Search results for: protein characterization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4690

Search results for: protein characterization

1120 Comparative Study of Flood Plain Protection Zone Determination Methodologies in Colombia, Spain and Canada

Authors: P. Chang, C. Lopez, C. Burbano

Abstract:

Flood protection zones are riparian buffers that are formed to manage and mitigate the impact of flooding, and in turn, protect local populations. The purpose of this study was to evaluate the Guía Técnica de Criterios para el Acotamiento de las Rondas Hídricas in Colombia against international regulations in Canada and Spain, in order to determine its limitations and contribute to its improvement. The need to establish a specific corridor that allows for the dynamic development of a river is clear; however, limitations present in the Colombian Technical Guide are identified. The study shows that international regulations provide similar concepts as used in Colombia, but additionally integrate aspects such as regionalization that allows for a better characterization of the channel way, and incorporate the frequency of flooding and its probability of occurrence in the concept of risk when determining the protection zone. The case study analyzed in Dosquebradas - Risaralda aimed at comparing the application of the different standards through hydraulic modeling. It highlights that the current Colombian standard does not offer sufficient details in its implementation phase, which leads to a false sense of security related to inaccuracy and lack of data. Furthermore, the study demonstrates how the Colombian norm is ill-adapted to the conditions of Dosquebradas typical of the Andes region, both in the social and hydraulic aspects, and does not reduce the risk, nor does it improve the protection of the population. Our study considers it pertinent to include risk estimation as an integral part of the methodology when establishing protect flood zone, considering the particularity of water systems, as they are characterized by an heterogeneous natural dynamic behavior.

Keywords: environmental corridor, flood zone determination, hydraulic domain, legislation flood protection zone

Procedia PDF Downloads 108
1119 From Sampling to Sustainable Phosphate Recovery from Mine Waste Rock Piles

Authors: Hicham Amar, Mustapha El Ghorfi, Yassine Taha, Abdellatif Elghali, Rachid Hakkou, Mostafa Benzaazoua

Abstract:

Phosphate mine waste rock (PMWR) generated during ore extraction is continuously increasing, resulting in a significant environmental footprint. The main objectives of this study consist of i) elaboration of the sampling strategy of PMWR piles, ii) a mineralogical and chemical characterization of PMWR piles, and iii) 3D block model creation to evaluate the potential valorization of the existing PMWR. Destructive drilling using reverse circulation from 13 drills was used to collect samples for chemical (X-ray fluorescence analysis) and mineralogical assays. The 3D block model was created based on the data set, including chemical data of the realized drills using Datamine RM software. The optical microscopy observations showed that the sandy phosphate from drills in the PMWR piles is characterized by the abundance of carbonate fluorapatite with the presence of calcite, dolomite, and quartz. The mean grade of composite samples was around 19.5±2.7% for P₂O₅. The mean grade of P₂O₅ exhibited an increasing tendency by depth profile from bottom to top of PMWR piles. 3D block model generated with chemical data confirmed the tendency of the mean grades’ variation and may allow a potential selective extraction according to %P₂O₅. The 3D block model of P₂O₅ grade is an efficient sampling approach that confirmed the variation of P₂O₅ grade. This integrated approach for PMWR management will be a helpful tool for decision-making to recover the residual phosphate, adopting the circular economy and sustainability in the phosphate mining industry.

Keywords: 3D modelling, reverse circulation drilling, circular economy, phosphate mine waste rock, sampling

Procedia PDF Downloads 66
1118 Rodents Control in Poultry Production; Harnessing Conflicting Animal Welfare Interests in Developing Countries

Authors: O. M. Alabi, F. A. Aderemi, M. O. Ayoola

Abstract:

An aspect of biosecurity measures to ensure good welfare for chickens is rodents’ control. Rats and mice are rodents commonly found in poultry houses in most of the African countries. More than 20,000 species of rat have been identified in Africa among which are; Black house rats (Rattus rattus), East African mole rat (Tachyorcytes splendens), Naked mole rat (Heterocephalus glaber), Zambian mole rat (Fukomys mechowii), African grass rat (Arvicanthis niloticus), Nigerian mole rat (Cryptomys foxi), Target rat (Stochomys longicaudatus) and West African Shaggy rat (Dasymis rufulus). Apart from being destructive, rats and mice are voracious in that they compete with chickens for feed and water thereby causing economical losses to the farmer, they are also vectors to many pathogens of poultry diseases such as Salmonellosis, colibacillosis, ascaridiasis, coryza, pasteurellosis and mycoplasmosis. As bad as these rodents are to the poultry farmers, they are good sources of animal protein to local hunters and other farmers in most African countries. Rat is considered a delicacy in Nigeria and many other African countries hence the need to investigate into how the rats species will not go into extinction. Rodents are usually controlled by poultry farmers with the use of rodenticides which can either be anticoagulant or stomach poison, and with the use of baits. However, elimination of rats and mice is being considered as callous act against these species of animal and their natural existence as human food also. This paper therefore suggests that sanitation methods such as feed removal from rats and mice, controlling feed and water spillage, proper disposal of waste eggs, dead birds and garbage, keeping the surroundings of the poultry clean; rodent proofing by making it difficult for rodents to enter the poultry houses are some of the humane ways of controlling rodents in poultry production to avoid improving the welfare of a particular animal at the expense of the other.

Keywords: management, poultry, rodents, welfare

Procedia PDF Downloads 414
1117 Characterization of Candlenut Shells and Its Application to Remove Oil and Fine Solids of Produced Water in Nutshell Filters of Water Cleaning Plant

Authors: Annur Suhadi, Haris B. Harahap, Zaim Arrosyidi, Epan, Darmapala

Abstract:

Oilfields under waterflood often face the problem of plugging injectors either by internal filtration or external filter cake built up inside pore throats. The content of suspended solids shall be reduced to required level of filtration since corrective action of plugging is costly expensive. The performance of nutshell filters, where filtration takes place, is good using pecan and walnut shells. Candlenut shells were used instead of pecan and walnut shells since they were abundant in Indonesia, Malaysia, and East Africa. Physical and chemical properties of walnut, pecan, and candlenut shells were tested and the results were compared. Testing, using full-scale nutshell filters, was conducted to determine the oil content, turbidity, and suspended solid removal, which was based on designed flux rate. The performance of candlenut shells, which were deeply bedded in nutshell filters for filtration process, was monitored. Cleaned water outgoing nutshell filters had total suspended solids of 17 ppm, while oil content could be reduced to 15.1 ppm. Turbidity, using candlenut shells, was below the specification for injection water, which was less than 10 Nephelometric Turbidity Unit (NTU). Turbidity of water, outgoing nutshell filter, was ranged from 1.7-5.0 NTU at various dates of operation. Walnut, pecan, and candlenut shells had moisture content of 8.98 wt%, 10.95 wt%, and 9.95 wt%, respectively. The porosity of walnut, pecan, and candlenut shells was significantly affected by moisture content. Candlenut shells had property of toluene solubility of 7.68 wt%, which was much higher than walnut shells, reflecting more crude oil adsorption. The hardness of candlenut shells was 2.5-3 Mohs, which was close to walnut shells’ hardness. It was advantage to guarantee the cleaning filter cake by fluidization process during backwashing.

