Search results for: urban road network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9006

Search results for: urban road network

5436 'Sit Down, Breathe, and Feel What?' Bringing a Contemplative Intervention into a Public Urban Middle School

Authors: Lunthita M. Duthely, John T. Avella, John Ganapati Coleman

Abstract:

For as many as one in three adolescents living in the United States, the adolescent years is a period of low well-being and mental health challenges—from depressive symptoms to mild to moderate psychological diagnoses. Longitudinal population health studies demonstrated that these challenges persist in young adulthood, and beyond. The positive psychology (PS) approach is a more preventative approach to well-being, which contrasts the traditional, deficits approach to curing mental illness. The research among adult populations formed the basis for PS studies among adolescents. The empirical evidence for the effectiveness of PS interventions exists for both adult and youth populations. Positive Psychology interventions target individuals’ strengths, such as hope and optimism, and positive emotions, such as gratitude. Positive psychology interventions such as increasing gratitude, proved effective in many outcomes among youth, including psychological, social, and academically-related outcomes. Although gratitude-inducing studies have been conducted for the past decade in the United States, few studies have been conducted among samples of urban youth, particularly youth of diverse cultural backgrounds. For nearly two decades, the secular practice of meditation has been tested among adults and more recently among youth, focused mostly among clinical samples. The field of Contemplative Sciences explores practices such as Hatha Yoga, Tai Chi, and Meditation, as preventative practices among children and adolescents. A more recent initiative is to explore Contemplative Practices in the school environment. Contemplative Practices yield a variety of positive outcomes, including academic, social, psychological, physiological, and neurological changes among children and adolescents. Again, few studies were conducted among adolescents of diverse cultural backgrounds. The purpose of this doctoral dissertation research study was to test a gratitude-meditation intervention among middle school students attending a public charter school, located in an urban region of Metropolitan Miami. The objective of this presentation is to summarize the challenges and success of bringing a positive psychology and meditation intervention into an urban middle school. Also, the most recent findings on positive psychology and meditation interventions conducted in school environments will be presented as well.

Keywords: adolescents, contemplative intervention, gratitude, secular meditation, positive psychology, school engagement, Sri Chinmoy

Procedia PDF Downloads 396
5435 A Multimodal Measurement Approach Using Narratives and Eye Tracking to Investigate Visual Behaviour in Perceiving Naturalistic and Urban Environments

Authors: Khizar Z. Choudhrya, Richard Coles, Salman Qureshi, Robert Ashford, Salim Khan, Rabia R. Mir

Abstract:

Abstract: The majority of existing landscape research has been derived by conducting heuristic evaluations, without having empirical insight of real participant visual response. In this research, a modern multimodal measurement approach (using narratives and eye tracking) was applied to investigate visual behaviour in perceiving naturalistic and urban environments. This research is unique in exploring gaze behaviour on environmental images possessing different levels of saliency. Eye behaviour is predominantly attracted by salient locations. The concept of methodology of this research on naturalistic and urban environments is drawn from the approaches in market research. Borrowing methodologies from market research that examine visual responses and qualities provided a critical and hitherto unexplored approach. This research has been conducted by using mixed methodological quantitative and qualitative approaches. On the whole, the results of this research corroborated existing landscape research findings, but they also identified potential refinements. The research contributes both methodologically and empirically to human-environment interaction (HEI). This study focused on initial impressions of environmental images with the help of eye tracking. Taking under consideration the importance of the image, this study explored the factors that influence initial fixations in relation to expectations and preferences. In terms of key findings of this research it is noticed that each participant has his own unique navigation style while surfing through different elements of landscape images. This individual navigation style is given the name of ‘visual signature’. This study adds the necessary clarity that would complete the picture and bring an insight for future landscape researchers.

Keywords: human-environment interaction (HEI), multimodal measurement, narratives, eye tracking

Procedia PDF Downloads 339
5434 A Model Based Metaheuristic for Hybrid Hierarchical Community Structure in Social Networks

Authors: Radhia Toujani, Jalel Akaichi

Abstract:

In recent years, the study of community detection in social networks has received great attention. The hierarchical structure of the network leads to the emergence of the convergence to a locally optimal community structure. In this paper, we aim to avoid this local optimum in the introduced hybrid hierarchical method. To achieve this purpose, we present an objective function where we incorporate the value of structural and semantic similarity based modularity and a metaheuristic namely bees colonies algorithm to optimize our objective function on both hierarchical level divisive and agglomerative. In order to assess the efficiency and the accuracy of the introduced hybrid bee colony model, we perform an extensive experimental evaluation on both synthetic and real networks.

