Search results for: capillary effect model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28659

Search results for: capillary effect model

25059 Prediction of Oil Recovery Factor Using Artificial Neural Network

Authors: O. P. Oladipo, O. A. Falode

Abstract:

The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.

Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger

Procedia PDF Downloads 441
25058 Effect of Spirulina Supplementation on Growth Performance and Body Conformation of Two Omani Goat Breeds

Authors: Fahad Al Yahyaey, Ihab Shaat, Russell Bush

Abstract:

This study was conducted at the Livestock Research Centre, Ministry of Agriculture and Fisheries, Oman, on two local goat breeds (Jabbali and Sahrawi) due to their importance to Omani livestock production and food security. The Jabbali is characterized by increased growth rates and a higher twinning rate, while the Sahrawi has increased milk production. The aim of the study was to investigate the effect of Spirulina supplementation on live weight (BWT), average daily gain (ADG), and body conformation measurements; chest girth (CG), wither height (WH), body length (BL), and body condition score (BCS). Thirty-six males (approximately nine-months-old and 16.44 ± 0.33 kg average of initial body weight) were used across an eleven-week study from November–February 2019-2020. Each breed was divided into three groups (n = 6/group) and fed one of three rations: (1) concentrate mixture (Control) with crude protein 14% and energy 11.97% MJ/kg DM; (2) the same concentrate feed with the addition of 2 gm /capita daily Spirulina platensis (Treatment 1) and (3) the same concentrate feed with the addition of 4 gm /capita daily Spirulina platensis (Treatment 2). Analysis of weekly data collections for all traits indicated a significant effect of feeding Spirulina on all the studied traits except WH and BL. Analysis of variance for fixed effects in this study (damage and kid birth type i.e., single, twin or triple) were not significant for all studied traits. However, the breed effect was highly significant (P < 0.001) on BWT, ADG, BCS, and CG traits. On the other hand, when the analysis was done for the treatment effect within breeds for ADG, the Sahrawi breed had a significant effect (P < 0.05) at 56.52, 85.51, and 85.50 g/day for control, treatment 1 and treatment 2, respectively. This is a 51% difference between the control and treatment 1 (2 gm /capita). Whereas for the Jabbali breed, the treatment effect was not significant for ADG (P =0.55), and the actual ADG was 104.59, 118.84, and 114.25 g/day for control, treatment 1, and treatment 2, respectively, providing a 14% difference between the control group and the treated group (4 gm /capita). These findings indicate using Spirulina supplementation in Omani goat diets is recommended at 2 gm per capita as there was no benefit in feeding at 4 gm per capita for either breed. Farmers feeding Spirulina supplementation to kids after weaning at six-months could increase their herd performance and growth rate and facilitate buck selection at an earlier age.

Keywords: body conformation, goats, live weight, spirulina

Procedia PDF Downloads 112
25057 Construction of Submerged Aquatic Vegetation Index through Global Sensitivity Analysis of Radiative Transfer Model

Authors: Guanhua Zhou, Zhongqi Ma

Abstract:

Submerged aquatic vegetation (SAV) in wetlands can absorb nitrogen and phosphorus effectively to prevent the eutrophication of water. It is feasible to monitor the distribution of SAV through remote sensing, but for the reason of weak vegetation signals affected by water body, traditional terrestrial vegetation indices are not applicable. This paper aims at constructing SAV index to enhance the vegetation signals and distinguish SAV from water body. The methodology is as follows: (1) select the bands sensitive to the vegetation parameters based on global sensitivity analysis of SAV canopy radiative transfer model; (2) take the soil line concept as reference, analyze the distribution of SAV and water reflectance simulated by SAV canopy model and semi-analytical water model in the two-dimensional space built by different sensitive bands; (3)select the band combinations which have better separation performance between SAV and water, and use them to build the SAVI indices in the form of normalized difference vegetation index(NDVI); (4)analyze the sensitivity of indices to the water and vegetation parameters, choose the one more sensitive to vegetation parameters. It is proved that index formed of the bands with central wavelengths in 705nm and 842nm has high sensitivity to chlorophyll content in leaves while it is less affected by water constituents. The model simulation shows a general negative, little correlation of SAV index with increasing water depth. Moreover, the index enhances capabilities in separating SAV from water compared to NDVI. The SAV index is expected to have potential in parameter inversion of wetland remote sensing.

