and High anxiety groups in comparison with the two others groups, d) better response accuracy for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups. Concerning the response times, our results showed no difference between the four groups. Furthermore, inside each group, the average response times was very close regardless the emotional valence. Otherwise, group differences appear when considering the error rates. Median-High and High anxiety groups made significantly more errors in lexical decision than Median-Low and Low groups. Better response accuracy, however, is not found for negative-valence words in comparison with positive and neutral-valence words in the Median-High and High anxiety groups. Thus, these results showed a lower response accuracy for above-median anxiety groups than below-median groups but without specificity for the negative-valence words. This study suggests that anxiety can negatively impact the lexical processing in young students. Although the lexical processing speed seems preserved, the accuracy of this processing may be altered in students with moderate or high level of anxiety. This finding has important implication for the prevention of reading and spelling difficulties. Indeed, during these learnings, if anxiety affects the access to phonological representations, anxious students could be disturbed when they have to match phonological representations with new orthographic representations, because of less efficient lexical representations. This study should be continued in order to precise the impact of anxiety on basic school learning.Keywords: anxiety, emotional valence, childhood, lexical access
Procedia PDF Downloads 2884271 The Impact of Gender and Residential Background on Racial Integration: Evidence from a South African University
Authors: Morolake Josephine Adeagbo
Abstract:
South Africa is one of those countries that openly rejected racism, and this is entrenched in its Bill of Rights. Despite the acceptance and incorporation of racial integration into the South Africa Constitution, the implementation within some sectors, most especially the educational sector, seems difficult. Recent occurrences of racism in some higher institutions of learning in South Africa are indications that racial integration / racial transformation is still farfetched in the country’s higher educational sector. It is against this background that this study was conducted to understand how gender and residential background influence racial integration in a South African university which was predominantly a white Afrikaner institution. Using a quantitative method to test the attitude of different categories of undergraduate students at the university, this study found that the factors- residential background and gender- used in measuring student’s attitude do not necessarily have a significant relationship towards racial integration. However, this study concludes with a call for more research with a range of other factors in order to better understand how racial integration can be promoted in South African institutions of higher learning.Keywords: racial integration, gender, residential background, transformation
Procedia PDF Downloads 4454270 Designing Teaching Aids for Dyslexia Students in Mathematics Multiplication
Authors: Mohini Mohamed, Nurul Huda Mas’od
Abstract:
This study was aimed at designing and developing an assistive mathematical teaching aid (courseware) in helping dyslexic students in learning multiplication. Computers and multimedia interactive courseware has benefits students in terms of increase learner’s motivation and engage them to stay on task in classroom. Most disability student has short attention span thus with the advantage offered by multimedia interactive courseware allows them to retain the learning process for longer period as compared to traditional chalk and talk method. This study was conducted in a public school at a primary level with the help of three special education teachers and six dyslexic students as participants. Qualitative methodology using interview with special education teachers and observations in classes were conducted. The development of the multimedia interactive courseware in this study was divided to three processes which were analysis and design, development and evaluation. The courseware was evaluated by using User Acceptance Survey Form and interview. Feedbacks from teachers were used to alter, correct and develop the application for a better multimedia interactive courseware.Keywords: disability students, dyslexia, mathematics teaching aid, multimedia interactive courseware
Procedia PDF Downloads 4104269 Numerical Simulation of Fluid-Structure Interaction on Wedge Slamming Impact by Using Particle Method
Authors: Sung-Chul Hwang, Di Ren, Sang-Moon Yoon, Jong-Chun Park, Abbas Khayyer, Hitoshi Gotoh
Abstract:
The slamming impact problem has a very important engineering background. For seaplane landing, recycling for the satellite re-entry capsule, and the impact load of the bow in the adverse sea conditions, the slamming problem always plays the important role. Due to its strong nonlinear effect, however, it seems to be not easy to obtain the accurate simulation results. Combined with the strong interaction between the fluid field and the elastic structure, the difficulty for the simulation leads to a new level for challenging. This paper presents a fully Lagrangian coupled solver for simulations of fluid-structure interactions, which is based on the Moving Particle Semi-implicit (MPS) method to solve the governing equations corresponding to incompressible flows as well as elastic structures. The developed solver is verified by reproducing the high velocity impact loads of deformable thin wedges with two different materials such as aluminum and steel on water entry. The present simulation results are compared with analytical solution derived using the hydrodynamic Wagner model and linear theory by Wan.Keywords: fluid-structure interaction, moving particle semi-implicit (MPS) method, elastic structure, incompressible flow, wedge slamming impact
Procedia PDF Downloads 610