Keywords: social network, community detection, agglomerative hierarchical clustering, divisive hierarchical clustering, similarity, modularity, metaheuristic, bee colony

Procedia PDF Downloads 379
5433 Modular Robotics and Terrain Detection Using Inertial Measurement Unit Sensor

Authors: Shubhakar Gupta, Dhruv Prakash, Apoorv Mehta

Abstract:

In this project, we design a modular robot capable of using and switching between multiple methods of propulsion and classifying terrain, based on an Inertial Measurement Unit (IMU) input. We wanted to make a robot that is not only intelligent in its functioning but also versatile in its physical design. The advantage of a modular robot is that it can be designed to hold several movement-apparatuses, such as wheels, legs for a hexapod or a quadpod setup, propellers for underwater locomotion, and any other solution that may be needed. The robot takes roughness input from a gyroscope and an accelerometer in the IMU, and based on the terrain classification from an artificial neural network; it decides which method of propulsion would best optimize its movement. This provides the bot with adaptability over a set of terrains, which means it can optimize its locomotion on a terrain based on its roughness. A feature like this would be a great asset to have in autonomous exploration or research drones.

Keywords: modular robotics, terrain detection, terrain classification, neural network

Procedia PDF Downloads 145
5432 Municipal Asset Management Planning 2.0 – A New Framework For Policy And Program Design In Ontario

Authors: Scott R. Butler

Abstract:

Ontario, Canada’s largest province, is in the midst of an interesting experiment in mandated asset management planning for local governments. At the beginning of 2021, Ontario’s 444 municipalities were responsible for the management of 302,864 lane kilometers of roads that have a replacement cost of $97.545 billion CDN. Roadways are by far the most complex, expensive, and extensive assets that a municipality is responsible for overseeing. Since adopting Ontario Regulation 588/47: Asset Management Planning for Municipal Infrastructure in 2017, the provincial government has established prescriptions for local road authorities regarding asset category and levels of service being provided. This provincial regulation further stipulates that asset data such as extent, condition, and life cycle costing are to be captured in manner compliant with qualitative descriptions and technical metrics. The Ontario Good Roads Association undertook an exercise to aggregate the road-related data contained within the 444 asset management plans that municipalities have filed with the provincial government. This analysis concluded that collectively Ontario municipal roadways have a $34.7 billion CDN in deferred maintenance. The ill-state of repair of Ontario municipal roads has lasting implications for province’s economic competitiveness and has garnered considerable political attention. Municipal efforts to address the maintenance backlog are stymied by the extremely limited fiscal parameters municipalities must operate within in Ontario. Further exacerbating the program are provincially designed programs that are ineffective, administratively burdensome, and not necessarily aligned with local priorities or strategies. This paper addresses how municipal asset management plans – and more specifically, the data contained in these plans – can be used to design innovative policy frameworks, flexible funding programs, and new levels of service that respond to these funding challenges, as well as emerging issues such as local economic development and climate change. To fully unlock the potential that Ontario Regulation 588/17 has imposed will require a resolute commitment to data standardization and horizontal collaboration between municipalities within regions.

Keywords: transportation, municipal asset management, subnational policy design, subnational funding program design

Procedia PDF Downloads 94
5431 Ways to Spend Time at an Airport before Boarding a Flight

Authors: Amol Parikh

Abstract:

The goal of this study is to understand the most preferred ways to spend time at an airport while waiting for a flight to board. Survey was done on 1639 people of the United States of America. In the overall data, it was found that majority people always preferred spending time doing something in their mobile phone. Second most preferred option was reading something, followed by wanting a companion to talk to or to eat/drink. Least preferred option was to eat/drink alone. Overall data was then filtered based on age, gender, income and urban density groups. Percentage of people wanting to use a mobile phone was highest in the age group of 18-24. People aged 45 and above chose reading as the most preferred option. In any of the ranges of income, gender or urban density using mobile phone was the most preferred option. Conclusion of this study is that introducing a mobile app to search for a companion at an airport to do like minded activity would get noticed by majority travelers and would be a business idea worth trying as wanting a companion to talk or eat/drink with is not the least preferred option.