Keywords: global sensitivity analysis, radiative transfer model, submerged aquatic vegetation, vegetation indices

Procedia PDF Downloads 262
25056 Empirical Modeling of Air Dried Rubberwood Drying System

Authors: S. Khamtree, T. Ratanawilai, C. Nuntadusit

Abstract:

Rubberwood is a crucial commercial timber in Southern Thailand. All processes in a rubberwood production depend on the knowledge and expertise of the technicians, especially the drying process. This research aims to develop an empirical model for drying kinetics in rubberwood. During the experiment, the temperature of the hot air and the average air flow velocity were kept at 80-100 °C and 1.75 m/s, respectively. The moisture content in the samples was determined less than 12% in the achievement of drying basis. The drying kinetic was simulated using an empirical solver. The experimental results illustrated that the moisture content was reduced whereas the drying temperature and time were increased. The coefficient of the moisture ratio between the empirical and the experimental model was tested with three statistical parameters, R-square (), Root Mean Square Error (RMSE) and Chi-square (χ²) to predict the accuracy of the parameters. The experimental moisture ratio had a good fit with the empirical model. Additionally, the results indicated that the drying of rubberwood using the Henderson and Pabis model revealed the suitable level of agreement. The result presented an excellent estimation (= 0.9963) for the moisture movement compared to the other models. Therefore, the empirical results were valid and can be implemented in the future experiments.

Keywords: empirical models, rubberwood, moisture ratio, hot air drying

Procedia PDF Downloads 267
25055 Prophylactic Effect of Dietary Garlic (Allium sativum) Inclusion in Feed of Commercial Broilers with Coccidiosis Raised at the Experimental Animal Unit of the Department of Veterinary Medicine, University of Ibadan, Oyo State, Nigeria

Authors: Ogunlesi Olufunso, John Ogunsola, Omolade Oladele, Benjamin Emikpe

Abstract:

Context: Coccidiosis is a parasitic disease that affects poultry production, leading to economic losses. Garlic is known for medicinal properties and has been used as a natural remedy for various diseases. This study aims to investigate the prophylactic effect of garlic inclusion in the feed of commercial broilers with coccidiosis. Research Aim: The aim of this study is to determine the possible effect of garlic meal inclusion in poultry feed on the body weight gain of commercial broilers and to investigate it's therapeutic effect on broilers with coccidiosis. Methodology: The study conducted a case-control study for eight weeks with One hundred Arbor acre commercial broilers separated into five (5) groups from day-old, where 6,000 Eimeria oocysts were orally inoculated into each broiler in the different groups. Feed intake, body weight gain, feed conversion ratio, oocyt shedding rate, histopathology and erythrocyte indices were assessed. Findings: The inclusion of garlic meal in the broilers' diet resulted in an improved feed conversion ratio, decreased oocyst counts, reduced diarrhoeic fecal spots, decreased susceptibility to coccidial infection, and increased packed cell volume (PCV). Theoretical Importance: This study contributes to the understanding of the prophylactic effect of garlic supplementation, including its antiparasitic properties on commercial broilers with coccidiosis. It highlights the potential use of non-conventional feed additives or ayurvedic herb and spices in the treatment of poultry diseases. Data Collection and Analysis Procedures: The study collected data on feed intake, body weight gain, oocyst shedding rate, histopathological observations, and erythrocyte indices. Data were analyzed using Analysis of Variance and Duncan's Multiple range Test. Questions Addressed: The study addressed the possible effect of garlic meal inclusion in poultry feed on the body weight gain of broilers and its therapeutic effect on broilers with coccidiosis. Conclusion: The study concludes that garlic inclusion in the feed of broilers has a prophylactic effect, including antiparasitic properties, resulting in improved feed conversion ratio, reduced oocyst counts and increased PCV.

Keywords: broilers, eimeria spp, garlic, Ibadan

Procedia PDF Downloads 88
25054 The Amorphousness of the Exposure Sphere

Authors: Nipun Ansal

Abstract:

People guard their beliefs and opinions with their lives. Beliefs that they’ve formed over a period of time, and can go to any lengths to defy, desist from, resist and negate any outward stimulus that has the potential to shake them. Cognitive dissonance is term used to describe it in theory. And every human being, in order to defend himself from cognitive dissonance applies 4 rings of defense viz. Selective Exposure, Selective Perception, Selective Attention, and Selective Retention. This paper is a discursive analysis on how the onslaught of social media, complete with its intrusive weaponry, has amorphized the external ring of defense: the selective exposure. The stimulus-response model of communication is one of the most inherent model that encompasses communication behaviours of children and elderly, individual and masses, humans and animals alike. The paper deliberates on how information bombardment through the uncontrollable channels of the social media, Facebook and Twitter in particular, have dismantled our outer sphere of exposure, leading users online to a state of constant dissonance, and thus feeding impulsive action-taking. It applies case study method citing an example to corroborate how knowledge generation has given in to the information overload and the effect it has on decision making. With stimulus increasing in number of encounters, opinion formation precedes knowledge because of the increased demand of participation and decrease in time for the information to permeate from the outer sphere of exposure to the sphere of retention, which of course, is through perception and attention. This paper discusses the challenge posed by this fleeting, stimulus rich, peer-dominated media on the traditional models of communication and meaning-generation.

