Search results for: fiber volume
231 Fe3O4 Decorated ZnO Nanocomposite Particle System for Waste Water Remediation: An Absorptive-Photocatalytic Based Approach
Authors: Prateek Goyal, Archini Paruthi, Superb K. Misra
Abstract:
Contamination of water resources has been a major concern, which has drawn attention to the need to develop new material models for treatment of effluents. Existing conventional waste water treatment methods remain ineffective sometimes and uneconomical in terms of remediating contaminants like heavy metal ions (mercury, arsenic, lead, cadmium and chromium); organic matter (dyes, chlorinated solvents) and high salt concentration, which makes water unfit for consumption. We believe that nanotechnology based strategy, where we use nanoparticles as a tool to remediate a class of pollutants would prove to be effective due to its property of high surface area to volume ratio, higher selectivity, sensitivity and affinity. In recent years, scientific advancement has been made to study the application of photocatalytic (ZnO, TiO2 etc.) nanomaterials and magnetic nanomaterials in remediating contaminants (like heavy metals and organic dyes) from water/wastewater. Our study focuses on the synthesis and monitoring remediation efficiency of ZnO, Fe3O4 and Fe3O4 coated ZnO nanoparticulate system for the removal of heavy metals and dyes simultaneously. Multitude of ZnO nanostructures (spheres, rods and flowers) using multiple routes (microwave & hydrothermal approach) offers a wide range of light active photo catalytic property. The phase purity, morphology, size distribution, zeta potential, surface area and porosity in addition to the magnetic susceptibility of the particles were characterized by XRD, TEM, CPS, DLS, BET and VSM measurements respectively. Further on, the introduction of crystalline defects into ZnO nanostructures can also assist in light activation for improved dye degradation. Band gap of a material and its absorbance is a concrete indicator for photocatalytic activity of the material. Due to high surface area, high porosity and affinity towards metal ions and availability of active surface sites, iron oxide nanoparticles show promising application in adsorption of heavy metal ions. An additional advantage of having magnetic based nanocomposite is, it offers magnetic field responsive separation and recovery of the catalyst. Therefore, we believe that ZnO linked Fe3O4 nanosystem would be efficient and reusable. Improved photocatalytic efficiency in addition to adsorption for environmental remediation has been a long standing challenge, and the nano-composite system offers the best of features which the two individual metal oxides provide for nanoremediation.Keywords: adsorption, nanocomposite, nanoremediation, photocatalysis
Procedia PDF Downloads 244230 Assessment of Water Pollution in the River Nile (Egypt) by Applying Blood Biomarkers in Two Excellent Model Species Oreochromis niloticus niloticus and Clarias gariepinus
Authors: Alaa G. M. Osman, Abd-El –Baset M. Abd El Reheem, Khaled Y. Abouelfadl, Usama M. Mahmoud, Mohsen A. Moustafa
Abstract:
This study aimed to explore new sites of biomarker research and to establish the use of blood parameters in wild fish populations. Four hundred and twenty fish samples were collected from six sites along the whole course of the river Nile, Egypt. The mean values of erythrocytes, thrombocytes, hemoglobin concentration, hematocrit value, and mean corpuscular volume were significantly lower in the blood of Nile tilapia and African catfish collected from downstream (contaminated) compared to upstream sites. In contrast, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration in the peripheral blood of both fish species significantly increased from upstream to downstream river Nile. The leukocytes count was significantly decreased in contaminated sites compared to upstream area. Hematological variables in the peripheral blood of Oreochromis niloticus niloticus and Clarias gariepinus exhibited significant (p<0.05) correlation with nearly all the detected chemical and physical parameters along the Nile course. In the present study, lower cellular and nuclear areas and cellular and nuclear shape factor were recorded in the erythrocytes of fish collected from downstream compared to those caught from upstream sites. This was confirmed by higher immature ratios of red cells in the blood of fish sampled from downstream river Nile. Karyorrhetic and enucleated erythrocytes were significantly correlated with physiochemical parameters in water samples collected from the same sites is being higher in the blood of fish collected from downstream sites. To see if there was any correlation between fish altered physiological fitness and environmental stress, we measured serum biochemical variables namely; total protein, cholesterol, triglycerides, calcium, chlorides, alkaline phosphatase activity (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), uric acid activity, creatinine, and serum glucose. The level of all the selected biochemical variables in the blood of O. niloticus niloticus and C. gariepinus were recorded to be significantly higher (p<0.05) in downstream sites. According to the present results, nearly all the detected haematological and blood biochemical variables are suitable indicators of contaminant exposure in O. niloticus niloticus and C. gariepinus. Also the detected erythrocytes malformations in blood collected from Nile tilapia and African catfish were proven to be suitable for bio-monitoring aquatic pollution. The results revealed species-specific differences in sensitivities, suggesting that Nile tilapia may serve as a more sensitive test species compared to African catfish.Keywords: biomarkers, water pollution, blood parameters, river nile, african catfish, nile tilapia
Procedia PDF Downloads 295229 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments
Authors: Skyler Kim
Abstract:
An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning
Procedia PDF Downloads 191228 High Capacity SnO₂/Graphene Composite Anode Materials for Li-Ion Batteries
Authors: Hilal Köse, Şeyma Dombaycıoğlu, Ali Osman Aydın, Hatem Akbulut
Abstract:
Rechargeable lithium-ion batteries (LIBs) have become promising power sources for a wide range of applications, such as mobile communication devices, portable electronic devices and electrical/hybrid vehicles due to their long cycle life, high voltage and high energy density. Graphite, as anode material, has been widely used owing to its extraordinary electronic transport properties, large surface area, and high electrocatalytic activities although its limited specific capacity (372 mAh g-1) cannot fulfil the increasing demand for lithium-ion batteries with higher energy density. To settle this problem, many studies have been taken into consideration to investigate new electrode materials and metal oxide/graphene composites are selected as a kind of promising material for lithium ion batteries as their specific capacities are much higher than graphene. Among them, SnO₂, an n-type and wide band gap semiconductor, has attracted much attention as an anode material for the new-generation lithium-ion batteries with its high theoretical capacity (790 mAh g-1). However, it suffers from large volume changes and agglomeration associated with the Li-ion insertion and extraction processes, which brings about failure and loss of electrical contact of the anode. In addition, there is also a huge irreversible capacity during the first cycle due to the formation of amorphous Li₂O matrix. To obtain high capacity anode materials, we studied on the synthesis and characterization of SnO₂-Graphene nanocomposites and investigated the capacity of this free-standing anode material in this work. For this aim, firstly, graphite oxide was obtained from graphite powder using the method described by Hummers method. To prepare the nanocomposites as free-standing anode, graphite oxide particles were ultrasonicated in distilled water with SnO2 nanoparticles (1:1, w/w). After vacuum filtration, the GO-SnO₂ paper was peeled off from the PVDF membrane to obtain a flexible, free-standing GO paper. Then, GO structure was reduced in hydrazine solution. Produced SnO2- graphene nanocomposites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and X-ray diffraction (XRD) analyses. CR2016 cells were assembled in a glove box (MBraun-Labstar). The cells were charged and discharged at 25°C between fixed voltage limits (2.5 V to 0.2 V) at a constant current density on a BST8-MA MTI model battery tester with 0.2C charge-discharge rate. Cyclic voltammetry (CV) was performed at the scan rate of 0.1 mVs-1 and electrochemical impedance spectroscopy (EIS) measurements were carried out using Gamry Instrument applying a sine wave of 10 mV amplitude over a frequency range of 1000 kHz-0.01 Hz.Keywords: SnO₂-graphene, nanocomposite, anode, Li-ion battery
Procedia PDF Downloads 234227 Hybrid Solutions in Physicochemical Processes for the Removal of Turbidity in Andean Reservoirs
Authors: María Cárdenas Gaudry, Gonzalo Ramces Fano Miranda
Abstract:
Sediment removal is very important in the purification of water, not only for reasons of visual perception but also because of its association with odor and taste problems. The Cuchoquesera reservoir, which is in the Andean region of Ayacucho (Peru) at an altitude of 3,740 meters above sea level, visually presents suspended particles and organic impurities indicating that it contains water of dubious quality to deduce that it is suitable for direct consumption of human beings. In order to quantitatively know the degree of impurities, water quality monitoring was carried out from February to August 2018, in which four sampling stations were established in the reservoir. The selected measured parameters were electrical conductivity, total dissolved solids, pH, color, turbidity, and sludge volume. The indicators of the studied parameters exceed the permissible limits except for electrical conductivity (190 μS/cm) and total dissolved solids (255 mg/L). In this investigation, the best combination and the optimal doses of reagents were determined that allowed the removal of sediments from the waters of the Cuchoquesera reservoir, through the physicochemical process of coagulation-flocculation. In order to improve this process during the rainy season, six combinations of reagents were evaluated, made up of three coagulants (ferric chloride, ferrous sulfate, and aluminum sulfate) and two natural flocculants: prickly pear powder (Opuntia ficus-indica) and tara gum (Caesalpinia spinoza). For each combination of reagents, jar tests were developed following the central composite experimental design (CCED), where the design factors were the doses of coagulant and flocculant and the initial turbidity. The results of the jar tests were adjusted to mathematical models, obtaining that to treat the water from the Cuchoquesera reservoir, with a turbidity of 150 UTN and a color of 137 U Pt-Co, 27.9 mg/L of the coagulant aluminum sulfate with 3 mg/L of the natural tara gum flocculant to produce a purified water quality of 1.7 UTN of turbidity and 3.2 U Pt-Co of apparent color. The estimated cost of the dose of coagulant and flocculant found was 0.22 USD/m³. This is how “grey-green” technologies can be used as a combination in nature-based solutions in water treatment, in this case, to achieve potability, making it more sustainable, especially economically, if green technology is available at the site of application of the nature-based hybrid solution. This research is a demonstration of the compatibility of natural coagulants/flocculants with other treatment technologies in the integrated/hybrid treatment process, such as the possibility of hybridizing natural coagulants with other types of coagulants.Keywords: prickly pear powder, tara gum, nature-based solutions, aluminum sulfate, jar test, turbidity, coagulation, flocculation