Keywords: candlenut shells, filtration, nutshell filter, pecan shells, walnut shells

Procedia PDF Downloads 103
1116 Rapid and Easy Fabrication of Collagen-Based Biocomposite Scaffolds for 3D Cell Culture

Authors: Esra Turker, Umit Hakan Yildiz, Ahu Arslan Yildiz

Abstract:

The key of regenerative medicine is mimicking natural three dimensional (3D) microenvironment of tissues by utilizing appropriate biomaterials. In this study, a synthetic biodegradable polymer; poly (L-lactide-co-ε-caprolactone) (PLLCL) and a natural polymer; collagen was used to mimic the biochemical structure of the natural extracellular matrix (ECM), and by means of electrospinning technique the real physical structure of ECM has mimicked. PLLCL/Collagen biocomposite scaffolds enables cell attachment, proliferation and nutrient transport through fabrication of micro to nanometer scale nanofibers. Biocomposite materials are commonly preferred due to limitations of physical and biocompatible properties of natural and synthetic materials. Combination of both materials improves the strength, degradation and biocompatibility of scaffold. Literature studies have shown that collagen is mostly solved with heavy chemicals, which is not suitable for cell culturing. To overcome this problem, a new approach has been developed in this study where polyvinylpyrrolidone (PVP) is used as co-electrospinning agent. PVP is preferred due to its water solubility, so PLLCL/collagen biocomposite scaffold can be easily and rapidly produced. Hydrolytic and enzymatic biodegradation as well as mechanical strength of scaffolds were examined in vitro. Cell adhesion, proliferation and cell morphology characterization studies have been performed as well. Further, on-chip drug screening analysis has been performed over 3D tumor models. Overall, the developed biocomposite scaffold was used for 3D tumor model formation and obtained results confirmed that developed model could be used for drug screening studies to predict clinical efficacy of a drug.

Keywords: biomaterials, 3D cell culture, drug screening, electrospinning, lab-on-a-chip, tissue engineering

Procedia PDF Downloads 306
1115 Steel Industry Waste as Recyclable Raw Material for the Development of Ferrous-Aluminum Alloys

Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça

Abstract:

The study aims to assess if high-purity iron powder in iron-aluminum alloys can be replaced by SAE 1020 steel chips with an atomicity proportion of 50% for each element. Chips of SAE 1020 are rejected in industrial processes. Thus, the use of SAE 1020 as a replaceable composite for iron increase the sustainability of ferrous alloys by recycling industrial waste. The alloys were processed by high energy milling, of which the main advantage is the minimal loss of raw material. The raw material for three of the six samples were high purity iron powder and recyclable aluminum cans. For the other three samples, the high purity iron powder has been replaced with chips of SAE 1020 steel. The process started with the separate milling of chips of aluminum and SAE 1020 steel to obtain the powder. Subsequently, the raw material was mixed in the pre-defined proportions, milled together for five hours and then underwent a closed-die hot compaction at the temperature of 500 °C. Thereafter, the compacted samples underwent heat treatments known as sintering and solubilization. All samples were sintered one hour, and 4 samples were solubilized for either 4 or 10 hours under well-controlled atmosphere conditions. Lastly, the composition and the mechanical properties of their hardness were analyzed. The samples were analyzed by optical microscopy, scanning electron microscopy and hardness testing. The results of the analysis showed a similar chemical composition and interesting hardness levels with low standard deviations. This verified that the use of SAE 1020 steel chips can be a low-cost alternative for high-purity iron powder and could possibly replace high-purity Iron in industrial applications.

Keywords: Fe-Al alloys, high energy milling, iron-aluminum alloys, metallography characterization, powder metallurgy, recycling ferrous alloy, SAE 1020 steel recycling

Procedia PDF Downloads 352
1114 Technological Properties, in Vitro Starch Digestibility, and Antioxidant Activity of Gluten-Free Cakes Enriched With Prunus spinosa

Authors: Elif Cakir, Görkem Özülkü, Hatice Bekiroğlu, Muhammet Arici, Osman Sağdic

Abstract:

It is important to be able to formulate cakes with a wide consumption mass with gluten-free and high nutritional value ingredients to increase the consumption possibilities of people with limited nutrition opportunities. Although people do not prefer Prunus spinosa (PS)because of its sour taste and its use in the food industry is limited on a local scale, the potential of using PS, which is a naturally rich source of many micronutrients and bioactive compounds, in glutenfree cake production has been investigated. In this study, the potential of using PS, a natural wild fruit, in the production of functional gluten-free cakes was investigated. It was aimed to evaluate the effects of freeze-dried and powdered PS-enriched rice flour cakes on tech functionality, nutrition and eating quality. In terms of physicochemical properties, PS raises increased the ash, protein, and moisture values of the cakes. PS with high phenolic content, phenolic component content, and radical reducing power made by ABTS, FRAP, and DPPH techniques were higher in all samples than control, and the highest 4% PS was determined in cakes. In terms of the glycemic index (GI), which is an important feature of diet products, it was determined that the GI in cakes decreased by 86.30±1.04.75.05±1.16 and 69.38±1.21, respectively, with the increase in PS ratio. Except for the 1%, PS added sample, the increase in PS caused a decrease in specific volume, % porosity and increase in hardness, including 4 days of storage. PS increase decreased the L* and b* values and increased a* value and redness of the cake. Sensory liking of the cake samples containing PS was scored significantly (p<0.05) higher of control.

Keywords: Prunus spinosa, gluten-free cake, antioxidant, phenolic, glycemic index

Procedia PDF Downloads 128
1113 Detection and Expression of Peroxidase Genes in Trichoderma harzianum KY488466 and Its Response to Crude Oil Degradation

Authors: Michael Dare Asemoloye, Segun Gbolagade Jonathan, Rafiq Ahmad, Odunayo Joseph Olawuyi, D. O. Adejoye

Abstract:

Fungi have potentials for degrading hydrocarbons through the secretion of different enzymes. Crude oil tolerance and degradation by Trichoderma harzianum was investigated in this study with its ability to produce peroxidase enzymes (LiP and MnP). Many fungal strains were isolated from rhizosphere of grasses growing on a crude oil spilled site, and the most frequent strain based on percentage incidence was further characterized using morphological and molecular characteristics. Molecular characterization was done through the amplification of Ribosomal-RNA regions of 18s (1609-1627) and 28s (287-266) using ITS1 and ITS4 combinations and it was identified using NCBI BLAST tool. The selected fungus was also subjected to an in-vitro tolerance test at crude oil concentrations of 5, 10, 15, 20 and 25% while 0% served as control. In addition, lignin peroxidase genes (lig1-6) and manganese peroxidase gene (mnp) were detected and expressed in this strain using RT-PCR technique, its peroxidase producing activities was also studied in aliquots (U/ml). This strain had highest incidence of 80%, it was registered in NCBI as Trichoderma harzianum asemoJ KY488466. The strain KY488466 responded to crude oil concentrations as it increase, the dose inhibition response percentage (DIRP) increased from 41.67 to 95.41 at 5 to 25 % crude oil concentrations. All the peroxidase genes are present in KY488466, and expressed with amplified 900-1000 bp through RT-PCR technique. In this strain, lig2, lig4 and mnp genes were over-expressed, lig 6 was moderately expressed, while none of the genes was under-expressed. The strain also produced 90±0.87 U/ml lignin peroxidase and 120±1.23 U/mil manganese peroxidase enzymes in aliquots. These results imply that KY488466 can tolerate and survive high crude oil concentration and could be exploited for bioremediation of oil-spilled soils, the produced peroxidase enzymes could also be exploited for other biotechnological experiments.