Keywords: communication, discretion, exposure, social media, stimulus

Procedia PDF Downloads 408
25053 The Intervention Effect of Gratitude Skills Training on the Reduction of Loneliness

Authors: T. Sakai, A. Aikawa

Abstract:

This study defined 'gratitude skills training' as a social skills training which would become a new intervention method about gratitude intervention. The purpose of this study was to confirm the intervention effect of gratitude skills training on the reduction of loneliness. The participants in this study were university students (n = 36). A waiting list control design was used, in which the participants were assigned either to a training group (n = 18) or a waiting list control group (n = 18); the latter group took the same training after the first group had been trained. The two-week gratitude skills training comprised of three sessions (50 minutes per each of sessions). In the three sessions, the guidebook and the homework developed in this study were used. Results showed that gratitude skills training improved the participants’ gratitude skills. The results also indicated the intervention effect of gratitude skills training on the reduction of loneliness during the follow-up after three weeks. This study suggests that gratitude skills training can reduce loneliness. The gratitude skills training has a possibility of becoming a new treatment to reduce loneliness.

Keywords: gratitude skills, loneliness, social skills training, well-being

Procedia PDF Downloads 200
25052 Modeling of Foundation-Soil Interaction Problem by Using Reduced Soil Shear Modulus

Authors: Yesim Tumsek, Erkan Celebi

Abstract:

In order to simulate the infinite soil medium for soil-foundation interaction problem, the essential geotechnical parameter on which the foundation stiffness depends, is the value of soil shear modulus. This parameter directly affects the site and structural response of the considered model under earthquake ground motions. Strain-dependent shear modulus under cycling loads makes difficult to estimate the accurate value in computation of foundation stiffness for the successful dynamic soil-structure interaction analysis. The aim of this study is to discuss in detail how to use the appropriate value of soil shear modulus in the computational analyses and to evaluate the effect of the variation in shear modulus with strain on the impedance functions used in the sub-structure method for idealizing the soil-foundation interaction problem. Herein, the impedance functions compose of springs and dashpots to represent the frequency-dependent stiffness and damping characteristics at the soil-foundation interface. Earthquake-induced vibration energy is dissipated into soil by both radiation and hysteretic damping. Therefore, flexible-base system damping, as well as the variability in shear strengths, should be considered in the calculation of impedance functions for achievement a more realistic dynamic soil-foundation interaction model. In this study, it has been written a Matlab code for addressing these purposes. The case-study example chosen for the analysis is considered as a 4-story reinforced concrete building structure located in Istanbul consisting of shear walls and moment resisting frames with a total height of 12m from the basement level. The foundation system composes of two different sized strip footings on clayey soil with different plasticity (Herein, PI=13 and 16). In the first stage of this study, the shear modulus reduction factor was not considered in the MATLAB algorithm. The static stiffness, dynamic stiffness modifiers and embedment correction factors of two rigid rectangular foundations measuring 2m wide by 17m long below the moment frames and 7m wide by 17m long below the shear walls are obtained for translation and rocking vibrational modes. Afterwards, the dynamic impedance functions of those have been calculated for reduced shear modulus through the developed Matlab code. The embedment effect of the foundation is also considered in these analyses. It can easy to see from the analysis results that the strain induced in soil will depend on the extent of the earthquake demand. It is clearly observed that when the strain range increases, the dynamic stiffness of the foundation medium decreases dramatically. The overall response of the structure can be affected considerably because of the degradation in soil stiffness even for a moderate earthquake. Therefore, it is very important to arrive at the corrected dynamic shear modulus for earthquake analysis including soil-structure interaction.

Keywords: clay soil, impedance functions, soil-foundation interaction, sub-structure approach, reduced shear modulus

Procedia PDF Downloads 269
25051 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function

Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos

Abstract:

Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.

Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function

Procedia PDF Downloads 309
25050 Investigating Effective Factors on the Customer Switching Behaviour in the Saipa Emdad Khodro Company of Iran

Authors: Rohollah Asadian Kohestani, Mustafa Hashemzadeh

Abstract:

The present paper is the outcome of a field research that was conducted with the study objective of influencing factor's effect on the behavior of customers switching in the Saipa Emdad Khodro Company. To achieve this goal, six factors of service quality, service cost, waiting time to receive services, reputation of organization, costs of switching and the way to respond the needs of customers as the independent variables of research and their effect on the customer switching was studied as the variable related to the research. The statistical society of this research included all customers of the Saipa Emdad Khodro company that possess the vehicles of automobile manufacturing group of Saipa throughout the country and the statistical sample included 150 persons of such customers. The results of this research indicated that all under study factors excluding the reputation factor effect on the behavior of customer switching.