Procedia PDF Downloads 112226 Study of the Kinetics of Formation of Carboxylic Acids Using Ion Chromatography during Oxidation Induced by Rancimat of the Oleic Acid, Linoleic Acid, Linolenic Acid, and Biodiesel
Authors: Patrícia T. Souza, Marina Ansolin, Eduardo A. C. Batista, Antonio J. A. Meirelles, Matthieu Tubino
Abstract:
Lipid oxidation is a major cause of the deterioration of the quality of the biodiesel, because the waste generated damages the engines. Among the main undesirable effects are the increase of viscosity and acidity, leading to the formation of insoluble gums and sediments which cause the blockage of fuel filters. The auto-oxidation is defined as the spontaneous reaction of atmospheric oxygen with lipids. Unsaturated fatty acids are usually the components affected by such reactions. They are present as free fatty acids, fatty esters and glycerides. To determine the oxidative stability of biodiesels, through the induction period, IP, the Rancimat method is used, which allows continuous monitoring of the induced oxidation process of the samples. During the oxidation of the lipids, volatile organic acids are produced as byproducts, in addition, other byproducts, including alcohols and carbonyl compounds, may be further oxidized to carboxylic acids. By the methodology developed in this work using ion chromatography, IC, analyzing the water contained in the conductimetric vessel, were quantified organic anions of carboxylic acids in samples subjected to oxidation induced by Rancimat. The optimized chromatographic conditions were: eluent water:acetone (80:20 v/v) with 0.5 mM sulfuric acid; flow rate 0.4 mL min-1; injection volume 20 µL; eluent suppressor 20 mM LiCl; analytical curve from 1 to 400 ppm. The samples studied were methyl biodiesel from soybean oil and unsaturated fatty acids standards: oleic, linoleic and linolenic. The induced oxidation kinetics curves were constructed by analyzing the water contained in the conductimetric vessels which were removed, each one, from the Rancimat apparatus at prefixed intervals of time. About 3 g of sample were used under the conditions of 110 °C and air flow rate of 10 L h-1. The water of each conductimetric Rancimat measuring vessel, where the volatile compounds were collected, was filtered through a 0.45 µm filter and analyzed by IC. Through the kinetic data of the formation of the organic anions of carboxylic acids, the formation rates of the same were calculated. The observed order of the rates of formation of the anions was: formate >>> acetate > hexanoate > valerate for the oleic acid; formate > hexanoate > acetate > valerate for the linoleic acid; formate >>> valerate > acetate > propionate > butyrate for the linolenic acid. It is possible to suppose that propionate and butyrate are obtained mainly from linolenic acid and that hexanoate is originated from oleic and linoleic acid. For the methyl biodiesel the order of formation of anions was: formate >>> acetate > valerate > hexanoate > propionate. According to the total rate of formation these anions produced during the induced degradation of the fatty acids can be assigned the order of reactivity: linolenic acid > linoleic acid >>> oleic acid.Keywords: anions of carboxylic acids, biodiesel, ion chromatography, oxidation
Procedia PDF Downloads 478225 Vicarious Cues in Portraying Emotion: Musicians' Self-Appraisal
Authors: W. Linthicum-Blackhorse, P. Martens
Abstract:
This present study seeks to discover attitudinal commonalities and differences within a musician population relative to the communication of emotion via music. We hypothesized that instrument type, as well as age and gender, would bear significantly on musicians’ opinions. A survey was administered to 178 participants; 152 were current music majors (mean age 20.3 years, 62 female) and 26 were adult participants in a community choir (mean age 54.0 years, 12 female). The adult participants were all vocalists, while student participants represented the full range of orchestral instruments. The students were grouped by degree program, (performance, music education, or other) and instrument type (voice, brass, woodwinds, strings, percussion). The survey asked 'How important are each of the following areas to you for portraying emotion in music?' Participants were asked to rate each of 15 items on a scale of 1 (not at all important) to 10 (very important). Participants were also instructed to leave blank any item that they did not understand. The 15 items were: dynamic contrast, overall volume, phrasing, facial expression, staging (placement), pitch accuracy, tempo changes, bodily movement, your mood, your attitude, vibrato, rubato, stage/room lighting, clothing type, and clothing color. Contrary to our hypothesis, there was no overall effect of gender or age, and neither did any single response item show a significant difference due to these subject parameters. Among the student participants, however, one-way ANOVA revealed a significant effect of degree program on the rated importance of four items: dynamic contrast, tempo changes, vibrato, and rubato. Significant effects of instrument type were found in the responses to eight items: facial expression, staging, body movement, vibrato, rubato, lighting, clothing type, and clothing color. Post hoc comparisons (Tukey) show that some variation follows from obvious differences between instrument types (e.g. string players are more concerned with vibrato than everyone but woodwind players; vocalists are significantly more concerned with facial expression than everyone but string players), but other differences could point to communal mindsets toward vicarious cues within instrument type. These mindsets could be global (e.g. brass players deeming body movement significantly less important than string players, being less often featured as soloists and appearing less often at the front of the stage) or local (e.g. string players being significantly more concerned than all other groups about both clothing color and type, perhaps due to the strongly-expressed opinions of specific teachers). Future work will attempt to identify the source of these self-appraisals, whether enculturated via explicit pedagogy, or whether absorbed from individuals' observations and performance experience.Keywords: performance, vicarious cues, communication, emotion
Procedia PDF Downloads 112224 Generation and Migration of CO₂ in the Bahi Sandstone Reservoir within the Ennaga Sub Basin, Sirte Basin, Libya
Authors: Moaawia Abdulgader Gdara
Abstract:
This work presents a study of Carbone dioxide generation and migration in the Bahi sandstone reservoir over the EPSA 120/136 (conc 72). En Naga Sub Basin, Sirte Basin Libya. The Lower Cretaceous Bahi Sandstone is the result of deposition that occurred between the start of the Cretaceous rifting that formed the area's Horsts, Grabens and Cenomanian marine transgression. Bahi sediments were derived mainly from those Nubian sediments exposed on the structurally higher blocks, transported short distances into newly forming depocenters such as the En Naga Sub-basin and were deposited by continental processes over the Sirte Unconformity (pre-Late Cretaceous surface) Bahi Sandstone facies are recognized in the En Naga Sub-basin within different lithofacies distribution over this sub-base. One of the two lithofacies recognized in the Bahi is a very fine to very coarse, subangular to angular, pebbly and occasionally conglomeratic quartz sandstone, which is commonly described as being compacted but friable. This sandstone may contain pyrite and minor kaolinite. This facies was encountered at 11,042 feet in F1-72 well, and at 9,233 feet in L1-72. Good, reservoir quality sandstones are associated with paleotopographic highs within the sub-basin and around its margins where winnowing and/or deflationary processes occurred. The second Bahi Lithofacies is a thinly bedded sequence dominated by shales and siltstones with subordinate sandstones and carbonates. The sandstones become more abundant with depth. This facies was encountered at 12,580 feet in P1 -72 and at 11,850 feet in G1a -72. This argillaceous sequence is likely the Bahi sandstone's lateral facies equivalent deposited in paleotopographic lows, which received finer-grained material. The Bahi sandstones are generally described as a good reservoir rock, which after prolific production tests for the drilled wells makes Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near EPSA 120/136, (conc 72). CO₂ occurs in this area as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface and are exposed at the surface. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas of EPSA 120/136 (CONC 72) where there are better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ productivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large. Three main structures (Barrut I, En Naga A and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone development. These leads are the most attractive on EPSA 120/136 for the deep potential.Keywords: En Naga Sub Basin, Al Harouge Al Aswad's Igneous complex, carbon dioxide generation, migration in the Bahi sandstone reservoir, lower cretaceous Bahi Sandstone
Procedia PDF Downloads 107223 Generation and Migration of CO₂ in the Bahi Sandstone Reservoir within the Ennaga Sub Basin, Sirte Basin, Libya
Authors: Moaawia Abdulgader Gdara
Abstract:
This work presents a study of carbon dioxide generation and migration in the Bahi sandstone reservoir over the EPSA 120/136 (conc 72), En Naga Sub Basin, Sirte Basin, Libya. The Lower Cretaceous Bahi Sandstone is the result of deposition that occurred between the start of the Cretaceous rifting that formed the area's Horsts, Grabens, and Cenomanian marine transgression. Bahi sediments were derived mainly from those Nubian sediments exposed on the structurally higher blocks, transported short distances into newly forming depocenters such as the En Naga Sub-basin, and were deposited by continental processes over the Sirte Unconformity (pre-Late Cretaceous surface). Bahi Sandstone facies are recognized in the En Naga Sub-basin within different lithofacies distributed over this sub-base. One of the two lithofacies recognized in the Bahi is a very fine to very coarse, subangular to angular, pebbly, and occasionally conglomeratic quartz sandstone, which is commonly described as being compacted but friable. This sandstone may contain pyrite, minor kaolinite. This facies was encountered at 11,042 feet in F1-72 well and at 9,233 feet in L1-72. Good, reservoir quality sandstones are associated with paleotopographic highs within the sub-basin and around its margins where winnowing and/or deflationary processes occurred. The second Bahi Lithofacies is a thinly bedded sequence dominated by shales and siltstones with subordinate sandstones and carbonates. The sandstones become more abundant with depth. This facies was encountered at 12,580 feet in P1 -72 and at 11,850 feet in G1a -72. This argillaceous sequence is likely the Bahi sandstone's lateral facies equivalent deposited in paleotopographic lows, which received finer grained material. The Bahi sandstones are generally described as a good reservoir rock, which after prolific production tests for the drilled wells that makes Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near EPSA 120/136, (conc 72). CO₂ occurs in this area as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusive have been pierced in the subsurface and are exposed at the surface. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas of EPSA 120/136 (CONC 72), where there are better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large. Three main structures (Barrut I, En Naga A, and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone development. These leads are the most attractive on EPSA 120/136 for the deep potential.Keywords: En Naga Sub Basin, Al Harouge Al Aswad’s Igneous Complex, carbon dioxide generation and migration in the Bahi sandstone reservoir, lower cretaceous Bahi sandstone
Procedia PDF Downloads 110222 Development and Validation of a Turbidimetric Bioassay to Determine the Potency of Ertapenem Sodium
Authors: Tahisa M. Pedroso, Hérida R. N. Salgado
Abstract:
The microbiological turbidimetric assay allows the determination of potency of the drug, by measuring the turbidity (absorbance), caused by inhibition of microorganisms by ertapenem sodium. Ertapenem sodium (ERTM), a synthetic antimicrobial agent of the class of carbapenems, shows action against Gram-negative, Gram-positive, aerobic and anaerobic microorganisms. Turbidimetric assays are described in the literature for some antibiotics, but this method is not described for ertapenem. The objective of the present study was to develop and validate a simple, sensitive, precise and accurate microbiological assay by turbidimetry to quantify ertapenem sodium injectable as an alternative to the physicochemical methods described in the literature. Several preliminary tests were performed to choose the following parameters: Staphylococcus aureus ATCC 25923, IAL 1851, 8 % of inoculum, BHI culture medium, and aqueous solution of ertapenem sodium. 10.0 mL of sterile BHI culture medium were distributed in 20 tubes. 0.2 mL of solutions (standard and test), were added in tube, respectively S1, S2 and S3, and T1, T2 and T3, 0.8 mL of culture medium inoculated were transferred to each tube, according parallel lines 3 x 3 test. The tubes were incubated in shaker Marconi MA 420 at a temperature of 35.0 °C ± 2.0 °C for 4 hours. After this period, the growth of microorganisms was inhibited by addition of 0.5 mL of 12% formaldehyde solution in each tube. The absorbance was determined in Quimis Q-798DRM spectrophotometer at a wavelength of 530 nm. An analytical curve was constructed to obtain the equation of the line by the least-squares method and the linearity and parallelism was detected by ANOVA. The specificity of the method was proven by comparing the response obtained for the standard and the finished product. The precision was checked by testing the determination of ertapenem sodium in three days. The accuracy was determined by recovery test. The robustness was determined by comparing the results obtained by varying wavelength, brand of culture medium and volume of culture medium in the tubes. Statistical analysis showed that there is no deviation from linearity in the analytical curves of standard and test samples. The correlation coefficients were 0.9996 and 0.9998 for the standard and test samples, respectively. The specificity was confirmed by comparing the absorbance of the reference substance and test samples. The values obtained for intraday, interday and between analyst precision were 1.25%; 0.26%, 0.15% respectively. The amount of ertapenem sodium present in the samples analyzed, 99.87%, is consistent. The accuracy was proven by the recovery test, with value of 98.20%. The parameters varied did not affect the analysis of ertapenem sodium, confirming the robustness of this method. The turbidimetric assay is more versatile, faster and easier to apply than agar diffusion assay. The method is simple, rapid and accurate and can be used in routine analysis of quality control of formulations containing ertapenem sodium.Keywords: ertapenem sodium, turbidimetric assay, quality control, validation
Procedia PDF Downloads 394221 Epidemiological Data of Schistosoma haematobium Bilharzia in Rural and Urban Localities in the Republic of Congo
Authors: Jean Akiana, Digne Merveille Nganga Bouanga, Nardiouf Sjelin Nsana, Wilfrid Sapromet Ngoubili, Chyvanelle Ndous Akiridzo, Vishnou Reize Ampiri, Henri-Joseph Parra, Florence Fenollar, Didier Raoult, Oleg Mediannikov, Cheikh Sadhibou Sokhna
Abstract:
Schistosoma haematobium schistosomiasis is an endemic disease in which the level of human exposure, incidence, and fatality attributed to it remains, unfortunately, high worldwide. The erection of hydroelectric infrastructures constitute a major factor in the emergence of this disease. In the context of the Republic of the Congo, which considers industrialization and modernization as two essential pillars of development, building the hydroelectric dams of Liouesso (19 Mw) and the feasibility studies of the dams of Chollet (600MW) in the Sangha, of Sounda (1000MW) in Kouilou and Kouembali (150MW) on Lefini is necessary to increase the country's energy capacities. Likewise, the urbanization of former endemic localities should take into account the maintenance of contamination points. However, health impact studies on schistosomiasis epidemiology in general and urinary bilharzia, in particular, have never been carried out in these areas, neither before nor after the erection of those dams. Participants benefited from an investigative questionnaire, urinalysis both by dipstick and urine filtrate examined under a microscope. Assessment of the genetic diversity of schistosoma species populations was considered as well as PCR analysis to confirm the test strip and microscopy tests. 405 participants were registered in five localities. The sampling was made up of a balanced population in terms of male/female ratio, which is around 1. The prevalence rate was 45% (55/123) in Nkayi, 10.40% (11/106) in Loudima, 1 case in Mbomo (West Cuvette), which would probably be imported, zero in Liouesso and Kabo. The highest oviuria (number of eggs per volume of urine) is 150 S. haematobium eggs/10ml in Nkayi, apart from the case of imported Mbomo, imported from Gabon, which has 160 S. haematobium eggs/10ml. The lowest oviuria was 2 S. haematobium eggs/10ml. Prevalence rates are still high in semi-urban areas (Nkayi). As praziquantel treatments are available and effective, it is important to step up mass treatment campaigns in high risk areas already largely initiated by the National Schistosomiasis Control Program. Prevalence rates are still high in semi-urban areas (Nkayi). As praziquantel treatments are available and effective, it is important to step up mass treatment campaigns in high risk areas already largely initiated by the National Schistosomiasis Control Program.Keywords: Bilharzia, Schistosoma haematobium, oviuria, urbanization, Congo
Procedia PDF Downloads 154220 Development and Validation of a Rapid Turbidimetric Assay to Determine the Potency of Cefepime Hydrochloride in Powder Injectable Solution
Authors: Danilo F. Rodrigues, Hérida Regina N. Salgado
Abstract:
Introduction: The emergence of resistant microorganisms to a large number of clinically approved antimicrobials has been increasing, which restrict the options for the treatment of bacterial infections. As a strategy, drugs with high antimicrobial activities are in evidence. Stands out a class of antimicrobial, the cephalosporins, having as fourth generation cefepime (CEF) a semi-synthetic product which has activity against various Gram-positive bacteria (e.g. oxacillin resistant Staphylococcus aureus) and Gram-negative (e.g. Pseudomonas aeruginosa) aerobic. There are few studies in the literature regarding the development of microbiological methodologies for the analysis of this antimicrobial, so researches in this area are highly relevant to optimize the analysis of this drug in the industry and ensure the quality of the marketed product. The development of microbiological methods for the analysis of antimicrobials has gained strength in recent years and has been highlighted in relation to physicochemical methods, especially because they make possible to determine the bioactivity of the drug against a microorganism. In this context, the aim of this work was the development and validation of a microbiological method for quantitative analysis of CEF in powder lyophilized for injectable solution by turbidimetric assay. Method: For performing the method, Staphylococcus aureus ATCC 6538 IAL 2082 was used as the test microorganism and the culture medium chosen was the Casoy broth. The test was performed using temperature control (35.0 °C ± 2.0 °C) and incubated for 4 hours in shaker. The readings of the results were made at a wavelength of 530 nm through a spectrophotometer. The turbidimetric microbiological method was validated by determining the following parameters: linearity, precision (repeatability and intermediate precision), accuracy and robustness, according to ICH guidelines. Results and discussion: Among the parameters evaluated for method validation, the linearity showed results suitable for both statistical analyses as the correlation coefficients (r) that went 0.9990 for CEF reference standard and 0.9997 for CEF sample. The precision presented the following values 1.86% (intraday), 0.84% (interday) and 0.71% (between analyst). The accuracy of the method has been proven through the recovery test where the mean value obtained was 99.92%. The robustness was verified by the parameters changing volume of culture medium, brand of culture medium, incubation time in shaker and wavelength. The potency of CEF present in the samples of lyophilized powder for injectable solution was 102.46%. Conclusion: The turbidimetric microbiological method proposed for quantification of CEF in lyophilized powder for solution for injectable showed being fast, linear, precise, accurate and robust, being in accordance with all the requirements, which can be used in routine analysis of quality control in the pharmaceutical industry as an option for microbiological analysis.Keywords: cefepime hydrochloride, quality control, turbidimetric assay, validation
Procedia PDF Downloads 364219 Effect of Particle Size Variations on the Tribological Properties of Porcelain Waste Added Epoxy Composites
Authors: B. Yaman, G. Acikbas, N. Calis Acikbas
Abstract:
Epoxy based materials have advantages in tribological applications due to their unique properties such as light weight, self-lubrication capacity and wear resistance. On the other hand, their usage is often limited by their low load bearing capacity and low thermal conductivity values. In this study, it is aimed to improve tribological and also mechanical properties of epoxy by reinforcing with ceramic based porcelain waste. It is well-known that the reuse or recycling of waste materials leads to reduction in production costs, ease of manufacturing, saving energy, etc. From this perspective, epoxy and epoxy matrix composites containing 60wt% porcelain waste with different particle size in the range of below 90µm and 150-250µm were fabricated, and the effect of filler particle size on the mechanical and tribological properties was investigated. The microstructural characterization was carried out by scanning electron microscopy (SEM), and phase analysis was determined by X-ray diffraction (XRD). The Archimedes principle was used to measure the density and porosity of the samples. The hardness values were measured using Shore-D hardness, and bending tests were performed. Microstructural investigations indicated that porcelain particles were homogeneously distributed and no agglomerations were encountered in the epoxy resin. Mechanical test results showed that the hardness and bending strength were increased with increasing particle size related to low porosity content and well embedding to the matrix. Tribological behavior of these composites was evaluated in terms of friction, wear rates and wear mechanisms by ball-on-disk contact with dry and rotational sliding at room temperature against WC ball with a diameter of 3mm. Wear tests were carried out at room temperature (23–25°C) with a humidity of 40 ± 5% under dry-sliding conditions. The contact radius of cycles was set to 5 mm at linear speed of 30 cm/s for the geometry used in this study. In all the experiments, 3N of constant test load was applied at a frequency of 8 Hz and prolonged to 400m wear distance. The friction coefficient of samples was recorded online by the variation in the tangential force. The steady-state CoFs were changed in between 0,29-0,32. The dimensions of the wear tracks (depth and width) were measured as two-dimensional profiles by a stylus profilometer. The wear volumes were calculated by integrating these 2D surface areas over the diameter. Specific wear rates were computed by dividing the wear volume by the applied load and sliding distance. According to the experimental results, the use of porcelain waste in the fabrication of epoxy resin composites can be suggested to be potential materials due to allowing improved mechanical and tribological properties and also providing reduction in production cost.Keywords: epoxy composites, mechanical properties, porcelain waste, tribological properties
Procedia PDF Downloads 202218 Source-Detector Trajectory Optimization for Target-Based C-Arm Cone Beam Computed Tomography
Authors: S. Hatamikia, A. Biguri, H. Furtado, G. Kronreif, J. Kettenbach, W. Birkfellner
Abstract:
Nowadays, three dimensional Cone Beam CT (CBCT) has turned into a widespread clinical routine imaging modality for interventional radiology. In conventional CBCT, a circular sourcedetector trajectory is used to acquire a high number of 2D projections in order to reconstruct a 3D volume. However, the accumulated radiation dose due to the repetitive use of CBCT needed for the intraoperative procedure as well as daily pretreatment patient alignment for radiotherapy has become a concern. It is of great importance for both health care providers and patients to decrease the amount of radiation dose required for these interventional images. Thus, it is desirable to find some optimized source-detector trajectories with the reduced number of projections which could therefore lead to dose reduction. In this study we investigate some source-detector trajectories with the optimal arbitrary orientation in the way to maximize performance of the reconstructed image at particular regions of interest. To achieve this approach, we developed a box phantom consisting several small target polytetrafluoroethylene spheres at regular distances through the entire phantom. Each of these spheres serves as a target inside a particular region of interest. We use the 3D Point Spread Function (PSF) as a measure to evaluate the performance of the reconstructed image. We measured the spatial variance in terms of Full-Width-Half-Maximum (FWHM) of the local PSFs each related to a particular target. The lower value of FWHM shows the better spatial resolution of reconstruction results at the target area. One important feature of interventional radiology is that we have very well-known imaging targets as a prior knowledge of patient anatomy (e.g. preoperative CT) is usually available for interventional imaging. Therefore, we use a CT scan from the box phantom as the prior knowledge and consider that as the digital phantom in our simulations to find the optimal trajectory for a specific target. Based on the simulation phase we have the optimal trajectory which can be then applied on the device in real situation. We consider a Philips Allura FD20 Xper C-arm geometry to perform the simulations and real data acquisition. Our experimental results based on both simulation and real data show our proposed optimization scheme has the capacity to find optimized trajectories with minimal number of projections in order to localize the targets. Our results show the proposed optimized trajectories are able to localize the targets as good as a standard circular trajectory while using just 1/3 number of projections. Conclusion: We demonstrate that applying a minimal dedicated set of projections with optimized orientations is sufficient to localize targets, may minimize radiation.Keywords: CBCT, C-arm, reconstruction, trajectory optimization
Procedia PDF Downloads 136217 Hedonic Pricing Model of Parboiled Rice
Authors: Roengchai Tansuchat, Wassanai Wattanutchariya, Aree Wiboonpongse
Abstract:
Parboiled rice is one of the most important food grains and classified in cereal and cereal product. In 2015, parboiled rice was traded more than 14.34 % of total rice trade. The major parboiled rice export countries are Thailand and India, while many countries in Africa and the Middle East such as Nigeria, South Africa, United Arab Emirates, and Saudi Arabia, are parboiled rice import countries. In the global rice market, parboiled rice pricing differs from white rice pricing because parboiled rice is semi-processing product, (soaking, steaming and drying) which affects to their color and texture. Therefore, parboiled rice export pricing does not depend only on the trade volume, length of grain, and percentage of broken rice or purity but also depend on their rice seed attributes such as color, whiteness, consistency of color and whiteness, and their texture. In addition, the parboiled rice price may depend on the country of origin, and other attributes, such as certification mark, label, packaging, and sales locations. The objectives of this paper are to study the attributes of parboiled rice sold in different countries and to evaluate the relationship between parboiled rice price in different countries and their attributes by using hedonic pricing model. These results are useful for product development, and marketing strategies development. The 141 samples of parboiled rice were collected from 5 major parboiled rice consumption countries, namely Nigeria, South Africa, Saudi Arabia, United Arab Emirates and Spain. The physicochemical properties and optical properties, namely size and shape of seed, colour (L*, a*, and b*), parboiled rice texture (hardness, adhesiveness, cohesiveness, springiness, gumminess, and chewiness), nutrition (moisture, protein, carbohydrate, fat, and ash), amylose, package, country of origin, label are considered as explanatory variables. The results from parboiled rice analysis revealed that most of samples are classified as long grain and slender. The highest average whiteness value is the parboiled rice sold in South Africa. The amylose value analysis shows that most of parboiled rice is non-glutinous rice, classified in intermediate amylose content range, and the maximum value was found in United Arab Emirates. The hedonic pricing model showed that size and shape are the key factors to determine parboiled rice price statistically significant. In parts of colour, brightness value (L*) and red-green value (a*) are statistically significant, but the yellow-blue value (b*) is insignificant. In addition, the texture attributes that significantly affect to the parboiled rice price are hardness, adhesiveness, cohesiveness, and gumminess. The findings could help both parboiled rice miller, exporter and retailers formulate better production and marketing strategies by focusing on these attributes.Keywords: hedonic pricing model, optical properties, parboiled rice, physicochemical properties
Procedia PDF Downloads 335216 Sculpted Forms and Sensitive Spaces: Walking through the Underground in Naples
Authors: Chiara Barone
Abstract:
In Naples, the visible architecture is only what emerges from the underground. Caves and tunnels cross it in every direction, intertwining with each other. They are not natural caves but spaces built by removing what is superfluous in order to dig a form out of the material. Architects, as sculptors of space, do not determine the exterior, what surrounds the volume and in which the forms live, but an interior underground space, perceptive and sensitive, able to generate new emotions each time. It is an intracorporeal architecture linked to the body, not in its external relationships, but rather with what happens inside. The proposed aims to reflect on the design of underground spaces in the Neapolitan city. The idea is to intend the underground as a spectacular museum of the city, an opportunity to learn in situ the history of the place along an unpredictable itinerary that crosses the caves and, in certain points, emerges, escaping from the world of shadows. Starting form the analysis and the study of the many overlapping elements, the archaeological one, the geological layer and the contemporary city above, it is possible to develop realistic alternatives for underground itineraries. The objective is to define minor paths to ensure the continuity between the touristic flows and entire underground segments already investigated but now disconnected: open-air paths, which abyss in the earth, retracing historical and preserved fragments. The visitor, in this way, passes from real spaces to sensitive spaces, in which the imaginary replaces the real experience, running towards exciting and secret knowledge. To safeguard the complex framework of the historical-artistic values, it is essential to use a multidisciplinary methodology based on a global approach. Moreover, it is essential to refer to similar design projects for the archaeological underground, capable of guide action strategies, looking at similar conditions in other cities, where the project has led to an enhancement of the heritage in the city. The research limits the field of investigation, by choosing the historic center of Naples, applying bibliographic and theoretical research to a real place. First of all, it’s necessary to deepen the places’ knowledge understanding the potentialities of the project as a link between what is below and what is above. Starting from a scientific approach, in which theory and practice are constantly intertwined through the architectural project, the major contribution is to provide possible alternative configurations for the underground space and its relationship with the city above, understanding how the condition of transition, as passage between the below and the above becomes structuring in the design process. Starting from the consideration of the underground as both a real physical place and a sensitive place, which engages the memory, imagination, and sensitivity of a man, the research aims at identifying possible configurations and actions useful for future urban programs to make the underground a central part of the lived city, again.Keywords: underground paths, invisible ruins, imaginary, sculpted forms, sensitive spaces, Naples