Keywords: crude oil, enzymes, expression, peroxidase genes, tolerance, Trichoderma harzianum

Procedia PDF Downloads 221
1112 Dwindling the Stability of DNA Sequence by Base Substitution at Intersection of COMT and MIR4761 Gene

Authors: Srishty Gulati, Anju Singh, Shrikant Kukreti

Abstract:

The manifestation of structural polymorphism in DNA depends on the sequence and surrounding environment. Ample of folded DNA structures have been found in the cellular system out of which DNA hairpins are very common, however, are indispensable due to their role in the replication initiation sites, recombination, transcription regulation, and protein recognition. We enumerate this approach in our study, where the two base substitutions and change in temperature embark destabilization of DNA structure and misbalance the equilibrium between two structures of a sequence present at the overlapping region of the human COMT gene and MIR4761 gene. COMT and MIR4761 gene encodes for catechol-O-methyltransferase (COMT) enzyme and microRNAs (miRNAs), respectively. Environmental changes and errors during cell division lead to genetic abnormalities. The COMT gene entailed in dopamine regulation fosters neurological diseases like Parkinson's disease, schizophrenia, velocardiofacial syndrome, etc. A 19-mer deoxyoligonucleotide sequence 5'-AGGACAAGGTGTGCATGCC-3' (COMT19) is located at exon-4 on chromosome 22 and band q11.2 at the intersection of COMT and MIR4761 gene. Bioinformatics studies suggest that this sequence is conserved in humans and few other organisms and is involved in recognition of transcription factors in the vicinity of 3'-end. Non-denaturating gel electrophoresis and CD spectroscopy of COMT sequences indicate the formation of hairpin type DNA structures. Temperature-dependent CD studies revealed an unusual shift in the slipped DNA-Hairpin DNA equilibrium with the change in temperature. Also, UV-thermal melting techniques suggest that the two base substitutions on the complementary strand of COMT19 did not affect the structure but reduces the stability of duplex. This study gives insight about the possibility of existing structurally polymorphic transient states within DNA segments present at the intersection of COMT and MIR4761 gene.

Keywords: base-substitution, catechol-o-methyltransferase (COMT), hairpin-DNA, structural polymorphism

Procedia PDF Downloads 117
1111 The Effect of Aerobics Course on Fitness Ability of the University Students

Authors: Hui-Fang Lee, Hsuan-Jung Hsieh, Wen-Chi Lu, Meng-Chu Liu

Abstract:

The purpose of the study was to examine abnormal BMI students of Chien Hsin University of Science and Technology, implement teaching aerobics course through elementary and advanced curriculum design, dietary education and three-day dietary record, analyze participant fitness improvement, an 10-week course as well as pre-test and post-test were carried out to evaluate the effect of the aerobics course on the fitness ability. The actual participate elementary and advanced courses each of 40 people, with low participation deduction course unfinished fitness testing, access to elementary curriculum valid samples 35 (87.5%) people, advanced courses valid samples 38(95%) people, 16 students participated in two consecutive courses. The fitness activities included sit-bending, one-minute sit-ups, standing long jump, and three minutes to board the stage. Analysis and comparison to the average three-day dietary record difference, an independent samples t-test was conducted to analyze the differences in the four activities between pre-test and post-test. The results showed that the elementary course had significant effects on females’ sit-bending and one minute sit-ups, the females also had high fat intake in three-day dietary record. The advanced course had significant effects on males’ sit-bending and on females’ BMI, sit-bending and standing long jump, males and females in three-day dietary record carbohydrate intake slightly low, slightly higher protein and fat intake. In conclusion, aerobics course teaching, dietary education and three-day, dietary record implementation can significantly enhance the physical fitness indicators, and continued to participate in advanced courses better. In the practice of sport should be the future course planning elementary and advanced courses, while introducing dietary education, achieve concrete results in improving physical fitness.

Keywords: physical fitness, aerobics course, dietary education, three-day dietary record

Procedia PDF Downloads 311
1110 Nitrogen Fixation in Hare Gastrointestinal Tract

Authors: Tatiana A. Kuznetsova, Maxim V. Vechersky, Natalia V. Kostina, Marat M. Umarov, Elena I. Naumova

Abstract:

One of the main problems of nutrition of phytophagous animals is the insufficiency of protein in their forage. Usually, symbiotic microorganisms highly contribute both to carbohydrates and nitrogen compounds of the food. But it is not easy to utilize microbial biomass in the large intestine and caecum for the animals with hindgut fermentation. So that, some animals, as well hares, developed special mechanism of contribution of such biomass - obligate autocoprophagy, or reingestion. Hares have two types of feces - the hard and the soft. Hard feces are excreted at night, while hares are vigilance ("foraging period"), and the soft ones (caecotrophs) are produced and reingested in the day-time during hares "resting-period". We examine the role of microbial digestion in providing nitrogen nutrition of hare (Lepus europaeus). We determine the ability of nitrogen fixation in fornix and stomach body, small intestine, caecum and colon of hares' gastro-intestinal tract in two main period of hares activity - "resting-period" (day time) and "foraging period" (late-evening and very-early-morning). We use gas chromatography to measure levels of nitrogen fixing activity (acetylene reduction). Nitrogen fixing activity was detected in the contents of all analyzed parts of the gastrointestinal tract. Maximum values were recorded in the large intestine. Also daily dynamics of the process was detected. Thus, during hare “resting-period” (caecotrophs formation) N2-fixing activity was significantly higher than during “foraging period”, reaching 0,3 nmol C2H4/g*h. N2-fixing activity in the gastrointestinal tract can allocate to significant contribution of nitrogen fixers to microbial digestion in hare and confirms the importance of coprophagy as a nitrogen source in lagomorphs.