Keywords: customer services, switching cost, service price, customer switching behavior

Procedia PDF Downloads 301
25049 A Multi Objective Reliable Location-Inventory Capacitated Disruption Facility Problem with Penalty Cost Solve with Efficient Meta Historic Algorithms

Authors: Elham Taghizadeh, Mostafa Abedzadeh, Mostafa Setak

Abstract:

Logistics network is expected that opened facilities work continuously for a long time horizon without any failure; but in real world problems, facilities may face disruptions. This paper studies a reliable joint inventory location problem to optimize cost of facility locations, customers’ assignment, and inventory management decisions when facilities face failure risks and doesn’t work. In our model we assume when a facility is out of work, its customers may be reassigned to other operational facilities otherwise they must endure high penalty costs associated with losing service. For defining the model closer to real world problems, the model is proposed based on p-median problem and the facilities are considered to have limited capacities. We define a new binary variable (Z_is) for showing that customers are not assigned to any facilities. Our problem involve a bi-objective model; the first one minimizes the sum of facility construction costs and expected inventory holding costs, the second one function that mention for the first one is minimizes maximum expected customer costs under normal and failure scenarios. For solving this model we use NSGAII and MOSS algorithms have been applied to find the pareto- archive solution. Also Response Surface Methodology (RSM) is applied for optimizing the NSGAII Algorithm Parameters. We compare performance of two algorithms with three metrics and the results show NSGAII is more suitable for our model.

Keywords: joint inventory-location problem, facility location, NSGAII, MOSS

Procedia PDF Downloads 525
25048 Owner/Managers’ External Financing Used and Preference towards Islamic Banking

Authors: Khalid Hassan Abdesamed, Kalsom Abd Wahab

Abstract:

Economic development and growth are significantly linked to the consistent and sustainable sector of small and medium enterprises (SMEs). Banks are the frontrunners in financing and advising SMEs. The main objective of the study is to assess the tendency of SMEs to use the Islamic bank. Model was developed using quantitative method with a hypothetical-deductive testing approach. Model (N = 364) used primary data on the tendency of SMEs to use Islamic banks gathered from questionnaire. It is found by Mann-Whitney test that the tendency to use Islamic bank varies between those firms which consider formal financing with the ones relying on informal financing with the latter tends more to use Islamic bank. This study can serve academic researchers, policy makers, and developing countries as a model of SMEs’ desirability to Islamic banking.

Keywords: formal financing, informal financing, Islamic bank, SMEs

Procedia PDF Downloads 353
25047 The Outcome of Using Machine Learning in Medical Imaging

Authors: Adel Edwar Waheeb Louka

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery

Procedia PDF Downloads 73
25046 Impact of Map Generalization in Spatial Analysis

Authors: Lin Li, P. G. R. N. I. Pussella

Abstract:

When representing spatial data and their attributes on different types of maps, the scale plays a key role in the process of map generalization. The process is consisted with two main operators such as selection and omission. Once some data were selected, they would undergo of several geometrical changing processes such as elimination, simplification, smoothing, exaggeration, displacement, aggregation and size reduction. As a result of these operations at different levels of data, the geometry of the spatial features such as length, sinuosity, orientation, perimeter and area would be altered. This would be worst in the case of preparation of small scale maps, since the cartographer has not enough space to represent all the features on the map. What the GIS users do is when they wanted to analyze a set of spatial data; they retrieve a data set and does the analysis part without considering very important characteristics such as the scale, the purpose of the map and the degree of generalization. Further, the GIS users use and compare different maps with different degrees of generalization. Sometimes, GIS users are going beyond the scale of the source map using zoom in facility and violate the basic cartographic rule 'it is not suitable to create a larger scale map using a smaller scale map'. In the study, the effect of map generalization for GIS analysis would be discussed as the main objective. It was used three digital maps with different scales such as 1:10000, 1:50000 and 1:250000 which were prepared by the Survey Department of Sri Lanka, the National Mapping Agency of Sri Lanka. It was used common features which were on above three maps and an overlay analysis was done by repeating the data with different combinations. Road data, River data and Land use data sets were used for the study. A simple model, to find the best place for a wild life park, was used to identify the effects. The results show remarkable effects on different degrees of generalization processes. It can see that different locations with different geometries were received as the outputs from this analysis. The study suggests that there should be reasonable methods to overcome this effect. It can be recommended that, as a solution, it would be very reasonable to take all the data sets into a common scale and do the analysis part.

Keywords: generalization, GIS, scales, spatial analysis

Procedia PDF Downloads 328
25045 Site Selection of CNG Station by Using FUZZY-AHP Model (Case Study: Gas Zone 4, Tehran City Iran)

Authors: Hamidrza Joodaki

Abstract:

The most complex issue in urban land use planning is site selection that needs to assess the verity of elements and factors. Multi Criteria Decision Making (MCDM) methods are the best approach to deal with complex problems. In this paper, combination of the analytical hierarchy process (AHP) model and FUZZY logic was used as MCDM methods to select the best site for gas station in the 4th gas zone of Tehran. The first and the most important step in FUZZY-AHP model is selection of criteria and sub-criteria. Population, accessibility, proximity and natural disasters were considered as the main criteria in this study. After choosing the criteria, they were weighted based on AHP by EXPERT CHOICE software, and FUZZY logic was used to enhance accuracy and to approach the reality. After these steps, criteria layers were produced and weighted based on FUZZY-AHP model in GIS. Finally, through ARC GIS software, the layers were integrated and the 4th gas zone in TEHRAN was selected as the best site to locate gas station.