Procedia PDF Downloads 111215 Hygro-Thermal Modelling of Timber Decks
Authors: Stefania Fortino, Petr Hradil, Timo Avikainen
Abstract:
Timber bridges have an excellent environmental performance, are economical, relatively easy to build and can have a long service life. However, the durability of these bridges is the main problem because of their exposure to outdoor climate conditions. The moisture content accumulated in wood for long periods, in combination with certain temperatures, may cause conditions suitable for timber decay. In addition, moisture content variations affect the structural integrity, serviceability and loading capacity of timber bridges. Therefore, the monitoring of the moisture content in wood is important for the durability of the material but also for the whole superstructure. The measurements obtained by the usual sensor-based techniques provide hygro-thermal data only in specific locations of the wood components. In this context, the monitoring can be assisted by numerical modelling to get more information on the hygro-thermal response of the bridges. This work presents a hygro-thermal model based on a multi-phase moisture transport theory to predict the distribution of moisture content, relative humidity and temperature in wood. Below the fibre saturation point, the multi-phase theory simulates three phenomena in cellular wood during moisture transfer, i.e., the diffusion of water vapour in the pores, the sorption of bound water and the diffusion of bound water in the cell walls. In the multi-phase model, the two water phases are separated, and the coupling between them is defined through a sorption rate. Furthermore, an average between the temperature-dependent adsorption and desorption isotherms is used. In previous works by some of the authors, this approach was found very suitable to study the moisture transport in uncoated and coated stress-laminated timber decks. Compared to previous works, the hygro-thermal fluxes on the external surfaces include the influence of the absorbed solar radiation during the time and consequently, the temperatures on the surfaces exposed to the sun are higher. This affects the whole hygro-thermal response of the timber component. The multi-phase model, implemented in a user subroutine of Abaqus FEM code, provides the distribution of the moisture content, the temperature and the relative humidity in a volume of the timber deck. As a case study, the hygro-thermal data in wood are collected from the ongoing monitoring of the stress-laminated timber deck of Tapiola Bridge in Finland, based on integrated humidity-temperature sensors and the numerical results are found in good agreement with the measurements. The proposed model, used to assist the monitoring, can contribute to reducing the maintenance costs of bridges, as well as the cost of instrumentation, and increase safety.Keywords: moisture content, multi-phase models, solar radiation, timber decks, FEM
Procedia PDF Downloads 178214 Iron Doping Enhanced Photocatalytic Nitrogen Fixation Performance of WO₃ with Three-Dimensionally Orderd Macroporous Structure
Authors: Xiaoling Ren, Guidong Yang
Abstract:
Ammonia, as one of the largest-volume industrial chemicals, is mostly produced by century-old Haber-Bosch process with extreme conditionsand high-cost. Under the circumstance, researchersarededicated in finding new ways to replace the Haber-Bosch process. Photocatalytic nitrogen fixation is a promising sustainable, clear and green strategy for ammonia synthesis, butit is still a big challenge due to the high activation energy for nitrogen. It is essential to develop an efficient photocatalyst for making this approach industrial application. Constructing chemisorption active sites through defect engineering can be defined as an effective and reliable means to improve nitrogen activation by forming the extraordinary coordination environment and electronic structure. Besides, the construction of three-dimensionally orderdmacroporous (3DOM) structured photocatalyst is considered to be one of effectivestrategiesto improve the activity due to it canincrease the diffusion rate of reactants in the interior, which isbeneficial to the mass transfer process of nitrogen molecules in photocatalytic nitrogen reduction. Herein, Fe doped 3DOM WO₃(Fe-3DOM WO₃) without noble metal cocatalysts is synthesized by a polystyrene-template strategy, which is firstly used for photocatalytic nitrogen fixation. To elucidate the chemical nature of the dopant, the X-ray diffraction (XRD) analysiswas conducted. The pure 3DOM WO₃ has a monoclinic type crystal structure. And no additional peak is observed in Fe doped 3DOM WO₃, indicating that the incorporation of Fe atoms did not result in a secondary phase formation. In order to confirm the morphologies of Fe-3DOM WO₃and 3DOM WO₃, scanning electron microscopy (SEM) was employed. The synthesized Fe-3DOM WO₃and 3DOM WO₃ both exhibit a highly ordered three dimensional inverse opal structure with interconnected pores. From high-resolution TEM image of Fe-3DOM WO₃, the ordered lattice fringes with a spacing of 3.84 Å can be assigned to the (001) plane of WO₃, which is consistent with the XRD results. Finally, the photocatalytic nitrogen reduction performance of 3DOM WO₃ and Fe doped 3DOM WO₃with various Fe contents were examined. As a result, both Fe-3DOM WO₃ samples achieve higher ammonia production rate than that of pure 3DOM WO₃, indicating that the doped Fe plays a critical role in the photocatalytic nitrogen fixation performance. To verify the reaction process upon N2 reduction on the Fe-3DOM WO₃, in-situ diffuse reflectance infrared Fourier-transform spectroscopy was employed to monitor the intermediates. The in-situ DRIFTS spectra of Fe-3DOM WO₃ exhibit the increased signals with the irradiation time from 0–60min in the N2 atmosphere. The above results prove that nitrogen is gradually hydrogenated to produce ammonia over Fe-3DOM WO₃. Thiswork would enrich our knowledge in designing efficient photocatalystsfor photocatalytic nitrogen reduction.Keywords: ammonia, photocatalytic, nitrogen fixation, Fe doped 3DOM WO₃
Procedia PDF Downloads 175213 Probing Mechanical Mechanism of Three-Hinge Formation on a Growing Brain: A Numerical and Experimental Study
Authors: Mir Jalil Razavi, Tianming Liu, Xianqiao Wang
Abstract:
Cortical folding, characterized by convex gyri and concave sulci, has an intrinsic relationship to the brain’s functional organization. Understanding the mechanism of the brain’s convoluted patterns can provide useful clues into normal and pathological brain function. During the development, the cerebral cortex experiences a noticeable expansion in volume and surface area accompanied by tremendous tissue folding which may be attributed to many possible factors. Despite decades of endeavors, the fundamental mechanism and key regulators of this crucial process remain incompletely understood. Therefore, to taking even a small role in unraveling of brain folding mystery, we present a mechanical model to find mechanism of 3-hinges formation in a growing brain that it has not been addressed before. A 3-hinge is defined as a gyral region where three gyral crests (hinge-lines) join. The reasons that how and why brain prefers to develop 3-hinges have not been answered very well. Therefore, we offer a theoretical and computational explanation to mechanism of 3-hinges formation in a growing brain and validate it by experimental observations. In theoretical approach, the dynamic behavior of brain tissue is examined and described with the aid of a large strain and nonlinear constitutive model. Derived constitute model is used in the computational model to define material behavior. Since the theoretical approach cannot predict the evolution of cortical complex convolution after instability, non-linear finite element models are employed to study the 3-hinges formation and secondary morphological folds of the developing brain. Three-dimensional (3D) finite element analyses on a multi-layer soft tissue model which mimics a small piece of the brain are performed to investigate the fundamental mechanism of consistent hinge formation in the cortical folding. Results show that after certain amount growth of cortex, mechanical model starts to be unstable and then by formation of creases enters to a new configuration with lower strain energy. By further growth of the model, formed shallow creases start to form convoluted patterns and then develop 3-hinge patterns. Simulation results related to 3-hinges in models show good agreement with experimental observations from macaque, chimpanzee and human brain images. These results have great potential to reveal fundamental principles of brain architecture and to produce a unified theoretical framework that convincingly explains the intrinsic relationship between cortical folding and 3-hinges formation. This achieved fundamental understanding of the intrinsic relationship between cortical folding and 3-hinges formation would potentially shed new insights into the diagnosis of many brain disorders such as schizophrenia, autism, lissencephaly and polymicrogyria.Keywords: brain, cortical folding, finite element, three hinge
Procedia PDF Downloads 241212 Effects of Prescribed Surface Perturbation on NACA 0012 at Low Reynolds Number
Authors: Diego F. Camacho, Cristian J. Mejia, Carlos Duque-Daza
Abstract:
The recent widespread use of Unmanned Aerial Vehicles (UAVs) has fueled a renewed interest in efficiency and performance of airfoils, particularly for applications at low and moderate Reynolds numbers, typical of this kind of vehicles. Most of previous efforts in the aeronautical industry, regarding aerodynamic efficiency, had been focused on high Reynolds numbers applications, typical of commercial airliners and large size aircrafts. However, in order to increase the levels of efficiency and to boost the performance of these UAV, it is necessary to explore new alternatives in terms of airfoil design and application of drag reduction techniques. The objective of the present work is to carry out the analysis and comparison of performance levels between a standard NACA0012 profile against another one featuring a wall protuberance or surface perturbation. A computational model, based on the finite volume method, is employed to evaluate the effect of the presence of geometrical distortions on the wall. The performance evaluation is achieved in terms of variations of drag and lift coefficients for the given profile. In particular, the aerodynamic performance of the new design, i.e. the airfoil with a surface perturbation, is examined under conditions of incompressible and subsonic flow in transient state. The perturbation considered is a shaped protrusion prescribed as a small surface deformation on the top wall of the aerodynamic profile. The ultimate goal by including such a controlled smooth artificial roughness was to alter the turbulent boundary layer. It is shown in the present work that such a modification has a dramatic impact on the aerodynamic characteristics of the airfoil, and if properly adjusted, in a positive way. The computational model was implemented using the unstructured, FVM-based open source C++ platform OpenFOAM. A number of numerical experiments were carried out at Reynolds number 5x104, based on the length of the chord and the free-stream velocity, and angles of attack 6° and 12°. A Large Eddy Simulation (LES) approach was used, together with the dynamic Smagorinsky approach as subgrid scale (SGS) model, in order to account for the effect of the small turbulent scales. The impact of the surface perturbation on the performance of the airfoil is judged in terms of changes in the drag and lift coefficients, as well as in terms of alterations of the main characteristics of the turbulent boundary layer on the upper wall. A dramatic change in the whole performance can be appreciated, including an arguably large level of lift-to-drag coefficient ratio increase for all angles and a size reduction of laminar separation bubble (LSB) for a twelve-angle-of-attack.Keywords: CFD, LES, Lift-to-drag ratio, LSB, NACA 0012 airfoil
Procedia PDF Downloads 392211 Impact of Sunflower Oil Supplemented Diet on Performance and Hematological Stress Indicators of Growing-Finishing Pigs Exposed to Hot Environment
Authors: Angela Cristina Da F. De Oliveira, Salma E. Asmar, Norbert P. Battlori, Yaz Vera, Uriel R. Valencia, Tâmara Duarte Borges, Antoni D. Bueno, Leandro Batista Costa
Abstract:
As homeothermic animals, pigs manifest maximum performance when kept at comfortable temperature levels, represented by a limit where thermoregulatory processes are minimal (18 - 20°C). In a stress situation where it will have a higher energy demand for thermal maintenance, the energy contribution to the productive functions will be reduced, generating health imbalances, drop in productive rates and welfare problems. The hypothesis of this project is that 5% starch replacement per 5% sunflower oil (SO), in growing and finishing pig’s diet (Iberic x Duroc), is effective as a nutritional strategy to reduce the negative impacts of thermal stress on performance and animal welfare. Seventy-two crossbred males (51± 6,29 kg body weight- BW) were housed according to the initial BW, in climate-controlled rooms, in collective pens, and exposed to heat stress conditions (30 - 32°C; 35% to 50% humidity). The experiment lasted 90 days, and it was carried out in a randomized block design, in a 2 x 2 factorial, composed of two diets (starch or sunflower oil (with or without) and two feed intake management (ad libitum and restriction). The treatments studied were: 1) control diet (5% starch x 0% SO) with ad libitum intake (n = 18); 2) SO diet (replacement of 5% of starch per 5% SO) with ad libitum intake (n = 18); 3) control diet with restriction feed intake (n = 18); or 4) SO diet with restriction feed intake (n = 18). Feed was provided in two phases, 50–100 Kg BW for growing and 100-140 Kg BW for finishing period, respectively. Hematological, biochemical and growth performance parameters were evaluated on all animals at the beginning of the environmental treatment, on the transition of feed (growing to finishing) and in the final of experiment. After the experimental period, when animals reached a live weight of 130-140 kg, they were slaughtered by carbon dioxide (CO2) stunning. Data have shown for the growing phase no statistical interaction between diet (control x SO) and management feed intake (ad libitum x restriction) on animal performance. At finishing phase, pigs fed with SO diet with restriction feed intake had the same average daily gain (ADG) compared with pigs in control diet with ad libitum feed intake. Furthermore, animals fed with the same diet (SO), presented a better feed gain (p < 0,05) due to feed intake reduce (p < 0,05) when compared with control group. To hematological and biochemical parameters, animals under heat stress had an increase in hematocrit, corpuscular volume, urea concentration, creatinine, calcium, alanine aminotransferase and aspartate aminotransferase (p < 0,05) when compared with the beginning of experiment. These parameters were efficient to characterize the heat stress, although the experimental treatments were not able to reduce the hematological and biochemical stress indicators. In addition, the inclusion of SO on pig diets improve feed gain in pigs at finishing phase, even with restriction feed intake.Keywords: hematological, performance, pigs, welfare
Procedia PDF Downloads 284210 Study of Isoprene Emissions in Biogenic ad Anthropogenic Environment in Urban Atmosphere of Delhi: The Capital City of India
Authors: Prabhat Kashyap, Krishan Kumar
Abstract:
Delhi, the capital of India, is one of the most populated and polluted city among the world. In terms of air quality, Delhi’s air is degrading day by day & becomes worst of any major city in the world. The role of biogenic volatile organic compounds (BVOCs) is not much studied in cities like Delhi as a culprit for degraded air quality. They not only play a critical role in rural areas but also determine the atmospheric chemistry of urban areas as well. Particularly, Isoprene (2-methyl 1,3-butadiene, C5H8) is the single largest emitted compound among other BVOCs globally, that influence the tropospheric ozone chemistry in urban environment as the ozone forming potential of isoprene is very high. It is mainly emitted by vegetation & a small but significant portion is also released by vehicular exhaust of petrol operated vehicles. This study investigates the spatial and temporal variations of quantitative measurements of isoprene emissions along with different traffic tracers in 2 different seasons (post-monsoon & winter) at four different locations of Delhi. For the quantification of anthropogenic and biogenic isoprene, two sites from traffic intersections (Punjabi Bagh & CRRI) and two sites from vegetative locations (JNU & Yamuna Biodiversity Park) were selected in the vicinity of isoprene emitting tree species like Ficus religiosa, Dalbergia sissoo, Eucalyptus species etc. The concentrations of traffic tracers like benzene, toluene were also determined & their robust ratios with isoprene were used to differentiate anthropogenic isoprene with biogenic portion at each site. The ozone forming potential (OFP) of all selected species along with isoprene was also estimated. For collection of intra-day samples (3 times a day) in each season, a pre-conditioned fenceline monitoring (FLM) carbopack X thermal desorption tubes were used and further analysis was done with Gas chromatography attached with mass spectrometry (GC-MS). The results of the study proposed that the ambient air isoprene is always higher in post-monsoon season as compared to winter season at all the sites because of high temperature & intense sunlight. The maximum isoprene emission flux was always observed during afternoon hours in both seasons at all sites. The maximum isoprene concentration was found to be 13.95 ppbv at Biodiversity Park during afternoon time in post monsoon season while the lower concentration was observed as low as 0.07 ppbv at the same location during morning hours in winter season. OFP of isoprene at vegetation sites is very high during post-monsoon because of high concentrations. However, OFP for other traffic tracers were high during winter seasons & at traffic locations. Furthermore, high correlation between isoprene emissions with traffic volume at traffic sites revealed that a noteworthy share of its emission also originates from road traffic.Keywords: biogenic VOCs, isoprene emission, anthropogenic isoprene, urban vegetation
Procedia PDF Downloads 119209 Green Extraction Technologies of Flavonoids Containing Pharmaceuticals
Authors: Lamzira Ebralidze, Aleksandre Tsertsvadze, Dali Berashvili, Aliosha Bakuridze
Abstract:
Nowadays, there is an increasing demand for biologically active substances from vegetable, animal, and mineral resources. In terms of the use of natural compounds, pharmaceutical, cosmetic, and nutrition industry has big interest. The biggest drawback of conventional extraction methods is the need to use a large volume of organic extragents. The removal of the organic solvent is a multi-stage process. And their absolute removal cannot be achieved, and they still appear in the final product as impurities. A large amount of waste containing organic solvent damages not only human health but also has the harmful effects of the environment. Accordingly, researchers are focused on improving the extraction methods, which aims to minimize the use of organic solvents and energy sources, using alternate solvents and renewable raw materials. In this context, green extraction principles were formed. Green Extraction is a need of today’s environment. Green Extraction is the concept, and it totally corresponds to the challenges of the 21st century. The extraction of biologically active compounds based on green extraction principles is vital from the view of preservation and maintaining biodiversity. Novel technologies of green extraction are known, such as "cold methods" because during the extraction process, the temperature is relatively lower, and it doesn’t have a negative impact on the stability of plant compounds. Novel technologies provide great opportunities to reduce or replace the use of organic toxic solvents, the efficiency of the process, enhance excretion yield, and improve the quality of the final product. The objective of the research is the development of green technologies of flavonoids containing preparations. Methodology: At the first stage of the research, flavonoids containing preparations (Tincture Herba Leonuri, flamine, rutine) were prepared based on conventional extraction methods: maceration, bismaceration, percolation, repercolation. At the same time, the same preparations were prepared based on green technologies, microwave-assisted, UV extraction methods. Product quality characteristics were evaluated by pharmacopeia methods. At the next stage of the research technological - economic characteristics and cost efficiency of products prepared based on conventional and novel technologies were determined. For the extraction of flavonoids, water is used as extragent. Surface-active substances are used as co-solvent in order to reduce surface tension, which significantly increases the solubility of polyphenols in water. Different concentrations of water-glycerol mixture, cyclodextrin, ionic solvent were used for the extraction process. In vitro antioxidant activity will be studied by the spectrophotometric method, using DPPH (2,2-diphenyl-1- picrylhydrazyl) as an antioxidant assay. The advantage of green extraction methods is also the possibility of obtaining higher yield in case of low temperature, limitation extraction process of undesirable compounds. That is especially important for the extraction of thermosensitive compounds and maintaining their stability.Keywords: extraction, green technologies, natural resources, flavonoids
