Search results for: planting density
143 Electrochemical Properties of Li-Ion Batteries Anode Material: Li₃.₈Cu₀.₁Ni₀.₁Ti₅O₁₂
Authors: D. Olszewska, J. Niewiedzial
Abstract:
In some types of Li-ion batteries carbon in the form of graphite is used. Unfortunately, carbon materials, in particular graphite, have very good electrochemical properties, but increase their volume during charge/discharge cycles, which may even lead to an explosion of the cell. The cell element may be replaced by a composite material consisting of lithium-titanium oxide Li4Ti5O12 (LTO) modified with copper and nickel ions and carbon derived from sucrose. This way you can improve the conductivity of the material. LTO is appropriate only for applications which do not require high energy density because of its high operating voltage (ca. 1.5 V vs. Li/Li+). Specific capacity of Li4Ti5O12 is high enough for utilization in Li-ion batteries (theoretical capacity 175 mAh·g-1) but it is lower than capacity of graphite anodes. Materials based on Li4Ti5O12 do not change their volume during charging/discharging cycles, however, LTO has low conductivity. Another positive aspect of the use of sucrose in the carbon composite material is to eliminate the addition of carbon black from the anode of the battery. Therefore, the proposed materials contribute significantly to environmental protection and safety of selected lithium cells. New anode materials in order to obtain Li3.8Cu0.1Ni0.1Ti5O12 have been prepared by solid state synthesis using three-way: i) stoichiometric composition of Li2CO3, TiO2, CuO, NiO (A- Li3.8Cu0.1Ni0.1Ti5O12); ii) stoichiometric composition of Li2CO3, TiO2, Cu(NO3)2, Ni(NO3)2 (B-Li3.8Cu0.1Ni0.1Ti5O12); and iii) stoichiometric composition of Li2CO3, TiO2, CuO, NiO calcined with 10% of saccharose (Li3.8Cu0.1Ni0.1Ti5O12-C). Structure of materials was studied by X-ray diffraction (XRD). The electrochemical properties were performed using appropriately prepared cell Li|Li+|Li3.8Cu0.1Ni0.1Ti5O12 for cyclic voltammetry and discharge/charge measurements. The cells were periodically charged and discharged in the voltage range from 1.3 to 2.0 V applying constant charge/discharge current in order to determine the specific capacity of each electrode. Measurements at various values of the charge/discharge current (from C/10 to 5C) were carried out. Cyclic voltammetry investigation was carried out by applying to the cells a voltage linearly changing over time at a rate of 0.1 mV·s-1 (in the range from 2.0 to 1.3 V and from 1.3 to 2.0 V). The XRD method analyzes show that composite powders were obtained containing, in addition to the main phase, 4.78% and 4% TiO2 in A-Li3.8Cu0.1Ni0.1O12 and B-Li3.8Cu0.1Ni0.1O12, respectively. However, Li3.8Cu0.1Ni0.1O12-C material is three-phase: 63.84% of the main phase, 17.49 TiO2 and 18.67 Li2TiO3. Voltammograms of electrodes containing materials A-Li3.8Cu0.1Ni0.1O12 and B-Li3.8Cu0.1Ni0.1O12 are correct and repeatable. Peak cathode occurs for both samples at a potential approx. 1.52±0.01 V relative to a lithium electrode, while the anodic peak at potential approx. 1.65±0.05 V relative to a lithium electrode. Voltammogram of Li3.8Cu0.1Ni0.1Ti5O12-C (especially for the first measurement cycle) is not correct. There are large variations in values of specific current, which are not characteristic for materials LTO. From the point of view of safety and environmentally friendly production of Li-ion cells eliminating soot and applying Li3.8Cu0.1Ni0.1Ti5O12-C as an active material of an anode in lithium-ion batteries seems to be a good alternative to currently used materials.Keywords: anode, Li-ion batteries, Li₄O₅O₁₂, spinel
Procedia PDF Downloads 150142 Clinical Application of Measurement of Eyeball Movement for Diagnose of Autism
Authors: Ippei Torii, Kaoruko Ohtani, Takahito Niwa, Naohiro Ishii
Abstract:
This paper shows developing an objectivity index using the measurement of subtle eyeball movement to diagnose autism. The developmentally disabled assessment varies, and the diagnosis depends on the subjective judgment of professionals. Therefore, a supplementary inspection method that will enable anyone to obtain the same quantitative judgment is needed. The diagnosis are made based on a comparison of the time of gazing an object in the conventional autistic study, but the results do not match. First, we divided the pupil into four parts from the center using measurements of subtle eyeball movement and comparing the number of pixels in the overlapping parts based on an afterimage. Then we developed the objective evaluation indicator to judge non-autistic and autistic people more clearly than conventional methods by analyzing the differences of subtle eyeball movements between the right and left eyes. Even when a person gazes at one point and his/her eyeballs always stay fixed at that point, their eyes perform subtle fixating movements (ie. tremors, drifting, microsaccades) to keep the retinal image clear. Particularly, the microsaccades link with nerves and reflect the mechanism that process the sight in a brain. We converted the differences between these movements into numbers. The process of the conversion is as followed: 1) Select the pixel indicating the subject's pupil from images of captured frames. 2) Set up a reference image, known as an afterimage, from the pixel indicating the subject's pupil. 3) Divide the pupil of the subject into four from the center in the acquired frame image. 4) Select the pixel in each divided part and count the number of the pixels of the overlapping part with the present pixel based on the afterimage. 