Keywords: multiple criteria decision making (MCDM), analytic hierarchy process (AHP), FUZZY logic, geographic information system (GIS)

Procedia PDF Downloads 361
25044 The Contribution of Density Fluctuations in Ultrasound Scattering in Cancellous Bone

Authors: A. Elsariti, T. Evans

Abstract:

An understanding of the interaction between acoustic waves and cancellous bone is needed in order to realize the full clinical potential of ultrasonic bone measurements. Scattering is likely to be of central importance but has received little attention to date. Few theoretical approaches have been described to explain scattering of ultrasound from bone. In this study, a scattering model based on velocity and density fluctuations in a binary mixture (marrow fat and cortical matrix) was used to estimate the ultrasonic attenuation in cancellous bone as a function of volume fraction. Predicted attenuation and backscatter coefficient were obtained for a range of porosities and scatterer size. At 600 kHZ and for different scatterer size the effect of velocity and density fluctuations in the predicted attenuation was approximately 60% higher than velocity fluctuations.

Keywords: ultrasound scattering, sound speed, density fluctuations, attenuation coefficient

Procedia PDF Downloads 326
25043 Asset Pricing Puzzle and GDP-Growth: Pre and Post Covid-19 Pandemic Effect on Pakistan Stock Exchange

Authors: Mohammad Azam

Abstract:

This work is an endeavor to empirically investigate the Gross Domestic Product-Growth as mediating variable between various factors and portfolio returns using a broad sample of 522 financial and non-financial firms enlisted on Pakistan Stock Exchange between January-1993 and June-2022. The study employs the Structural Equation modeling and Ordinary Least Square regression to determine the findings before and during the Covid-19 epidemiological situation, which has not received due attention by researchers. The analysis reveals that market and investment factors are redundant, whereas size and value show significant results, whereas Gross Domestic Product-Growth performs significant mediating impact for the whole time frame. Using before Covid-19 period, the results reveal that market, value, and investment are redundant, but size, profitability, and Gross Domestic Product-Growth are significant. During the Covid-19, the statistics indicate that market and investment are redundant, though size and Gross Domestic Product-Growth are highly significant, but value and profitability are moderately significant. The Ordinary Least Square regression shows that market and investment are statistically insignificant, whereas size is highly significant but value and profitability are marginally significant. Using the Gross Domestic Product-Growth augmented model, a slight growth in R-square is observed. The size, value and profitability factors are recommended to the investors for Pakistan Stock Exchange. Conclusively, in the Pakistani market, the Gross Domestic Product-Growth indicates a feeble moderating effect between risk-premia and portfolio returns.

Keywords: asset pricing puzzle, mediating role of GDP-growth, structural equation modeling, COVID-19 pandemic, Pakistan stock exchange

Procedia PDF Downloads 73
25042 Presenting a Model Of Empowering New Knowledge-based Companies In Iran Insurance Industry

Authors: Pedram Saadati, Zahra Nazari

Abstract:

In the last decade, the role and importance of knowledge-based technological businesses in the insurance industry has greatly increased, and due to the weakness of previous studies in Iran, the current research deals with the design of the InsurTech empowerment model. In order to obtain the conceptual model of the research, a hybrid framework has been used. The statistical population of the research in the qualitative part were experts, and in the quantitative part, the InsurTech activists. The tools of data collection in the qualitative part were in-depth and semi-structured interviews and structured self-interaction matrix, and in the quantitative part, a researcher-made questionnaire. In the qualitative part, 55 indicators, 20 components and 8 concepts (dimensions) were obtained by the content analysis method, then the relationships of the concepts with each other and the levels of the components were investigated. In the quantitative part, the information was analyzed using the descriptive analytical method in the way of path analysis and confirmatory factor analysis. The proposed model consists of eight dimensions of supporter capability, supervisor of insurance innovation ecosystem, managerial, financial, technological, marketing, opportunity identification, innovative InsurTech capabilities. The results of statistical tests in identifying the relationships of the concepts with each other have been examined in detail and suggestions have been presented in the conclusion section.