Procedia PDF Downloads 133208 Association of Ovine Lymphocyte Antigen (OLA) with the Parasitic Infestation in Kashmiri Sheep Breeds
Authors: S. A. Bhat, Ahmad Arif, Muneeb U. Rehman, Manzoor R Mir, S. Bilal, Ishraq Hussain, H. M Khan, S. Shanaz, M. I Mir, Sabhiya Majid
Abstract:
Background: Geologically Climatic conditions of the state range from sub-tropical (Jammu), temperate (Kashmir) to cold artic (Ladakh) zones, which exerts significant influence on its agro-climatic conditions. Gastrointestinal parasitism is a major problem in sheep production worldwide. Materials and Methods: The present study was to evaluate the resistance status of sheep breeds reared in Kashmir Valley for natural resistance against Haemonchus contortus by natural pasture challenge infection. Ten microsatellite markers were used in the study for evaluation of association of Ovar-MHC with parasitic resistance in association with biochemical and parasitological parameters. Following deworming, 500 animals were subjected to selected contaminated pastures in a vicinity of the livestock farms of SKUAST-K and Sheep Husbandry Kashmir. For each animal about 10-15 ml blood was collected aseptically for molecular and biochemical analysis. Weekly fecal samples (3g) were taken, directly from the rectum of all experimental animals and examined for Fecal egg count (FEC) with modified McMaster technique. Packed cell volume (PCV) was determined within 2-5 h of blood collection, all the biochemical parameters were determined in serum by semi automated analyzer. DNA was extracted from all the blood samples with phenol-chloroform method. Microsatellite analysis was done by denaturing sequencing gel electrophoresis Results: Overall sheep from Bakerwal breed followed by Corriediale breed performed relatively better in the trial; however difference between breeds remained low. Both significant (P<0.05) and non-significant differences with respect to resistance against haemonchosis were noted at different intervals in all the parameters.. All the animals were typed for the microsatellites INRA132, OarCP73, DRB1 (U0022), OLA-DQA2, BM1818, TFAP2A, HH56, BM1815, IL-3 and BM-1258. An association study including the effect of FEC, PCV, TSP, SA, LW, and the number of alleles within each marker was done. All microsatellite markers showed degree of heterozygosity of 0.72, 0.72, 0.75, 0.62, 0.84, 0.69, 0.66, 0.65, 0.73 and 0.68 respectively. Significant association between alleles and the parameters measured were only found for the OarCP73, OLA-DQA2 and BM1815 microsatellite marker. Standard alleles of the above markers showed significant effect on the TP, SA and body weight. The three sheep breeds included in the study responded differently to the nematode infection, which may be attributed to their differences in their natural resistance against nematodes. Conclusion: Our data confirms that some markers (OarCP73, OLA-DQA2 and BM1815) within Ovar-MHC are associated with phenotypic parameters of resistance and suggest superiority of Bakerwal sheep breed in natural resistance against Haemonchus contortus.Keywords: Ovar-Mhc, ovine leukocyte antigen (OLA), sheep, parasitic resistance, Haemonchus contortus, phenotypic & genotypic markers
Procedia PDF Downloads 717207 Treatment of Onshore Petroleum Drill Cuttings via Soil Washing Process: Characterization and Optimal Conditions
Authors: T. Poyai, P. Painmanakul, N. Chawaloesphonsiya, P. Dhanasin, C. Getwech, P. Wattana
Abstract:
Drilling is a key activity in oil and gas exploration and production. Drilling always requires the use of drilling mud for lubricating the drill bit and controlling the subsurface pressure. As drilling proceeds, a considerable amount of cuttings or rock fragments is generated. In general, water or Water Based Mud (WBM) serves as drilling fluid for the top hole section. The cuttings generated from this section is non-hazardous and normally applied as fill materials. On the other hand, drilling the bottom hole to reservoir section uses Synthetic Based Mud (SBM) of which synthetic oils are composed. The bottom-hole cuttings, SBM cuttings, is regarded as a hazardous waste, in accordance with the government regulations, due to the presence of hydrocarbons. Currently, the SBM cuttings are disposed of as an alternative fuel and raw material in cement kiln. Instead of burning, this work aims to propose an alternative for drill cuttings management under two ultimate goals: (1) reduction of hazardous waste volume; and (2) making use of the cleaned cuttings. Soil washing was selected as the major treatment process. The physiochemical properties of drill cuttings were analyzed, such as size fraction, pH, moisture content, and hydrocarbons. The particle size of cuttings was analyzed via light scattering method. Oil present in cuttings was quantified in terms of total petroleum hydrocarbon (TPH) through gas chromatography equipped with flame ionization detector (GC-FID). Other components were measured by the standard methods for soil analysis. Effects of different washing agents, liquid-to-solid (L/S) ratio, washing time, mixing speed, rinse-to-solid (R/S) ratio, and rinsing time were also evaluated. It was found that drill cuttings held the electrical conductivity of 3.84 dS/m, pH of 9.1, and moisture content of 7.5%. The TPH in cuttings existed in the diesel range with the concentration ranging from 20,000 to 30,000 mg/kg dry cuttings. A majority of cuttings particles held a mean diameter of 50 µm, which represented silt fraction. The results also suggested that a green solvent was considered most promising for cuttings treatment regarding occupational health, safety, and environmental benefits. The optimal washing conditions were obtained at L/S of 5, washing time of 15 min, mixing speed of 60 rpm, R/S of 10, and rinsing time of 1 min. After washing process, three fractions including clean cuttings, spent solvent, and wastewater were considered and provided with recommendations. The residual TPH less than 5,000 mg/kg was detected in clean cuttings. The treated cuttings can be then used for various purposes. The spent solvent held the calorific value of higher than 3,000 cal/g, which can be used as an alternative fuel. Otherwise, the recovery of the used solvent can be conducted using distillation or chromatography techniques. Finally, the generated wastewater can be combined with the produced water and simultaneously managed by re-injection into the reservoir.Keywords: drill cuttings, green solvent, soil washing, total petroleum hydrocarbon (TPH)
Procedia PDF Downloads 159206 The Impact Of Türki̇ye’s Decision-making Mechanism On The Transformation In Türkiye-syria Relations (2002-2024)
Authors: Ibrahim Akkan
Abstract:
This study analyses the transformation of Türkiye's Syria policy between 2002 and 2024 and the impact of domestic political dynamics in this process. Since the collapse of the Ottoman Empire, Türkiye and Syria have had a tense relationship for a long time due to reasons such as border issues, water sharing, security concerns and the activities of terrorist organizations. However, the process that started with the Adana Agreement in 1998 gained momentum with the Justice and Development Party (Ak Party) coming to power in 2002 and a historical period of rapprochement began between the two countries. During this period, Türkiye adopted the concept of “zero problems with neighbors” in its foreign policy and deepened its strategic partnerships in the region. Turkish-Syrian relations also developed within this framework, the trade volume between the two countries increased and cooperation was strengthened through mutual visits and diplomatic agreements. However, the Arab Spring that started in 2011 was a sharp turning point in Turkish-Syrian relations. The harsh stance of the Bashar Assad administration against the popular uprisings in Syria caused Türkiye to take a stance against Assad and support opposition groups. This process led to the severing of diplomatic ties between the two countries and the gradual deterioration of relations until 2024. Türkiye directly intervened in the civil war in Syria after the Arab Spring and conducted military operations in northern Syria that highlighted security policies. The main purpose of this study is to examine the transformation in Türkiye's Syria policies between 2002 and 2024 and to analyze the role of domestic political dynamics in Türkiye in this transformation. The main research question of the study is how domestic political actors in Türkiye, especially decision-makers (leaders, governments, political parties), shape foreign policy. In this context, the extent to which the leadership of the Ak Party government is decisive in decision-making processes and how the impact of domestic dynamics on foreign policy emerges will be studied. In this study, how both the pressures of the international system and domestic political dynamics shape foreign policy will be analyzed using the theoretical framework of neoclassical realism. How decision-making processes are decisive in foreign policy will be examined through a case study specific to Türkiye-Syria relations. In addition, the strategic preferences of leaders such as Recep Tayyip Erdoğan and Ahmet Davutoğlu in foreign policy and how these preferences overlap with developments in domestic politics will be evaluated using the discourse analysis method. This study aims to make a new contribution to the literature by providing a comprehensive analysis of how domestic dynamics shape foreign policy in Türkiye-Syria relations.Keywords: decision-making mechanisms, foreign policy analysis, neoclassical realism, syria, türkiye
Procedia PDF Downloads 18205 Study of Elastic-Plastic Fatigue Crack in Functionally Graded Materials
Authors: Somnath Bhattacharya, Kamal Sharma, Vaibhav Sonkar
Abstract:
Composite materials emerged in the middle of the 20th century as a promising class of engineering materials providing new prospects for modern technology. Recently, a new class of composite materials known as functionally graded materials (FGMs) has drawn considerable attention of the scientific community. In general, FGMs are defined as composite materials in which the composition or microstructure or both are locally varied so that a certain variation of the local material properties is achieved. This gradual change in composition and microstructure of material is suitable to get gradient of properties and performances. FGMs are synthesized in such a way that they possess continuous spatial variations in volume fractions of their constituents to yield a predetermined composition. These variations lead to the formation of a non-homogeneous macrostructure with continuously varying mechanical and / or thermal properties in one or more than one direction. Lightweight functionally graded composites with high strength to weight and stiffness to weight ratios have been used successfully in aircraft industry and other engineering applications like in electronics industry and in thermal barrier coatings. In the present work, elastic-plastic crack growth problems (using Ramberg-Osgood Model) in an FGM plate under cyclic load has been explored by extended finite element method. Both edge and centre crack problems have been solved by taking additionally holes, inclusions and minor cracks under plane stress conditions. Both soft and hard inclusions have been implemented in the problems. The validity of linear elastic fracture mechanics theory is limited to the brittle materials. A rectangular plate of functionally graded material of length 100 mm and height 200 mm with 100% copper-nickel alloy on left side and 100% ceramic (alumina) on right side is considered in the problem. Exponential gradation in property is imparted in x-direction. A uniform traction of 100 MPa is applied to the top edge of the rectangular domain along y direction. In some problems, domain contains major crack along with minor cracks or / and holes or / and inclusions. Major crack is located the centre of the left edge or the centre of the domain. The discontinuities, such as minor cracks, holes, and inclusions are added either singly or in combination with each other. On the basis of this study, it is found that effect of minor crack in the domain’s failure crack length is minimum whereas soft inclusions have moderate effect and the effect of holes have maximum effect. It is observed that the crack growth is more before the failure in each case when hard inclusions are present in place of soft inclusions.Keywords: elastic-plastic, fatigue crack, functionally graded materials, extended finite element method (XFEM)
Procedia PDF Downloads 393204 Potential of Aerodynamic Feature on Monitoring Multilayer Rough Surfaces
Authors: Ibtissem Hosni, Lilia Bennaceur Farah, Saber Mohamed Naceur
Abstract:
In order to assess the water availability in the soil, it is crucial to have information about soil distributed moisture content; this parameter helps to understand the effect of humidity on the exchange between soil, plant cover and atmosphere in addition to fully understanding the surface processes and the hydrological cycle. On the other hand, aerodynamic roughness length is a surface parameter that scales the vertical profile of the horizontal component of the wind speed and characterizes the surface ability to absorb the momentum of the airflow. In numerous applications of the surface hydrology and meteorology, aerodynamic roughness length is an important parameter for estimating momentum, heat and mass exchange between the soil surface and atmosphere. It is important on this side, to consider the atmosphere factors impact in general, and the natural erosion in particular, in the process of soil evolution and its characterization and prediction of its physical parameters. The study of the induced movements by the wind over soil vegetated surface, either spaced plants or plant cover, is motivated by significant research efforts in agronomy and biology. The known major problem in this side concerns crop damage by wind, which presents a booming field of research. Obviously, most models of soil surface require information about the aerodynamic roughness length and its temporal and spatial variability. We have used a bi-dimensional multi-scale (2D MLS) roughness description where the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each one having a spatial scale using the wavelet transform and the Mallat algorithm to describe natural surface roughness. We have introduced multi-layer aspect of the humidity of the soil surface, to take into account a volume component in the problem of backscattering radar signal. As humidity increases, the dielectric constant of the soil-water mixture increases and this change is detected by microwave sensors. Nevertheless, many existing models in the field of radar imagery, cannot be applied directly on areas covered with vegetation due to the vegetation backscattering. Thus, the radar response corresponds to the combined signature of the vegetation layer and the layer of soil surface. Therefore, the key issue of the numerical estimation of soil moisture is to separate the two contributions and calculate both scattering behaviors of the two layers by defining the scattering of the vegetation and the soil blow. This paper presents a synergistic methodology, and it is for estimating roughness and soil moisture from C-band radar measurements. The methodology adequately represents a microwave/optical model which has been used to calculate the scattering behavior of the aerodynamic vegetation-covered area by defining the scattering of the vegetation and the soil below.Keywords: aerodynamic, bi-dimensional, vegetation, synergistic
Procedia PDF Downloads 272203 Regularizing Software for Aerosol Particles
Authors: Christine Böckmann, Julia Rosemann
Abstract:
We present an inversion algorithm that is used in the European Aerosol Lidar Network for the inversion of data collected with multi-wavelength Raman lidar. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. The algorithm is based on manually controlled inversion of optical data which allows for detailed sensitivity studies and thus provides us with comparably high quality of the derived data products. The algorithm allows us to derive particle effective radius, volume, surface-area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light-absorption needs to be known with high accuracy. Single-scattering albedo (SSA) can be computed from the retrieve microphysical parameters and allows us to categorize aerosols into high and low absorbing aerosols. From mathematical point of view the algorithm is based on the concept of using truncated singular value decomposition as regularization method. This method was adapted to work for the retrieval of the particle size distribution function (PSD) and is called hybrid regularization technique since it is using a triple of regularization parameters. The inversion of an ill-posed problem, such as the retrieval of the PSD, is always a challenging task because very small measurement errors will be amplified most often hugely during the solution process unless an appropriate regularization method is used. Even using a regularization method is difficult since appropriate regularization parameters have to be determined. Therefore, in a next stage of our work we decided to use two regularization techniques in parallel for comparison purpose. The second method is an iterative regularization method based on Pade iteration. Here, the number of iteration steps serves as the regularization parameter. We successfully developed a semi-automated software for spherical particles which is able to run even on a parallel processor machine. From a mathematical point of view, it is also very important (as selection criteria for an appropriate regularization method) to investigate the degree of ill-posedness of the problem which we found is a moderate ill-posedness. We computed the optical data from mono-modal logarithmic PSD and investigated particles of spherical shape in our simulations. We considered particle radii as large as 6 nm which does not only cover the size range of particles in the fine-mode fraction of naturally occurring PSD but also covers a part of the coarse-mode fraction of PSD. We considered errors of 15% in the simulation studies. For the SSA, 100% of all cases achieve relative errors below 12%. In more detail, 87% of all cases for 355 nm and 88% of all cases for 532 nm are well below 6%. With respect to the absolute error for non- and weak-absorbing particles with real parts 1.5 and 1.6 in all modes the accuracy limit +/- 0.03 is achieved. In sum, 70% of all cases stay below +/-0.03 which is sufficient for climate change studies.Keywords: aerosol particles, inverse problem, microphysical particle properties, regularization
Procedia PDF Downloads 345202 HyDUS Project; Seeking a Wonder Material for Hydrogen Storage
Authors: Monica Jong, Antonios Banos, Tom Scott, Chris Webster, David Fletcher
Abstract:
Hydrogen, as a clean alternative to methane, is relatively easy to make, either from water using electrolysis or from methane using steam reformation. However, hydrogen is much trickier to store than methane, and without effective storage, it simply won’t pass muster as a suitable methane substitute. Physical storage of hydrogen is quite inefficient. Storing hydrogen as a compressed gas at pressures up to 900 times atmospheric is volumetrically inefficient and carries safety implications, whilst storing it as a liquid requires costly and constant cryogenic cooling to minus 253°C. This is where DU steps in as a possible solution. Across the periodic table, there are many different metallic elements that will react with hydrogen to form a chemical compound known as a hydride (or metal hydride). From a chemical perspective, the ‘king’ of the hydride forming metals is palladium because it offers the highest hydrogen storage volumetric capacity. However, this material is simply too expensive and scarce to be used in a scaled-up bulk hydrogen storage solution. Depleted Uranium is the second most volumetrically efficient hydride-forming metal after palladium. The UK has accrued a significant amount of DU because of manufacturing nuclear fuel for many decades, and that is currently without real commercial use. Uranium trihydride (UH3) contains three hydrogen atoms for every uranium atom and can chemically store hydrogen at ambient pressure and temperature at more than twice the density of pure liquid hydrogen for the same volume. To release the hydrogen from the hydride, all you do is heat it up. At temperatures above 250°C, the hydride starts to thermally decompose, releasing hydrogen as a gas and leaving the Uranium as a metal again. The reversible nature of this reaction allows the hydride to be formed and unformed again and again, enabling its use as a high-density hydrogen storage material which is already available in large quantities because of its stockpiling as a ‘waste’ by-product. Whilst the tritium storage credentials of Uranium have been rigorously proven at the laboratory scale and at the fusion demonstrator JET for over 30 years, there is a need to prove the concept for depleted uranium hydrogen storage (HyDUS) at scales towards that which is needed to flexibly supply our national power grid with energy. This is exactly the purpose of the HyDUS project, a collaborative venture involving EDF as the interested energy vendor, Urenco as the owner of the waste DU, and the University of Bristol with the UKAEA as the architects of the technology. The team will embark on building and proving the world’s first pilot scale demonstrator of bulk chemical hydrogen storage using depleted Uranium. Within 24 months, the team will attempt to prove both the technical and commercial viability of this technology as a longer duration energy storage solution for the UK. The HyDUS project seeks to enable a true by-product to wonder material story for depleted Uranium, demonstrating that we can think sustainably about unlocking the potential value trapped inside nuclear waste materials.Keywords: hydrogen, long duration storage, storage, depleted uranium, HyDUS
Procedia PDF Downloads 166