Keywords: coprophagy, gastrointestinal tract, lagomorphs, nitrogen fixation

Procedia PDF Downloads 355
1109 Development and Characterization Self-Nanoemulsifying Drug Delivery Systems of Poorly Soluble Drug Dutasteride

Authors: Rajinikanth Siddalingam, Poonguzhali Subramanian

Abstract:

The present study aims to prepare and evaluate the self-nano emulsifying drug delivery (SNEDDS) system to enhance the dissolution rate of a poorly soluble drug dutasteride. The formulation was prepared using capryol PGMC, Cremophor EL, and polyethylene glycol (PEG) 400 as oil, surfactant and co-surfactant, respectively. The pseudo-ternary phase diagrams with presence and absence of drug were plotted to find out the nano emulsification range and also to evaluate the effect of dutasteride on the emulsification behavior of the phases. Prepared SNEDDS formulations were evaluated for its particle size distribution, nano emulsifying properties, robustness to dilution, self-emulsification time, turbidity measurement, drug content and in-vitro dissolution. The optimized formulations are further evaluated for heating cooling cycle, centrifugation studies, freeze-thaw cycling, particle size distribution and zeta potential were carried out to confirm the stability of the formed SNEDDS formulations. The particle size, zeta potential and polydispersity index of the optimized formulation found to be 35.45 nm, -15.45 and 0.19, respectively. The in vitro results are revealed that the prepared formulation enhanced the dissolution rate of dutasteride significantly as compared with pure drug. The in vivo studies in was conducted using rats and the results are revealed that SNEDDS formulation has enhanced the bioavailability of dutasteride drug significantly as compared with raw drug. Based the results, it was concluded that the dutasteride-loaded SNEDDS shows potential to enhance the dissolution of dutasteride, thus improving the bioavailability and therapeutic effects.

Keywords: self-emulsifying drug delivery system, dutasteride, enhancement of bioavailability, dissolution enhancement

Procedia PDF Downloads 264
1108 Practical Experiences in the Development of a Lab-Scale Process for the Production and Recovery of Fucoxanthin

Authors: Alma Gómez-Loredo, José González-Valdez, Jorge Benavides, Marco Rito-Palomares

Abstract:

Fucoxanthin is a carotenoid that exerts multiple beneficial effects on human health, including antioxidant, anti-cancer, antidiabetic and anti-obesity activity; making the development of a whole process for its production and recovery an important contribution. In this work, the lab-scale production and purification of fucoxanthin in Isocrhysis galbana have been studied. In batch cultures, low light intensities (13.5 μmol/m2s) and bubble agitation were the best conditions for production of the carotenoid with product yields of up to 0.143 mg/g. After fucoxanthin ethanolic extraction from biomass and hexane partition, further recovery and purification of the carotenoid has been accomplished by means of alcohol – salt Aqueous Two-Phase System (ATPS) extraction followed by an ultrafiltration (UF) step. An ATPS comprised of ethanol and potassium phosphate (Volume Ratio (VR) =3; Tie-line Length (TLL) 60% w/w) presented a fucoxanthin recovery yield of 76.24 ± 1.60% among the studied systems and was able to remove 64.89 ± 2.64% of the carotenoid and chlorophyll pollutants. For UF, the addition of ethanol to the original recovered ethanolic ATPS stream to a final relation of 74.15% (w/w) resulted in a reduction of approximately 16% of the protein contents, increasing product purity with a recovery yield of about 63% of the compound in the permeate stream. Considering the production, extraction and primary recovery (ATPS and UF) steps, around a 45% global fucoxanthin recovery should be expected. Although other purification technologies, such as Centrifugal Partition Chromatography are able to obtain fucoxanthin recoveries of up to 83%, the process developed in the present work does not require large volumes of solvents or expensive equipment. Moreover, it has a potential for scale up to commercial scale and represents a cost-effective strategy when compared to traditional separation techniques like chromatography.

Keywords: aqueous two-phase systems, fucoxanthin, Isochrysis galbana, microalgae, ultrafiltration

Procedia PDF Downloads 418
1107 Effects of Injectable Thermosensitive Hydrogel Containing Chitosan as a Barrier for Prevention of Post-operative Peritoneal Adhesion in Rats

Authors: Sara Javanmardi, Sepehr Aziziz, Baharak Divband, Masoumeh Firouzamandi

Abstract:

Post-operative adhesions are the most common cause of intestinal obstruction, female infertility and chronic abdominal pain. We developed a novel approach for preventing post-operative peritoneal adhesions using a biodegradable and thermosensitive curcumin hydrogel in rats. Thirteen male Sprague-Dawley rats were assigned randomly into five groups of six animals each: In SHAM group, the cecum was exteriorized, gently manipulated and sent back into the abdomen. In CONTROL group, the surgical abrasion was performed with no further treatment. In Hydrogel group, surgical abrasion was performed with local application of blank hydrogel (1 mL). In Curcumin group, surgical abrasion was performed with local application of curcumin (1 mL). In CUR/HGEL group, surgical abrasion was performed with local application of curcumin hydrogel (1 mL). On day 10, adhesions were assessed using a standardized scale (Evans model), and samples were collected for the Real-time PCR. Real-time PCR was performed to determine mRNA levels of VCAM-1, ICAM-1 and GAPDH. The macroscopic adhesion intensity showed statistically significant differences between the CUR/HGEL and other groups (P=0.0005). The findings of the present study revealed there were statistically significant differences between the groups regarding adhesion band length and numbers (P<0.0001). The protein and mRNA expression of VCAM-1 and ICAM-1 in secal tissues were significantly down regulated due to curcumin-hydrogel application in CUR/HGEL compared to other groups (p<0.05). The thermosensitive hydrogel could reduce the severity and even prevent formation of intra-abdominal adhesion. Curcumin hydrogel could serve as a potential barrier agent to prevent post-operative peritoneal adhesion in rats.

Keywords: peritoneal adhesion, hydrogel, curcumijn, ICAM-1, VCAM-1

Procedia PDF Downloads 78
1106 Bulk Modification of Poly(Dimethylsiloxane) for Biomedical Applications

Authors: A. Aslihan Gokaltun, Martin L. Yarmush, Ayse Asatekin, O. Berk Usta

Abstract:

In the last decade microfabrication processes including rapid prototyping techniques have advanced rapidly and achieved a fairly matured stage. These advances encouraged and enabled the use of microfluidic devices by a wider range of users with applications in biological separations, and cell and organoid cultures. Accordingly, a significant current challenge in the field is controlling biomolecular interactions at interfaces and the development of novel biomaterials to satisfy the unique needs of the biomedical applications. Poly(dimethylsiloxane) (PDMS) is by far the most preferred material in the fabrication of microfluidic devices. This can be attributed its favorable properties, including: (1) simple fabrication by replica molding, (2) good mechanical properties, (3) excellent optical transparency from 240 to 1100 nm, (4) biocompatibility and non-toxicity, and (5) high gas permeability. However, high hydrophobicity (water contact angle ~108°±7°) of PDMS often limits its applications where solutions containing biological samples are concerned. In our study, we created a simple, easy method for modifying the surface chemistry of PDMS microfluidic devices through the addition of surface-segregating additives during manufacture. In this method, a surface segregating copolymer is added to precursors for silicone and the desired device is manufactured following the usual methods. When the device surface is in contact with an aqueous solution, the copolymer self-organizes to expose its hydrophilic segments to the surface, making the surface of the silicone device more hydrophilic. This can lead to several improved performance criteria including lower fouling, lower non-specific adsorption, and better wettability. Specifically, this approach is expected to be useful for the manufacture of microfluidic devices. It is also likely to be useful for manufacturing silicone tubing and other materials, biomaterial applications, and surface coatings.