Keywords: insurTech, knowledge-base, empowerment model, factor analysis, insurance

Procedia PDF Downloads 46
25041 The Effect of TiO₂ Nano-Thin Films on Light Transmission and Self-Cleaning Capabilities of Glass Surface

Authors: Ahmad Alduweesh

Abstract:

Self-cleaning surfaces have become essential in various applications. For instance, in photovoltaics, they provide an easy-cost effecting way to keep the solar cells clean. Titanium dioxide (TiO₂) nanoparticles were fabricated at different thicknesses to study the effect of different thicknesses on the hydrophilicity behavior of TiO₂, eventually leading to customizing hydrophilicity levels to desired values under natural light. As a result, a remarkable increase was noticed in surface hydrophilicity after applying thermal annealing on the as-deposited TiO₂ thin-films, with contact angle dropping from around 85.4ᵒ for as-deposited thin-films down to 5.1ᵒ for one of the annealed samples. The produced thin films were exposed to the outside environment to observe the effect of dust. The transmittance of light using UV-VIS spectroscopy will be conducted on the lowest and highest thicknesses (5-40 nm); this will show whether the Titania has successfully enabled more sunlight to penetrate the glass or not. Surface characterizations, including AFM and contact angle, have been included in this test.

Keywords: physical vapor deposition, TiO₂, nano-thin films, hydrophobicity, hydrophilicity, self-cleaning surfaces

Procedia PDF Downloads 114
25040 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.

Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine

Procedia PDF Downloads 9
25039 Generation of Waste Streams in Small Model Reactors

Authors: Sara Mostofian

Abstract:

The nuclear industry is a technology that can fulfill future energy needs but requires special attention to ensure safety and reliability while minimizing any environmental impact. To meet these expectations, the nuclear industry is exploring different reactor technologies for power production. Several designs are under development and the technical viability of these new designs is the subject of many ongoing studies. One of these studies considers the radioactive emissions and radioactive waste generated during the life of a nuclear power production plant to allow a successful license process. For all the modern technologies, a good understanding of the radioactivity generated in the process systems of the plant is essential. Some of that understanding may be gleaned from the performance of some prototype reactors of similar design that operated decades ago. This paper presents how, with that understanding, a model can be developed to estimate the emissions as well as the radioactive waste during the normal operation of a nuclear power plant. The model would predict the radioactive material concentrations in different waste streams. Using this information, the radioactive emission and waste generated during the life of these new technologies can be estimated during the early stages of the design of the plant.

Keywords: SMRs, activity transport, model, radioactive waste

Procedia PDF Downloads 109
25038 Climate Change and Global Warming: Effect on Indian Agriculture and Legal Control

Authors: Aman Guru, Chiron Singhi

Abstract:

The Earth’s climate is being changed at an unrivalled rate since beginning of the evolution of the Earth, 4–5 billion years back, but presently it gained pace due to unintentional anthropogenic disturbances and also increased global warming since the mid-20th century, and these incessant changes in the climatic pattern may bring unpropitious effect on global health and security. Today, however, it is not only the air, or water that are polluted, but the whole atmosphere is prone to pollution and this resulted in other cascading ramification in the form of change in the pattern of rainfall, melting of ice, the rise in the sea level etc. Human activities like production, transport, burning of fuels are adding umpteen dangerous pollutants to the atmosphere which in turn gives rise to global warming. Agriculture plays an imperative part in India's economy. Agriculture, along with fisheries and forestry, is one of the largest contributors to the Gross Domestic Product in India. Research on the effect of climate change and vulnerability of agriculture is a high need in India. A steady increase of CO2 is a primary cause of climate change and global warming and which in turn have a great impact on Indian agriculture. The research focuses on the effect of climate change on Indian agriculture and the proceedings and legal control of legislative measures on such issues and the ways to implement such laws which can help to provide a solution to these problems which can prove beneficial to Indian farmers and their agricultural produce.

Keywords: agriculture, climate change, global warming, India laws, legislative measures

Procedia PDF Downloads 314
25037 Imperfect Production Inventory Model with Inspection Errors and Fuzzy Demand and Deterioration Rates

Authors: Chayanika Rout, Debjani Chakraborty, Adrijit Goswami

Abstract:

Our work presents an inventory model which illustrates imperfect production and imperfect inspection processes for deteriorating items. A cost-minimizing model is studied considering two types of inspection errors, namely, Type I error of falsely screening out a proportion of non-defects, thereby passing them on for rework and Type II error of falsely not screening out a proportion of defects, thus selling those to customers which incurs a penalty cost. The screened items are reworked; however, no returns are entertained due to deteriorating nature of the items. In more practical situations, certain parameters such as the demand rate and the deterioration rate of inventory cannot be accurately determined, and therefore, they are assumed to be triangular fuzzy numbers in our model. We calculate the optimal lot size that must be produced in order to minimize the total inventory cost for both the crisp and the fuzzy models. A numerical example is also considered to exemplify the procedure which is followed by the analysis of sensitivity of various parameters on the decision variable and the objective function.