Keywords: waiting for a flight, airport, mobile phone, companion

Procedia PDF Downloads 282
5430 An Assessment of Suitable Alternative Public Transport System in Mid-Sized City of India

Authors: Sanjeev Sinha, Samir Saurav

Abstract:

The rapid growth of urban areas in India has led to transportation challenges like traffic congestion and an increase in accidents. Despite efforts by state governments and local administrations to improve urban transport, the surge in private vehicles has worsened the situation. Patna, located in Bihar State, is an example of the trend of increasing reliance on private motor vehicles, resulting in vehicular congestion and emissions. The existing transportation infrastructure is inadequate to meet future travel demands, and there has been a notable increase in the share of private vehicles in the city. Additionally, there has been a surge in economic activities in the region, which has increased the demand for improved travel convenience and connectivity. To address these challenges, a study was conducted to assess the most suitable transit mode for the proposed transit corridor outlined in the Comprehensive Mobility Plan (CMP) for Patna. The study covered four stages: developing screening criteria, evaluating parameters for various alternatives, qualitative and quantitative evaluations of alternatives, and implementation options for the most viable alternative. The study suggests that a mass transit system such as a metro rail is necessary to enhance Patna's urban public transport system. The New Metro Policy 2017 outlines specific prerequisites for submitting a Metro Rail Project Proposal to the Ministry of Housing and Urban Affairs (MoHUA), including the preparation of a CMP, the formation of an Urban Metropolitan Transport Authority (UMTA), the creation of an Alternative Analysis Report, the development of a Detailed Project Report, a Multi-Modal Integration Plan, and a Transit-Oriented Development (TOD) Plan. In 2018, the Comprehensive Mobility Plan for Patna was prepared, setting the stage for the subsequent steps in the metro rail project proposal. The results indicated that from the screening and analysis of qualitative parameters for different alternative modes in Patna, it is inferred that the Metro Rail and Monorail score 82.25 and 70.50, respectively, on a scale of 100. Based on the initial analysis and alternative evaluation in the form of quantitative analysis, the Metro Rail System significantly outperformed the Monorail system. The Metro Rail System has a positive Economic Net Present Value (ENPV) at a 14% internal rate of return, while the Monorail has a negative value. In conclusion, the study recommends choosing metro rail over monorail for the proposed transit corridor in Patna. However, the lack of broad-based technical expertise may result in implementation delays and increased costs for monorail.

Keywords: comprehensive mobility plan, alternative analysis, mobility corridors, mass transit system

Procedia PDF Downloads 120
5429 Rethinking the History of an Expanding City through Its Images: Birmingham, England, the Nineteenth Century

Authors: Lin Chang

Abstract:

Birmingham, England was a town in the late-eighteenth century and became the nation’s second largest city in the late nineteenth century. The city expanded rapidly in terms of its population and size. Three generations of artists from a local family, the Lines, made a large number of drawings and paintings depicting the growth and changes of their city. At first sight, the meaning of the pictures seems straight-forward: providing records of what were torn down and newly-built. However, except for being read as maps, the pictures reveal a struggle in vision as to whether unsightly manufactories and their smoking chimneys should be visualized and how far the borders of the town should have been positioned and understood as they continued to grow and encroached upon its immediate countryside. This art-historic paper examines some topographic views by the Lines family and explores how they, through unusual depiction of rural and urban scenery, manage to give form to the borderlands between the country and the city. This paper argues that while the idea of the country and the city seems to be common sense, the two realms actually pose difficulty for visual representation as to where exactly their borders are and the idea itself has dichotomized the way people consider landscape imageries to be.

Keywords: Birmingham, suburb, urban fringes, landscape

Procedia PDF Downloads 197
5428 Opinion Mining and Sentiment Analysis on DEFT

Authors: Najiba Ouled Omar, Azza Harbaoui, Henda Ben Ghezala

Abstract:

Current research practices sentiment analysis with a focus on social networks, DEfi Fouille de Texte (DEFT) (Text Mining Challenge) evaluation campaign focuses on opinion mining and sentiment analysis on social networks, especially social network Twitter. It aims to confront the systems produced by several teams from public and private research laboratories. DEFT offers participants the opportunity to work on regularly renewed themes and proposes to work on opinion mining in several editions. The purpose of this article is to scrutinize and analyze the works relating to opinions mining and sentiment analysis in the Twitter social network realized by DEFT. It examines the tasks proposed by the organizers of the challenge and the methods used by the participants.

Keywords: opinion mining, sentiment analysis, emotion, polarity, annotation, OSEE, figurative language, DEFT, Twitter, Tweet

Procedia PDF Downloads 139
5427 A Study of Human Communication in an Internet Community

Authors: Andrew Laghos

Abstract:

The Internet is a big part of our everyday lives. People can now access the internet from a variety of places including home, college, and work. Many airports, hotels, restaurants and cafeterias, provide free wireless internet to their visitors. Using technologies like computers, tablets, and mobile phones, we spend a lot of our time online getting entertained, getting informed, and communicating with each other. This study deals with the latter part, namely, human communication through the Internet. People can communicate with each other using social media, social network sites (SNS), e-mail, messengers, chatrooms, and so on. By connecting with each other they form virtual communities. Regarding SNS, types of connections that can be studied include friendships and cliques. Analyzing these connections is important to help us understand online user behavior. The method of Social Network Analysis (SNA) was used on a case study, and results revealed the existence of some useful patterns of interactivity between the participants. The study ends with implications of the results and ideas for future research.