Keywords: microfluidics, non-specific protein adsorption, PDMS, PEG, copolymer

Procedia PDF Downloads 260
1105 Vitamin Content of Swordfish (Xhiphias gladius) Affected by Salting and Frying

Authors: L. Piñeiro, N. Cobas, L. Gómez-Limia, S. Martínez, I. Franco

Abstract:

The swordfish (Xiphias gladius) is a large oceanic fish of high commercial value, which is widely distributed in waters of the world’s oceans. They are considered to be an important source of high quality proteins, vitamins and essential fatty acids, although only half of the population follows the recommendation of nutritionists to consume fish at least twice a week. Swordfish is consumed worldwide because of its low fat content and high protein content. It is generally sold as fresh, frozen, and as pieces or slices. The aim of this study was to evaluate the effect of salting and frying on the composition of the water-soluble vitamins (B2, B3, B9 and B12) and fat-soluble vitamins (A, D, and E) of swordfish. Three loins of swordfish from Pacific Ocean were analyzed. All the fishes had a weight between 50 and 70 kg and were transported to the laboratory frozen (-18 ºC). Before the processing, they were defrosted at 4 ºC. Each loin was sliced and salted in brine. After cleaning the slices, they were divided into portions (10×2 cm) and fried in olive oil. The identification and quantification of vitamins were carried out by high-performance liquid chromatography (HPLC), using methanol and 0.010% trifluoroacetic acid as mobile phases at a flow-rate of 0.7 mL min-1. The UV-Vis detector was used for the detection of the water- and fat-soluble vitamins (A and D), as well as the fluorescence detector for the detection of the vitamin E. During salting, water and fat-soluble vitamin contents remained constant, observing an evident decrease in the values of vitamin B2. The diffusion of salt into the interior of the pieces and the loss of constitution water that occur during this stage would be related to this significant decrease. In general, after frying water-soluble and fat-soluble vitamins showed a great thermolability with high percentages of retention with values among 50–100%. Vitamin B3 is the one that exhibited higher percentages of retention with values close to 100%. However, vitamin B9 presented the highest losses with a percentage of retention of less than 20%.

Keywords: frying, HPLC, salting, swordfish, vitamins

Procedia PDF Downloads 123
1104 Genomics Approach for Excavation of NAS Genes from Nutri Rich Minor Millet Crops: Transforming Perspective from Orphan Plants to Future Food Crops

Authors: Mahima Dubey, Girish Chandel

Abstract:

Minor millets are highly nutritious and climate resilient cereal crops. These features make them ideal candidates to excavate the physiology of the underlying mechanism. In an attempt to understand the basis of mineral nutrition in minor millets, a set of five Barnyard millet genotypes were analyzed for grain Fe and Zn content under contrasting Fe-Zn supply to identify genotypes proficient in tolerating mineral deficiency. This resulted in the identification of Melghat-1 genotype to be nutritionally superior with better ability to withstand deficiency. Expression analysis of several Nicotianamine synthase (NAS) genes showed that HvNAS1 and OsNAS2 genes were prominent in positively mediating mineral deficiency response in Barnyard millet. Further, strategic efforts were employed for fast-track identification of more effective orthologous NAS genes from Barnyard millet. This resulted in the identification of two genes namely EfNAS1 (orthologous to HvNAS1 of barley) and EfNAS2 (orthologous to OsNAS2 gene of rice). Sequencing and thorough characterization of these sequences revealed the presence of intact NAS domain and signature tyrosine and di-leucine motifs in their predicted proteins and thus established their candidature as functional NAS genes in Barnyard millet. Moreover, EfNAS1 showed structural superiority over previously known NAS genes and is anticipated to have role in more efficient metal transport. Findings of the study provide insight into Fe-Zn deficiency response and mineral nutrition in millets. This provides millets with a physiological edge over micronutrient deficient staple cereals such as rice in withstanding Fe-Zn deficiency and subsequently accumulating higher levels of Fe and Zn in millet grains.

Keywords: gene expression, micronutrient, millet, ortholog

Procedia PDF Downloads 226
1103 Toxicity Identification and Evaluation for the Effluent from Seawater Desalination Facility in Korea Using D. magna and V. fischeri

Authors: Sung Jong Lee, Hong Joo Ha, Chun Sang Hong

Abstract:

In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a Seawater desalination facility in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (24,215 ~ 29,562 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach, and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Acknowledgement: This research was supported by a grant (16IFIP-B089911-03) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: TIE, D. magna, V. fischeri, seawater desalination facility

Procedia PDF Downloads 254
1102 Close-Range Remote Sensing Techniques for Analyzing Rock Discontinuity Properties

Authors: Sina Fatolahzadeh, Sergio A. Sepúlveda

Abstract:

This paper presents advanced developments in close-range, terrestrial remote sensing techniques to enhance the characterization of rock masses. The study integrates two state-of-the-art laser-scanning technologies, the HandySCAN and GeoSLAM laser scanners, to extract high-resolution geospatial data for rock mass analysis. These instruments offer high accuracy, precision, low acquisition time, and high efficiency in capturing intricate geological features in small to medium size outcrops and slope cuts. Using the HandySCAN and GeoSLAM laser scanners facilitates real-time, three-dimensional mapping of rock surfaces, enabling comprehensive assessments of rock mass characteristics. The collected data provide valuable insights into structural complexities, surface roughness, and discontinuity patterns, which are essential for geological and geotechnical analyses. The synergy of these advanced remote sensing technologies contributes to a more precise and straightforward understanding of rock mass behavior. In this case, the main parameters of RQD, joint spacing, persistence, aperture, roughness, infill, weathering, water condition, and joint orientation in a slope cut along the Sea-to-Sky Highway, BC, were remotely analyzed to calculate and evaluate the Rock Mass Rating (RMR) and Geological Strength Index (GSI) classification systems. Automatic and manual analyses of the acquired data are then compared with field measurements. The results show the usefulness of the proposed remote sensing methods and their appropriate conformity with the actual field data.

Keywords: remote sensing, rock mechanics, rock engineering, slope stability, discontinuity properties

Procedia PDF Downloads 57
1101 Reservoir Characterization using Comparative Petrophysical Testing Approach Acquired with Facies Architecture Properties Analysis

Authors: Axel Priambodo, Dwiharso Nugroho

Abstract:

Studies conducted to map the reservoir properties based on facies architecture in which to determine the distribution of the petrophysical properties and calculate hydrocarbon reserves in study interval. Facies Architecture analysis begins with stratigraphic correlation that indicates the area is divided into different system tracts. The analysis of distribution patterns and compiling core analysis with facies architecture model show that there are three estuarine facies appear. Formation evaluation begins with shale volume calculation using Asquith-Krygowski and Volan Triangle Method. Proceed to the calculation of the total and effective porosity using the Bateman-Konen and Volan Triangle Method. After getting the value of the porosity calculation was continued to determine the effective water saturation and non-effective by including parameters of water resistivity and resistivity clay. The results of the research show that the Facies Architecture on the field in divided into three main facies which are Estuarine Channel, Estuarine Sand Bar, and Tidal Flat. The petrophysics analysis are done by comparing different methods also shows that the Volan Triangle Method does not give a better result of the Volume Shale than the Gamma Ray Method, but on the other hand, the Volan Triangle Methode is better on calculating porosity compared to the Bateman-Konen Method. The effective porosity distributions are affected by the distribution of the facies. Estuarine Sand Bar has a low porosity number and Estuarine Channel has a higher number of the porosity. The effective water saturation is controlled by structure where on the closure zone the water saturation is lower than the area beneath it. It caused by the hydrocarbon accumulation on the closure zone.