Keywords: deteriorating items, EPQ, imperfect quality, rework, type I and type II inspection errors

Procedia PDF Downloads 182
25036 Design Optimization and Thermoacoustic Analysis of Pulse Tube Cryocooler Components

Authors: K. Aravinth, C. T. Vignesh

Abstract:

The usage of pulse tube cryocoolers is significantly increased mainly due to the advantage of the absence of moving parts. The underlying idea of this project is to optimize the design of pulse tube, regenerator, a resonator in cryocooler and analyzing the thermo-acoustic oscillations with respect to the design parameters. Computational Fluid Dynamic (CFD) model with time-dependent validation is done to predict its performance. The continuity, momentum, and energy equations are solved for various porous media regions. The effect of changing the geometries and orientation will be validated and investigated in performance. The pressure, temperature and velocity fields in the regenerator and pulse tube are evaluated. This optimized design performance results will be compared with the existing pulse tube cryocooler design. The sinusoidal behavior of cryocooler in acoustic streaming patterns in pulse tube cryocooler will also be evaluated.

Keywords: acoustics, cryogenics, design, optimization

Procedia PDF Downloads 175
25035 A Mathematical Model of Blood Perfusion Dependent Temperature Distribution in Transient Case in Human Dermal Region

Authors: Yogesh Shukla

Abstract:

Many attempts have been made to study temperature distribution problem in human tissues under normal environmental and physiological conditions at constant arterial blood temperature. But very few attempts have been made to investigate temperature distribution in human tissues under different arterial blood temperature. In view of above, a finite element model has been developed to unsteady temperature distribution in dermal region in human body. The model has been developed for one dimension unsteady state case. The variation in parameters like thermal conductivity, blood mass flow and metabolic activity with respect to position and time has been incorporated in the model. Appropriate boundary conditions have been framed. The central difference approach has been used in space variable and trapezoidal rule has been employed a long time variable. Numerical results have been obtained to study relationship among temperature and time.

Keywords: rate of metabolism, blood mass flow rate, thermal conductivity, heat generation, finite element method

Procedia PDF Downloads 353
25034 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7

Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit

Abstract:

In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.

Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety

Procedia PDF Downloads 68
25033 Evaluating the Effect of Splitting Wind Farms on Power Output

Authors: Nazanin Naderi, Milton Smith

Abstract:

Since worldwide demand for renewable energy is increasing rapidly because of the climate problem and the limitation of fossil fuels, technologies of alternative energy sources have been developed and the electric power network now includes renewable energy resources such as wind energy. Because of the huge advantages that wind energy has, like reduction in natural gas use, price pressure, emissions of greenhouse gases and other atmospheric pollutants, electric sector water consumption and many other contributions to the nation’s economy like job creation it has got too much attention these days from different parts of the world especially in the United States which is trying to provide 20% of the nation’s energy from wind by 2030. This study is trying to evaluate the effect of splitting wind farms on power output. We are trying to find if we can get more output by installing wind turbines in different sites rather than installing all wind turbines in one site. Five potential sites in Texas have been selected as a case study and two years wind data has been gathered for these sites. Wind data are analyzed and effect of correlation between sites on power output has been evaluated. Standard deviation and autocorrelation effect has also been considered for this study. The paper has been organized as follows: After the introduction the second section gives a brief overview of wind analysis. The third section addresses the case study and evaluates correlation between sites, auto correlation of sites and standard deviation of power output. In section four we describe the results.

Keywords: auto correlation, correlation between sites, splitting wind farms, power output, standard deviation

Procedia PDF Downloads 586
25032 Modeling Driving Distraction Considering Psychological-Physical Constraints

Authors: Yixin Zhu, Lishengsa Yue, Jian Sun, Lanyue Tang

Abstract:

Modeling driving distraction in microscopic traffic simulation is crucial for enhancing simulation accuracy. Current driving distraction models are mainly derived from physical motion constraints under distracted states, in which distraction-related error terms are added to existing microscopic driver models. However, the model accuracy is not very satisfying, due to a lack of modeling the cognitive mechanism underlying the distraction. This study models driving distraction based on the Queueing Network Human Processor model (QN-MHP). This study utilizes the queuing structure of the model to perform task invocation and switching for distracted operation and control of the vehicle under driver distraction. Based on the assumption of the QN-MHP model about the cognitive sub-network, server F is a structural bottleneck. The latter information must wait for the previous information to leave server F before it can be processed in server F. Therefore, the waiting time for task switching needs to be calculated. Since the QN-MHP model has different information processing paths for auditory information and visual information, this study divides driving distraction into two types: auditory distraction and visual distraction. For visual distraction, both the visual distraction task and the driving task need to go through the visual perception sub-network, and the stimuli of the two are asynchronous, which is called stimulus on asynchrony (SOA), so when calculating the waiting time for switching tasks, it is necessary to consider it. In the case of auditory distraction, the auditory distraction task and the driving task do not need to compete for the server resources of the perceptual sub-network, and their stimuli can be synchronized without considering the time difference in receiving the stimuli. According to the Theory of Planned Behavior for drivers (TPB), this study uses risk entropy as the decision criterion for driver task switching. A logistic regression model is used with risk entropy as the independent variable to determine whether the driver performs a distraction task, to explain the relationship between perceived risk and distraction. Furthermore, to model a driver’s perception characteristics, a neurophysiological model of visual distraction tasks is incorporated into the QN-MHP, and executes the classical Intelligent Driver Model. The proposed driving distraction model integrates the psychological cognitive process of a driver with the physical motion characteristics, resulting in both high accuracy and interpretability. This paper uses 773 segments of distracted car-following in Shanghai Naturalistic Driving Study data (SH-NDS) to classify the patterns of distracted behavior on different road facilities and obtains three types of distraction patterns: numbness, delay, and aggressiveness. The model was calibrated and verified by simulation. The results indicate that the model can effectively simulate the distracted car-following behavior of different patterns on various roadway facilities, and its performance is better than the traditional IDM model with distraction-related error terms. The proposed model overcomes the limitations of physical-constraints-based models in replicating dangerous driving behaviors, and internal characteristics of an individual. Moreover, the model is demonstrated to effectively generate more dangerous distracted driving scenarios, which can be used to construct high-value automated driving test scenarios.