Keywords: human communication, internet communities, online user behavior, psychology

Procedia PDF Downloads 497
5426 Convolution Neural Network Based on Hypnogram of Sleep Stages to Predict Dosages and Types of Hypnotic Drugs for Insomnia

Authors: Chi Wu, Dean Wu, Wen-Te Liu, Cheng-Yu Tsai, Shin-Mei Hsu, Yin-Tzu Lin, Ru-Yin Yang

Abstract:

Background: The results of previous studies compared the benefits and risks of receiving insomnia medication. However, the effects between hypnotic drugs used and enhancement of sleep quality were still unclear. Objective: The aim of this study is to establish a prediction model for hypnotic drugs' dosage used for insomnia subjects and associated the relationship between sleep stage ratio change and drug types. Methodologies: According to American Academy of Sleep Medicine (AASM) guideline, sleep stages were classified and transformed to hypnogram via the polysomnography (PSG) in a hospital in New Taipei City (Taiwan). The subjects with diagnosis for insomnia without receiving hypnotic drugs treatment were be set as the comparison group. Conversely, hypnotic drugs dosage within the past three months was obtained from the clinical registration for each subject. Furthermore, the collecting subjects were divided into two groups for training and testing. After training convolution neuron network (CNN) to predict types of hypnotics used and dosages are taken, the test group was used to evaluate the accuracy of classification. Results: We recruited 76 subjects in this study, who had been done PSG for transforming hypnogram from their sleep stages. The accuracy of dosages obtained from confusion matrix on the test group by CNN is 81.94%, and accuracy of hypnotic drug types used is 74.22%. Moreover, the subjects with high ratio of wake stage were correctly classified as requiring medical treatment. Conclusion: CNN with hypnogram was potentially used for adjusting the dosage of hypnotic drugs and providing subjects to pre-screening the types of hypnotic drugs taken.

Keywords: convolution neuron network, hypnotic drugs, insomnia, polysomnography

Procedia PDF Downloads 195
5425 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators

Authors: Wei Zhang

Abstract:

With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.

Keywords: deep learning, field programmable gate array, FPGA, hardware accelerator, convolutional neural networks, CNN

Procedia PDF Downloads 128
5424 Introduction to Multi-Agent Deep Deterministic Policy Gradient

Authors: Xu Jie

Abstract:

As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decisionmaking problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security). By modeling the multi-job collaborative cryptographic service scheduling problem as a multiobjective optimized job flow scheduling problem, and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing, and effectively solves the problem of complex resource scheduling in cryptographic services.

Keywords: multi-agent reinforcement learning, non-stationary dynamics, multi-agent systems, cooperative and competitive agents

Procedia PDF Downloads 24
5423 Youth and Employment: An Outlook on Challenges of Demographic Dividend

Authors: Vidya Yadav

Abstract:

India’s youth bulge is now sharpest at the critical 15-24 age group, even as its youngest, and oldest age groups begin to narrow. As the ‘single year, age data’ for the 2011 Census releases the data on the number of people at each year of age in the population. The data shows that India’s working age population (15-64 years) is now 63.4 percent of the total, as against just short of 60 percent in 2001. The numbers also show that the ‘dependency ratio’ the ratio of children (0-14) and the elderly (65 above) to those in the working age has shrunk further to 0.55. “Even as the western world is in ageing situation, these new numbers show that India’s population is still very young”. As the fertility falls faster in urban areas, rural India is younger than urban India; while 51.73 percent of rural Indians are under the age of 24 and 45.9 percent of urban Indians are under 24. The percentage of the population under the age of 24 has dropped, but many demographers say that it should not be interpreted as a sign of the youth bulge is shrinking. Rather it is because of “declining fertility, the number of infants and children reduces first, and this is what we see with the number of under age 24. Indeed the figure shows that the proportion of children in the 0-4 and 5-9 age groups has fallen in 2011 compared to 2001. For the first time, the percentage of children in the 10-14 age group has also fallen, as the effect of families reducing the number of children they have begins to be felt. The present paper key issue is to examine that “whether this growing youth bulge has the right skills for the workforce or not”. The study seeks to examine the youth population structure and employment distribution among them in India during 2001-2011 in different industrial category. It also tries to analyze the workforce participation rate as main and marginal workers both for male and female workers in rural and urban India by utilizing an abundant source of census data from 2001-2011. Result shows that an unconscionable number of adolescents are working when they should study. In rural areas, large numbers of youths are working as an agricultural labourer. Study shows that most of the youths working are in the 15-19 age groups. In fact, this is the age of entry into higher education, but due to economic compulsion forces them to take up jobs, killing their dreams of higher skills or education. Youths are primarily engaged in low paying irregular jobs which are clearly revealed by census data on marginal workers. That is those who get work for less than six months in a year. Large proportions of youths are involved in the cultivation and household industries works.