Keywords: petrophysics, geology, petroleum, reservoir

Procedia PDF Downloads 314
1100 Nickel Oxide-Nitrogen-Doped Carbon (Ni/NiOx/NC) Derived from Pyrolysis of 2-Aminoterephthalic Acid for Electrocatalytic Oxidation of Ammonia

Authors: Yu-Jen Shih, Juan-Zhang Lou

Abstract:

Nitrogenous compounds, such as NH4+/NH3 and NO3-, have become important contaminants in water resources. Excessive concentration of NH3 leads to eutrophication, which poses a threat to aquatic organisms in the environment. Electrochemical oxidation emerged as a promising water treatment technology, offering advantages such as simplicity, small-scale operation, and minimal reliance on additional chemicals. In this study, a nickel-based metal-organic framework (Ni-MOF) was synthesized using 2-amino terephthalic acid (BDC-NH2) and nickel nitrate. The Ni-MOF was further carbonized as derived nickel oxide and nitrogen-carbon composite, Ni/NiOx/NC. The nickel oxide within the 2D porous carbon texture served as active sites for ammonia oxidation. Results of characterization showed that the Ni-MOF was a hexagonal and flaky nanoparticle. With increasing carbonization temperature, the nickel ions in the organic framework re-crystallized as NiO clusters on the surfaces of the 2D carbon. The electrochemical surface area of Ni/NiOx/NC significantly increased as to improve the efficiency of ammonia oxidation. The phase transition of Ni(OH)2⇌NiOOH at around +0.8 V was the primary mediator of electron transfer. Batch electrolysis was conducted under constant current and constant potential modes. The electrolysis parameters included pyrolysis temperatures, pH, current density, initial feed concentration, and electrode potential. The constant current batch experiments indicated that via carbonization at 800 °C, Ni/NiOx/NC(800) was able to decrease the ammonium nitrogen of 50 mg-N/L to below 1 ppm within 4 hours at a current density of 3 mA/cm2 and pH 11 with negligible oxygenated nitrogen formation. The constant potential experiments confirmed that N2 nitrogen selectivity was enhanced up to 90% at +0.8 V.

Keywords: electrochemical oxidation, nickel oxyhydroxide, metal-organic framework, ammonium, nitrate

Procedia PDF Downloads 54
1099 Multiple Organ Manifestation in Neonatal Lupus Erythematous: Report of Two Cases

Authors: A. Lubis, R. Widayanti, Z. Hikmah, A. Endaryanto, A. Harsono, A. Harianto, R. Etika, D. K. Handayani, M. Sampurna

Abstract:

Neonatal lupus erythematous (NLE) is a rare disease marked by clinical characteristic and specific maternal autoantibody. Many cutaneous, cardiac, liver, and hematological manifestations could happen with affect of one organ or multiple. In this case, both babies were premature, low birth weight (LBW), small for gestational age (SGA) and born through caesarean section from a systemic lupus erythematous (SLE) mother. In the first case, we found a baby girl with dyspnea and grunting. Chest X ray showed respiratory distress syndrome (RDS) great I and echocardiography showed small atrial septal defect (ASD) and ventricular septal defect (VSD). She also developed anemia, thrombocytopenia, elevated C-reactive protein, hypoalbuminemia, increasing coagulation factors, hyperbilirubinemia, and positive blood culture of Klebsiella pneumonia. Anti-Ro/SSA and Anti-nRNP/sm were positive. Intravenous fluid, antibiotic, transfusion of blood, thrombocyte concentrate, and fresh frozen plasma were given. The second baby, male presented with necrotic tissue on the left ear and skin rashes, erythematous macula, athropic scarring, hyperpigmentation on all of his body with various size and facial haemorrhage. He also suffered from thrombocytopenia, mild elevated transaminase enzyme, hyperbilirubinemia, anti-Ro/SSA was positive. Intravenous fluid, methyprednisolone, intravenous immunoglobulin (IVIG), blood, and thrombocyte concentrate transfution were given. Two cases of neonatal lupus erythematous had been presented. Diagnosis based on clinical presentation and maternal auto antibody on neonate. Organ involvement in NLE can occur as single or multiple manifestations.

Keywords: neonatus lupus erythematous, maternal autoantibody, clinical characteristic, multiple organ manifestation

Procedia PDF Downloads 415
1098 Formulation and Evaluation of Silibilin Loaded PLGA Nanoparticles for Cancer Therapy

Authors: Priya Patel, Paresh Patel, Mihir Raval

Abstract:

Silibinin, a flavanone as an antimicrotubular agent used in the treatment of cancer, was encapsulated in nanoparticles (NPs) of poly (lactide-co-glycolide) (PLGA) polymer using the spray-drying technique. The effects of various experimental parameters were optimized by box-behnken experimental design. Production yield, encapsulation efficiency and dissolution study along with characterization by scanning electron microscopy, DSC, FTIR followed by bioavailability study. Particle size and zeta potential were evaluated by using zetatrac particle size analyzer. Experimental design it was evaluated that inlet temperature and polymer concentration influence on the drug release. Feed flow rate impact on particle size. Results showed that spray drying technique yield 149 nm indicate nanosize range. The small size of the nanoparticle resulted in an enhanced cellular entry and greater bioavailability. Entrapment efficiency was found between 89.35% and 98.36%. Zeta potential shows good stability index of nanoparticle formulation. The in vitro release studies indicated the silibinin loaded PLGA nanoparticles provide controlled drug release over a period of 32 h. Pharmacokinetic studies demonstrated that after oral administration of silibinin-loaded PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 8.85-fold, compared to silibinin suspension as control hence, this investigation demonstrated the potential of the experimental design in understanding the effect of the formulation variables on the quality of silibinin loaded PLGA nanoparticles. These results describe an effective strategy of silibinin loaded PLGA nanoparticles and might provide a promising approach against the cancer.