Keywords: computational cognitive model, driving distraction, microscopic traffic simulation, psychological-physical constraints

Procedia PDF Downloads 91
25031 VR in the Middle School Classroom-An Experimental Study on Spatial Relations and Immersive Virtual Reality

Authors: Danielle Schneider, Ying Xie

Abstract:

Middle school science, technology, engineering, and math (STEM) teachers experience an exceptional challenge in the expectation to incorporate curricula that builds strong spatial reasoning skills on rudimentary geometry concepts. Because spatial ability is so closely tied to STEM students’ success, researchers are tasked to determine effective instructional practices that create an authentic learning environment within the immersive virtual reality learning environment (IVRLE). This study looked to investigate the effect of the IVRLE on middle school STEM students’ spatial reasoning skills as a methodology to benefit the STEM middle school students’ spatial reasoning skills. This experimental study was comprised of thirty 7th-grade STEM students divided into a treatment group that was engaged in an immersive VR platform where they engaged in building an object in the virtual realm by applying spatial processing and visualizing its dimensions and a control group that built the identical object using a desktop computer-based, computer-aided design (CAD) program. Before and after the students participated in the respective “3D modeling” environment, their spatial reasoning abilities were assessed using the Middle Grades Mathematics Project Spatial Visualization Test (MGMP-SVT). Additionally, both groups created a physical 3D model as a secondary measure to measure the effectiveness of the IVRLE. The results of a one-way ANOVA in this study identified a negative effect on those in the IVRLE. These findings suggest that with middle school students, virtual reality (VR) proved an inadequate tool to benefit spatial relation skills as compared to desktop-based CAD.

Keywords: virtual reality, spatial reasoning, CAD, middle school STEM

Procedia PDF Downloads 86
25030 Prevalence of Visual Impairment among School Children in Ethiopia: A Systematic Review and Meta-Analysis

Authors: Merkineh Markos Lorato, Gedefaw Diress Alene

Abstract:

Introduction: Visual impairment is any condition of the eye or visual system that results in loss/reduction of visual functioning. It significantly influences the academic routine and social activities of children, and the effect is severe for low-income countries like Ethiopia. So, this study aimed to determine the pooled prevalence of visual impairment among school children in Ethiopia. Methods: Databases such as Medical Literature Analysis and Retrieval System Online, Excerpta Medica dataBASE, World Wide Web of Science, and Cochrane Library searched to retrieve eligible articles. In addition, Google Scholar and a reference list of the retrieved eligible articles were addressed. Studies that reported the prevalence of visual impairment were included to estimate the pooled prevalence. Data were extracted using a standardized data extraction format prepared in Microsoft Excel and analysis was held using STATA 11 statistical software. I² was used to assess the heterogeneity. Because of considerable heterogeneity, a random effect meta-analysis model was used to estimate the pooled prevalence of visual impairment among school children in Ethiopia. Results: The result of 9 eligible studies showed that the pooled prevalence of visual impairment among school children in Ethiopia was 7.01% (95% CI: 5.46, 8.56%). In the subgroup analysis, the highest prevalence was reported in South Nations Nationalities and Tigray region together (7.99%; 3.63, 12.35), while the lowest prevalence was reported in Addis Ababa (5.73%; 3.93, 7.53). Conclusion: The prevalence of visual impairment among school children is significantly high in Ethiopia. If it is not detected and intervened early, it will cause a lifetime threat to visually impaired school children, so that school vision screening program plan and its implementation may cure the life quality of future generations in Ethiopia.

Keywords: visual impairment, school children, Ethiopia, prevalence

Procedia PDF Downloads 37