Keywords: main, marginal, youth, work

Procedia PDF Downloads 290
5422 Multi-Sender MAC Protocol Based on Temporal Reuse in Underwater Acoustic Networks

Authors: Dongwon Lee, Sunmyeng Kim

Abstract:

Underwater acoustic networks (UANs) have become a very active research area in recent years. Compared with wireless networks, UANs are characterized by the limited bandwidth, long propagation delay and high channel dynamic in acoustic modems, which pose challenges to the design of medium access control (MAC) protocol. The characteristics severely affect network performance. In this paper, we study a MS-MAC (Multi-Sender MAC) protocol in order to improve network performance. The proposed protocol exploits temporal reuse by learning the propagation delays to neighboring nodes. A source node locally calculates the transmission schedules of its neighboring nodes and itself based on the propagation delays to avoid collisions. Performance evaluation is conducted using simulation, and confirms that the proposed protocol significantly outperforms the previous protocol in terms of throughput.

Keywords: acoustic channel, MAC, temporal reuse, UAN

Procedia PDF Downloads 350
5421 Advancing Horizons: Standardized Future Trends in LiDAR and Remote Sensing Technologies

Authors: Spoorthi Sripad

Abstract:

Rapid advancements in LiDAR (Light Detection and Ranging) technology, coupled with the synergy of remote sensing, have revolutionized Earth observation methodologies. This paper delves into the transformative impact of integrated LiDAR and remote sensing systems. Focusing on miniaturization, cost reduction, and improved resolution, the study explores the evolving landscape of terrestrial and aquatic environmental monitoring. The integration of multi-wavelength and dual-mode LiDAR systems, alongside collaborative efforts with other remote sensing technologies, presents a comprehensive approach. The paper highlights the pivotal role of LiDAR in environmental assessment, urban planning, and infrastructure development. As the amalgamation of LiDAR and remote sensing reshapes Earth observation, this research anticipates a paradigm shift in our understanding of dynamic planetary processes.

Keywords: LiDAR, remote sensing, earth observation, advancements, integration, environmental monitoring, multi-wavelength, dual-mode, technology, urban planning, infrastructure, resolution, miniaturization

Procedia PDF Downloads 83
5420 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 96
5419 From Isolation to Integration: A Biophilic Design Approach for Enhancing Inhabitants’ Well-being in Urban Residential Spaces in Dhaka

Authors: Maliha Afroz Nitu, Shahreen Mukashafat Semontee

Abstract:

The concept of biophilic design has emerged as a transformative approach to restore the intrinsic connection between people and nature, an innate bond disrupted by urbanization and industrialization. As urbanization progresses, it is crucial to raise awareness about these issues in order to ensure people can live and work in healthy environments that enhance well-being. Dhaka, the capital of Bangladesh, faces challenges arising from unplanned urban expansion, leading to a notable disconnect between city dwellers and their natural surroundings, a problem prevalent in rapidly developing megacities. Significant interdisciplinary research consistently shows that connecting indoor and outdoor spaces can improve mental and physical well-being by rekindling a connection with the natural world. However, there is a significant lack of study on the implementation of biophilic design principles in the built environment to tackle these problems, despite the well-documented advantages. The Palashi Government Staff Quarter, a 3.8-acre housing area for government staff with around 1,000 residents in Dhaka, has been selected as a case study. The main goal is to create and implement biophilic design solutions to address social, environmental, and health issues while also enhancing the built environment. A methodology applicable to improving biophilic design is developed according to the needs of the residents. This research uses a comprehensive approach, including site inspections and structured and semi-structured interviews with residents to gather qualitative data on their experiences and needs. A total of ten identical six-story buildings have been surveyed, with varying resident responses providing insight into their different perspectives. Based on these findings, the study proposes alternative design strategies that integrate biophilic elements such as daylight, air, plants, and water into buildings through windows, skylights, clerestories, green walls, vegetation, and constructed water bodies. The objective of these strategies is to improve the built environment that restores the existing disconnection between humans and nature. Comparative analyses of the current and proposed scenarios demonstrate substantial upgrades in the built environment, as well as major improvements in the physical and psychological well-being of residents. Although this research focuses on a particular government housing, the findings can be applied to other residential areas in Dhaka and similar urban environments. The study highlights the importance of biophilic design in housing and provides recommendations for policymakers and architects to improve living conditions by integrating nature into urban settings.