Keywords: silibinin, cancer, nanoparticles, PLGA, bioavailability

Procedia PDF Downloads 418
1097 Evaluation of the Improve Vacuum Blood Collection Tube for Laboratory Tests

Authors: Yoon Kyung Song, Seung Won Han, Sang Hyun Hwang, Do Hoon Lee

Abstract:

Laboratory tests is a significant part for the diagnosis, prognosis, treatment of diseases. Blood collection is a simple process, but can be a potential cause of pre-analytical errors. Vacuum blood collection tubes used to collect and store the blood specimens is necessary for accurate test results. The purpose of this study was to validate Improve serum separator tube(SST) (Guanzhou Improve Medical Instruments Co., Ltd, China) for routine clinical chemistry laboratory testing. Blood specimens were collected from 100 volunteers in three different serum vacuum tubes (Greiner SST , Becton Dickinson SST , Improve SST). The specimens were evaluated for 16 routine chemistry tests using TBA-200FR NEO (Toshiba Medical Co. JAPAN). The results were statistically analyzed by paired t-test and Bland-Altman plot. For stability test, the initial results for each tube were compared with results of 72 hours preserved specimens. Their clinical availability was evaluated by biological Variation of Ricos data bank. Paired t-test analysis revealed that AST, ALT, K, Cl showed statistically same results but calcium (CA), phosphorus(PHOS), glucose(GLU), BUN, uric acid(UA), cholesterol(CHOL), total protein(TP), albumin(ALB), total bilirubin(TB), ALP, creatinine(CRE), sodium(NA) were different(P < 0.05) between Improve SST and Greiner SST. Also, CA, PHOS, TP, TB, AST, ALT, NA, K, Cl showed statistically the same results but GLU, BUN, UA, CHOL, ALB, ALP, CRE were different between Improve SST and Becton Dickinson SST. All statistically different cases were clinically acceptable by biological Variation of Ricos data bank. Improve SST tubes showed satisfactory results compared with Greiner SST and Becton Dickinson SST. We concluded that the tubes are acceptable for routine clinical chemistry laboratory testing.

Keywords: blood collection, Guanzhou Improve, SST, vacuum tube

Procedia PDF Downloads 236
1096 Microwave-Assisted 3D Porous Graphene for Its Multi-Functionalities

Authors: Jung-Hwan Oh, Rajesh Kumar, Il-Kwon Oh

Abstract:

Porous graphene has extensive potential applications in variety of fields such as hydrogen storage, CO oxidation, gas separation, supercapacitors, fuel cells, nanoelectronics, oil adsorption, and so on. However, the generation of some carbon atoms vacancies for precise small holes have been not extensively studied to prevent the agglomerates of graphene sheets and to obtain porous graphene with high surface area. Recently, many research efforts have been presented to develop physical and chemical synthetic approaches for porous graphene. But physical method has very high cost of manufacture and chemical method consumes so many hours for porous graphene. Herein, we propose a porous graphene contained holes with atomic scale precision by embedding metal nano-particles through microwave irradiation for hydrogen storage and CO oxidation multi- functionalities. This proposed synthetic method is appropriate for fast and convenient production of three dimensional nanostructures, which have nanoholes on the graphene surface in consequence of microwave irradiation. The metal nanoparticles are dispersed quickly on the graphene surface and generated uniform nanoholes on the graphene nanosheets. The morphological and structural characterization of the porous graphene were examined by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM) and RAMAN spectroscopy, respectively. The metal nanoparticle-embedded porous graphene exhibits a microporous volume of 2.586cm3g-1 with an average pore radius of 0.75 nm. HR-TEM analysis was carried out to further characterize the microstructures. By investigating the RAMAN spectra, we can understand the structural changes of graphene. The results of this work demonstrate a possibility to produce a new class of porous graphene. Furthermore, the newly acquired knowledge for the diffusion into graphene can provide useful guidance for the development of the growth of nanostructure.

Keywords: CO oxidation, hydrogen storage, nanocomposites, porous graphene

Procedia PDF Downloads 368
1095 SUMOylation Enhances Nurr1/1a Mediated Transactivation in a Neuronal Cell Type

Authors: Jade Edey, Andrew Bennett, Gareth Hathway

Abstract:

Nuclear receptor-related 1 protein (also known as Nurr1 or NR4A2) is an orphan nuclear receptor which plays a vital role in the development, survival and maintenance of dopaminergic (DA) neurons particularly in the substantia nigra (SN). Increasing research has investigated Nurr1’s additional role within microglia and astrocytes where it has been suggested to act as a negative regulator of inflammation; potentially offering neuroprotection. Considering both DA neurodegeneration and neuroinflammation are commonly accepted constituents of Parkinson’s Disease (PD), understanding the mechanisms by which Nurr1 regulates inflammatory processes could provide an attractive therapeutic target. Nurr1 regulates inflammation via a transrepressive mechanism possibly dependent upon SUMOylation. In addition, Nurr1 can transactivate numerous genes involved in DA synthesis, such as Tyrosine Hydroxylase (TH). A C-terminal splice variant of Nurr1, Nurr-1a, has been reported in both neuronal and glial cells. However, research into its transcriptional activity is minimal. We employed in vitro methods such as SUMO-Pulldown experiments alongside Luciferase reporter assays to investigate the SUMOylation status and transactivation capabilities of Nurr1 and Nurr-1a respectively. The SUMO-Pulldown assay demonstrated Nurr-1a undergoes significantly more SUMO modification than its full-length variant. Consequently, despite having less transcriptional activation than Nurr1, Nurr1a may play a more prominent role in repression of microglial inflammation. Contrary to published literature we also identified that SUMOylation enhances transcriptional activation by Nurr1 and Nurr1a. SUMOylation-dependent increases in Nurr1 and Nurr1a transcriptional activation were only evident in neuronal SHSY5Y cells but not in HEK293 cells. This research provides novel insight into the regulation of Nurr-1a and indicates differential effects of SUMOylation dependent regulation in neuronal and inflammatory cells.

Keywords: nuclear receptors, Parkinson’s disease, inflammation, transcriptional regulation

Procedia PDF Downloads 147
1094 Breast Cancer: The Potential of miRNA for Diagnosis and Treatment

Authors: Abbas Pourreza

Abstract:

MicroRNAs (miRNAs) are small single-stranded non-coding RNAs. They are almost 18-25 nucleotides long and very conservative through evolution. They are involved in adjusting the expression of numerous genes due to the existence of a complementary region, generally in the 3' untranslated regions (UTR) of target genes, against particular mRNAs in the cell. Also, miRNAs have been proven to be involved in cell development, differentiation, proliferation, and apoptosis. More than 2000 miRNAs have been recognized in human cells, and these miRNAs adjust approximately one-third of all genes in human cells. Dysregulation of miRNA originated from abnormal DNA methylation patterns of the locus, cause to down-regulated or overexpression of miRNAs, and it may affect tumor formation or development of it. Breast cancer (BC) is the most commonly identified cancer, the most prevalent cancer (23%), and the second-leading (14%) mortality in all types of cancer in females. BC can be classified based on the status (+/−) of the hormone receptors, including estrogen receptor (ER), progesterone receptor (PR), and the Receptor tyrosine-protein kinase erbB-2 (ERBB2 or HER2). Currently, there are four main molecular subtypes of BC: luminal A, approximately 50–60 % of BCs; luminal B, 10–20 %; HER2 positive, 15–20 %, and 10–20 % considered Basal (triple-negative breast cancer (TNBC)) subtype. Aberrant expression of miR-145, miR-21, miR-10b, miR-125a, and miR-206 was detected by Stem-loop real-time RT-PCR in BC cases. Breast tumor formation and development may result from down-regulation of a tumor suppressor miRNA such as miR-145, miR-125a, and miR-206 and/or overexpression of an oncogenic miRNA such as miR-21 and miR-10b. MiR-125a, miR-206, miR-145, miR-21, and miR-10b are hugely predicted to be new tumor markers for the diagnosis and prognosis of BC. MiR-21 and miR-125a could play a part in the treatment of HER-2-positive breast cancer cells, while miR-145 and miR-206 could speed up the evolution of cure techniques for TNBC. To conclude, miRNAs will be presented as hopeful molecules to be used in the primary diagnosis, prognosis, and treatment of BC and battle as opposed to its developed drug resistance.