Keywords: biophilic design, residential, built environment, human nature connection, urban, Dhaka

Procedia PDF Downloads 33
5418 Inferring Human Mobility in India Using Machine Learning

Authors: Asra Yousuf, Ajaykumar Tannirkulum

Abstract:

Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.

Keywords: development, migration, internal migration, machine learning, prediction

Procedia PDF Downloads 271
5417 Assessing the Accessibility to Primary Percutaneous Coronary Intervention

Authors: Tzu-Jung Tseng, Pei-Hsuen Han, Tsung-Hsueh Lu

Abstract:

Background: Ensuring patients with ST-elevation myocardial infarction (STEMI) access to hospitals that could perform percutaneous coronary intervention (PCI) in time is an important concern of healthcare managers. One commonly used the method to assess the coverage of population access to PCI hospital is the use GIS-estimated linear distance (crow's fly distance) between the district centroid and the nearest PCI hospital. If the distance is within a given distance (such as 20 km), the entire population of that district is considered to have appropriate access to PCI. The premise of using district centroid to estimate the coverage of population resident in that district is that the people live in the district are evenly distributed. In reality, the population density is not evenly distributed within the administrative district, especially in rural districts. Fortunately, the Taiwan government released basic statistical area (on average 450 population within the area) recently, which provide us an opportunity to estimate the coverage of population access to PCI services more accurate. Objectives: We aimed in this study to compare the population covered by a give PCI hospital according to traditional administrative district versus basic statistical area. We further examined if the differences between two geographic units used would be larger in a rural area than in urban area. Method: We selected two hospitals in Tainan City for this analysis. Hospital A is in urban area, hospital B is in rural area. The population in each traditional administrative district and basic statistical area are obtained from Taiwan National Geographic Information System, Ministry of Internal Affairs. Results: Estimated population live within 20 km of hospital A and B was 1,515,846 and 323,472 according to traditional administrative district and was 1,506,325 and 428,556 according to basic statistical area. Conclusion: In urban area, the estimated access population to PCI services was similar between two geographic units. However, in rural areas, the access population would be overestimated.

Keywords: accessibility, basic statistical area, modifiable areal unit problem (MAUP), percutaneous coronary intervention (PCI)

Procedia PDF Downloads 458
5416 Coal Mining Safety Monitoring Using Wsn

Authors: Somdatta Saha

Abstract:

The main purpose was to provide an implementable design scenario for underground coal mines using wireless sensor networks (WSNs). The main reason being that given the intricacies in the physical structure of a coal mine, only low power WSN nodes can produce accurate surveillance and accident detection data. The work mainly concentrated on designing and simulating various alternate scenarios for a typical mine and comparing them based on the obtained results to arrive at a final design. In the Era of embedded technology, the Zigbee protocols are used in more and more applications. Because of the rapid development of sensors, microcontrollers, and network technology, a reliable technological condition has been provided for our automatic real-time monitoring of coal mine. The underground system collects temperature, humidity and methane values of coal mine through sensor nodes in the mine; it also collects the number of personnel inside the mine with the help of an IR sensor, and then transmits the data to information processing terminal based on ARM.

Keywords: ARM, embedded board, wireless sensor network (Zigbee)

Procedia PDF Downloads 340
5415 A Study of Adult Lifelong Learning Consulting and Service System in Taiwan

Authors: Wan Jen Chang

Abstract:

Back ground: Taiwan's current adult lifelong learning services have expanded from vocational training to universal lifelong learning. However, both the professional knowledge training of learning guidance and consulting services and the provision of adult online learning consulting service systems still need to be established. Purpose: The purposes of this study are as follows: 1. Analyze the professional training mechanism for cultivating adult lifelong learning consultation and coaching; 2. Explore the feasibility of constructing a system that uses network technology to provide adult learning consultation services. Research design: This study conducts a literature analysis of counseling and coaching policy reports on lifelong learning in European countries and the United States. There are two focus discussions were conducted with 15 lifelong learning scholars, experts and practitioners as research subjects. The following two topics were discussed and suggested: 1. The current situation, needs and professional ability training mechanism of "Adult Lifelong Learning Consulting and Services"; 2. Strategies for establishing an "Adult Lifelong Learning Consulting and Service internet System". Conclusion: 1.Based on adult lifelong learning consulting and service needs, plan a professional knowledge training and certification system.2.Adult lifelong learning consulting and service professional knowledge and skills training should include the use of network technology to provide consulting service skills.3.To establish an adult lifelong learning consultation and service system, the Ministry of Education should promulgate policies and measures at the central level and entrust local governments or private organizations to implement them.4.The adult lifelong learning consulting and service system can combine the national qualifications framework, private sector and NPO to expand learning consulting service partners.

Keywords: adult lifelong learning, profesional knowledge, consulting and service, network system

Procedia PDF Downloads 67
5414 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid

Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani

Abstract:

As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.

Keywords: computational grid, job scheduling, learning automata, dynamic scheduling

Procedia PDF Downloads 343
5413 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor

Authors: Hidir S. Nogay

Abstract:

In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.

Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor

Procedia PDF Downloads 345
5412 Genome-Wide Expression Profiling of Cicer arietinum Heavy Metal Toxicity

Authors: B. S. Yadav, A. Mani, S. Srivastava

Abstract:

Chickpea (Cicer arietinum L.) is an annual, self-pollinating, diploid (2n = 2x = 16) pulse crop that ranks second in world legume production after common bean (Phaseolus vulgaris). ICC 4958 flowers approximately 39 days after sowing under peninsular Indian conditions and the crop matures in less than 90 days in rained environments. The estimated collective yield losses due to abiotic stresses (6.4 million t) have been significantly higher than for biotic stresses (4.8 million t). Most legumes are known to be salt sensitive, and therefore, it is becoming increasingly important to produce cultivars tolerant to high-salinity in addition to other abiotic and biotic stresses for sustainable chickpea production. Our aim was to identify the genes that are involved in the defence mechanism against heavy metal toxicity in chickpea and establish the biological network of heavy metal toxicity in chickpea. ICC4958 variety of chick pea was taken and grown in normal condition and 150µM concentration of different heavy metal salt like CdCl₂, K₂Cr2O₇, NaAsO₂. At 15th day leave samples were collected and stored in RNA Later solution microarray was performed for checking out differential gene expression pattern. Our studies revealed that 111 common genes that involved in defense mechanism were up regulated and 41 genes were commonly down regulated during treatment of 150µM concentration of CdCl₂, K₂Cr₂O₇, and NaAsO₂. Biological network study shows that the genes which are differentially expressed are highly connected and having high betweenness and centrality.

Keywords: abiotic stress, biological network, chickpea, microarray

Procedia PDF Downloads 197
5411 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks

Authors: Danilo López, Edwin Rivas, Leyla López

Abstract:

This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.

Keywords: cognitive radio, base station, best effort, MLPNN, prediction, real time

Procedia PDF Downloads 331
5410 Prototype of Over Dimension Over Loading (ODOL) Freight Transportation Monitoring System Based on Arduino Mega 'Sabrang': A Case Study in Klaten, Indonesia

Authors: Chairul Fajar, Muhammad Nur Hidayat, Muksalmina

Abstract:

The issue of Over Dimension Over Loading (ODOL) in Indonesia remains a significant challenge, causing traffic accidents, disrupting traffic flow, accelerating road damage, and potentially leading to bridge collapses. Klaten Regency, located on the slopes of Mount Merapi along the Woro River in Kemalang District, has potential Class C excavation materials such as sand and stone. Data from the Klaten Regency Transportation Department indicates that ODOL violations account for 72%, while non-violating vehicles make up only 28%. ODOL involves modifying factory-standard vehicles beyond the limits specified in the Type Test Registration Certificate (SRUT) to save costs and travel time. This study aims to develop a prototype ‘Sabrang’ monitoring system based on Arduino Mega to control and monitor ODOL freight transportation in the mining of Class C excavation materials in Klaten Regency. The prototype is designed to automatically measure the dimensions and weight of objects using a microcontroller. The data analysis techniques used in this study include the Normality Test and Paired T-Test, comparing sensor measurement results on scaled objects. The study results indicate differences in measurement validation under room temperature and ambient temperature conditions. Measurements at room temperature showed that the majority of H0 was accepted, meaning there was no significant difference in measurements when the prototype tool was used. Conversely, measurements at ambient temperature showed that the majority of H0 was rejected, indicating a significant difference in measurements when the prototype tool was used. In conclusion, the ‘Sabrang’ monitoring system prototype is effective for controlling ODOL, although measurement results are influenced by temperature conditions. This study is expected to assist in the monitoring and control of ODOL, thereby enhancing traffic safety and road infrastructure.

Keywords: over dimension over loading, prototype, microcontroller, Arduino, normality test, paired t-test

Procedia PDF Downloads 35
5409 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement

Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu

Abstract:

The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.

Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain

Procedia PDF Downloads 123
5408 The Adequacy of Antenatal Care Services among Slum Residents in Addis Ababa, Ethiopia

Authors: Yibeltal T. Bayou, Yohana S. Mashalla, Gloria Thupayagale-Tshweneagae

Abstract:

Background: Maternal mortality has been shown to be lower in urban areas than in rural areas. However, disparities for the fast-growing population of urban poor who struggle as much their rural counterparts to access quality healthcare are masked by the urban averages. The aim of this paper is to report on the findings of antenatal adequacy among slum residents in Addis Ababa, Ethiopia. Methods and Materials: A quantitative and cross-sectional community-based study design was employed. A stratified two-stage cluster sampling technique was used to determine the sample and data was collected using structured questionnaire administered to 837 women aged 15-49 years. Binary logistic regression models were employed to identify predictors of adequacy of antenatal care. Results: The majority of slum residents did not have adequate antenatal care services i.e., only 50.7%, 19.3% and 10.2% of the slum resident women initiated early antenatal care, received adequate antenatal care service contents and had overall adequate antenatal care services. Pregnancy intention, educational status and place of ANC visits were important determinant factors for adequacy of ANC in the study area. Women with secondary and above educational status were 2.9 times more likely to have overall adequate care compared to those with no formal education. Similarly, women whose last pregnancy was intended and clients of private healthcare facilities were 1.8 and 2.8 times more likely to have overall adequate antenatal care compared to those whose last pregnancy was unintended and clients of public healthcare facilities respectively. Conclusion: In order to improve ANC adequacy in the study area, the policymaking, planning, and implementation processes should focus on the poor adequacy of ANC among the disadvantaged groups in particular and the slum residents in general.

Keywords: Addis Ababa, adequacy of antenatal care, slum residents, maternal mortality

Procedia PDF Downloads 423
5407 Implementing Urban Rainwater Harvesting Systems: Between Policy and Practice

Authors: Natàlia Garcia Soler, Timothy Moss

Abstract:

Despite the multiple benefits of sustainable urban drainage, as demonstrated in numerous case studies across the world, urban rainwater harvesting techniques are generally restricted to isolated model projects. The leap from niche to mainstream has, in most cities, proved an elusive goal. Why policies promoting rainwater harvesting are limited in their widespread implementation has seldom been subjected to systematic analysis. Much of the literature on the policy, planning and institutional contexts of these techniques focus either on their potential benefits or on project design, but very rarely on a critical-constructive analysis of past experiences of implementation. Moreover, the vast majority of these contributions are restricted to single-case studies. There is a dearth of knowledge with respect to, firstly, policy implementation processes and, secondly, multi-case analysis. Insights from both, the authors argue, are essential to inform more effective rainwater harvesting in cities in the future. This paper presents preliminary findings from a research project on rainwater harvesting in cities from a social science perspective that is funded by the Swedish Research Foundation (Formas). This project – UrbanRain – is examining the challenges and opportunities of mainstreaming rainwater harvesting in three European cities. The paper addresses two research questions: firstly, what lessons can be learned on suitable policy incentives and planning instruments for rainwater harvesting from a meta-analysis of the relevant international literature and, secondly, how far these lessons are reflected in a study of past and ongoing rainwater harvesting projects in a European forerunner city. This two-tier approach frames the structure of the paper. We present, first, the results of the literature analysis on policy and planning issues of urban rainwater harvesting. Here, we analyze quantitatively and qualitatively the literature of the past 15 years on this topic in terms of thematic focus, issues addressed and key findings and draw conclusions on research gaps, highlighting the need for more studies on implementation factors, actor interests, institutional adaptation and multi-level governance. In a second step we focus in on the experiences of rainwater harvesting in Berlin and present the results of a mapping exercise on a wide variety of projects implemented there over the last 30 years. Here, we develop a typology to characterize the rainwater harvesting projects in terms of policy issues (what problems and goals are targeted), project design (which kind of solutions are envisaged), project implementation (how and when they were implemented), location (whether they are in new or existing urban developments) and actors (which stakeholders are involved and how), paying particular attention to the shifting institutional framework in Berlin. Mapping and categorizing these projects is based on a combination of document analysis and expert interviews. The paper concludes by synthesizing the findings, identifying how far the goals, governance structures and instruments applied in the Berlin projects studied reflect the findings emerging from the meta-analysis of the international literature on policy and planning issues of rainwater harvesting and what implications these findings have for mainstreaming such techniques in future practice.

Keywords: institutional framework, planning, policy, project implementation, urban rainwater management

Procedia PDF Downloads 287