Keywords: breast cancer, HER2 positive, miRNA, TNBC

Procedia PDF Downloads 86
1093 Ankaferd Blood Stopper (ABS) Has Protective Effect on Colonic Inflammation: An in Vitro Study in Raw 264.7 and Caco-2 Cells

Authors: Aysegul Alyamac, Sukru Gulec

Abstract:

Ankaferd Blood Stopper (ABS) is a plant extract used to stop bleeding caused by injuries and surgical interventions. ABS also involved in wound healing of intestinal mucosal damage due to oxidative stress and inflammation. Inflammatory Bowel Disease (IBD) is a common chronic disorder of the gastrointestinal tract that causes abdominal pain, diarrhea, and gastrointestinal bleeding, and increases the risk of colon cancer. Inflammation is an essential factor in the development of IBD. The various studies have been performed about the physiological effects of ABS; however, ABS dependent mechanism on colonic inflammation has not been elucidated. Thus, the protective effect of ABS on colonic inflammation was investigated in this study. The Caco-2 and RAW 264.7 murine macrophage cells were used as a model of in vitro colonic inflammation. RAW 264.7 cells were treated with lipopolysaccharide (LPS) for 12 hours to induce the inflammation, and a conditional medium was obtained. Caco-2 cells were treated with 15 µl/ml ABS for 4 hours, then incubated with conditional medium and the cells also were incubated with 15 µl/ml ABS and conditional medium together for 4 hours. Tumor necrosis factor alpha (TNF-α) protein levels were targeted in testing inflammatory condition and its level was significantly increased (25 fold, p<0.001) compared to the control group by using Enzyme-Linked Immunosorbent Assay (ELISA) method. The COX-2 mRNA level was used as a marker gene to show the possible anti-inflammatory effect of ABS in Caco-2 cells. RAW cells-derived conditional medium significantly (3.3 fold, p<0.001) induced cyclooxygenase-2 (COX-2) mRNA levels in Caco-2 cells. The pretreatment of Caco-2 cells caused a significant decrease (3.3 fold, p<0.001) in COX-2 mRNA levels relative to conditional medium given group. Furthermore, COX-2 mRNA level was significantly reduced (4,7 fold, p<0.001) in ABS and conditional medium treated group. These results suggest that ABS might have an anti-inflammatory effect in vitro.

Keywords: Ankaferd blood stopper, CaCo-2, colonic inflammation, RAW 264.7

Procedia PDF Downloads 137
1092 Genetic Association and Functional Significance of Matrix Metalloproteinase-14 Promoter Variants rs1004030 and rs1003349 in Gallbladder Cancer Pathogenesis

Authors: J. Vinay , Kusumbati Besra, Niharika Pattnaik, Shivaram Prasad Singh, Manjusha Dixit

Abstract:

Gallbladder cancer (GBC) is rare but highly malignant cancer; its prevalence is more in certain geographical regions and ethnic groups, which include the Northern and Eastern states of India. Previous studies in India have reported genetic predisposition as one of the risk factors in GBC pathogenesis. Although the matrix metalloproteinase-14 (MMP14) is a well-known modulator of the tumor microenvironment and tumorigenesis and TCGA data also suggests its upregulation yet, its role in the genetic predisposition for GBC is completely unknown. We elucidated the role of MMP14 promoter variants as genetic risk factors and their implications in expression modulation. We screened MMP14 promoter variants association with GBC using Sanger’s sequencing in approximately 300 GBC and 300 control subjects and 26 GBC tissue samples of Indian ethnicity. The immunohistochemistry was used to check the MMP14 protein expression in GBC tissue samples. The role of promoter variants on expression levels was elucidated using a luciferase reporter assay. The variants rs1004030 (p-value = 0.0001) and rs1003349 (p-value = 0.0008) were significantly associated with gallbladder cancer. The luciferase assay in two different cell lines, HEK-293 (p = 0.0006) and TGBC1TKB (p = 0.0036) showed a significant increase in relative luciferase activity in the presence of risk alleles for both the single nucleotide polymorphisms (SNPs). Similarly, genotype-phenotype correlation in patients samples confirmed that the presence of risk alleles at rs1004030 and rs1003349 increased MMP14 expression. Overall, this study unravels the genetic association of MMP14 promoter variants with gallbladder cancer, which may contribute to pathogenesis by increasing its expression.

Keywords: gallbladder cancer, matrix metalloproteinase-14, single nucleotide polymorphism, case control study, genetic association study

Procedia PDF Downloads 174
1091 Plant Mediated RNAi Approach to Knock Down Ecdysone Receptor Gene of Colorado Potato Beetle

Authors: Tahira Hussain, Ilhom Rahamkulov, Muhammad Aasim, Ugur Pirlak, Emre Aksoy, Mehmet Emin Caliskan, Allah Bakhsh

Abstract:

RNA interference (RNAi) has proved its usefulness in functional genomic research on insects recently and is considered potential strategy in crop improvement for the control of insect pests. The different insect pests incur significant losses to potato yield worldwide, Colorado Potato Beetle (CPB) being most notorious one. The present study focuses to knock down highly specific 20-hydroxyecdysone hormone-receptor complex interaction by using RNAi approach to silence Ecdysone receptor (EcR) gene of CPB in transgenic potato plants expressing dsRNA of EcR gene. The partial cDNA of Ecdysone receptor gene of CPB was amplified using specific primers in sense and anti-sense orientation and cloned in pRNAi-GG vector flanked by an intronic sequence (pdk). Leaf and internodal explants of Lady Olympia, Agria and Granola cultivars of potato were infected with Agrobacterium strain LBA4404 harboring plasmid pRNAi-CPB, pRNAi-GFP (used as control). Neomycin phosphotransferase (nptII) gene was used as a plant selectable marker at a concentration of 100 mg L⁻¹. The primary transformants obtained have shown proper integration of T-DNA in plant genome by standard molecular analysis like polymerase chain reaction (PCR), real-time PCR, Sothern blot. The transgenic plants developed out of these cultivars are being evaluated for their efficacy against larvae as well adults of CPB. The transgenic lines are expected to inhibit expression of EcR protein gene, hindering their molting process, hence leading to increased potato yield.

Keywords: plant mediated RNAi, molecular strategy, ecdysone receptor, insect metamorphosis

Procedia PDF Downloads 166