5) Process the images with precision in 24 - 30fps from a camera and convert the amount of change in the pixels of the subtle movements of the right and left eyeballs in to numbers. The difference in the area of the amount of change occurs by measuring the difference between the afterimage in consecutive frames and the present frame. We set the amount of change to the quantity of the subtle eyeball movements. This method made it possible to detect a change of the eyeball vibration in numerical value. By comparing the numerical value between the right and left eyes, we found that there is a difference in how much they move. We compared the difference in these movements between non-autistc and autistic people and analyzed the result. Our research subjects consists of 8 children and 10 adults with autism, and 6 children and 18 adults with no disability. We measured the values through pasuit movements and fixations. We converted the difference in subtle movements between the right and left eyes into a graph and define it in multidimensional measure. Then we set the identification border with density function of the distribution, cumulative frequency function, and ROC curve. With this, we established an objective index to determine autism, normal, false positive, and false negative.Keywords: subtle eyeball movement, autism, microsaccade, pursuit eye movements, ROC curve
Procedia PDF Downloads 280141 Analytical and Numerical Modeling of Strongly Rotating Rarefied Gas Flows
Authors: S. Pradhan, V. Kumaran
Abstract:
Centrifugal gas separation processes effect separation by utilizing the difference in the mole fraction in a high speed rotating cylinder caused by the difference in molecular mass, and consequently the centrifugal force density. These have been widely used in isotope separation because chemical separation methods cannot be used to separate isotopes of the same chemical species. More recently, centrifugal separation has also been explored for the separation of gases such as carbon dioxide and methane. The efficiency of separation is critically dependent on the secondary flow generated due to temperature gradients at the cylinder wall or due to inserts, and it is important to formulate accurate models for this secondary flow. The widely used Onsager model for secondary flow is restricted to very long cylinders where the length is large compared to the diameter, the limit of high stratification parameter, where the gas is restricted to a thin layer near the wall of the cylinder, and it assumes that there is no mass difference in the two species while calculating the secondary flow. There are two objectives of the present analysis of the rarefied gas flow in a rotating cylinder. The first is to remove the restriction of high stratification parameter, and to generalize the solutions to low rotation speeds where the stratification parameter may be O (1), and to apply for dissimilar gases considering the difference in molecular mass of the two species. Secondly, we would like to compare the predictions with molecular simulations based on the direct simulation Monte Carlo (DSMC) method for rarefied gas flows, in order to quantify the errors resulting from the approximations at different aspect ratios, Reynolds number and stratification parameter. In this study, we have obtained analytical and numerical solutions for the secondary flows generated at the cylinder curved surface and at the end-caps due to linear wall temperature gradient and external gas inflow/outflow at the axis of the cylinder. The effect of sources of mass, momentum and energy within the flow domain are also analyzed. The results of the analytical solutions are compared with the results of DSMC simulations for three types of forcing, a wall temperature gradient, inflow/outflow of gas along the axis, and mass/momentum input due to inserts within the flow. The comparison reveals that the boundary conditions in the simulations and analysis have to be matched with care. The commonly used diffuse reflection boundary conditions at solid walls in DSMC simulations result in a non-zero slip velocity as well as a temperature slip (gas temperature at the wall is different from wall temperature). These have to be incorporated in the analysis in order to make quantitative predictions. In the case of mass/momentum/energy sources within the flow, it is necessary to ensure that the homogeneous boundary conditions are accurately satisfied in the simulations. When these precautions are taken, there is excellent agreement between analysis and simulations, to within 10 %, even when the stratification parameter is as low as 0.707, the Reynolds number is as low as 100 and the aspect ratio (length/diameter) of the cylinder is as low as 2, and the secondary flow velocity is as high as 0.2 times the maximum base flow velocity.Keywords: rotating flows, generalized onsager and carrier-Maslen model, DSMC simulations, rarefied gas flow
Procedia PDF Downloads 399140 In vitro Antioxidant Activity and Total Phenolic Content of Dillenia indica and Garcinia penducalata, Commonly Used Fruits in Assamese Cuisine
Authors: M. Das, B. P. Sarma, G. Ahmed
Abstract:
Human diet can be a major source of antioxidants. Poly¬phenols, which are organic compounds present in the regular human diet, have good antioxidant property. Most of the diseases are detected too late and that cause irre¬versible damage to the body. Therefore food that forms the natural source of antioxidants can prevent free radi¬cals from damaging our body tissues. Dillenia indica and Garcinia penducalata are two major fruits, easily available in Assam, North eastern Indian state. In the present study, the in vitro antioxi¬dant properties of the fruits of these plants are compared as the decoction of these fruits form a major part of Assamese cuisine. DPPH free radical scavenging activity of the methanol, petroleum ether and water extracts of G. penducalata and D. indica fruits were carried out by the methods of Cotelle A et al. (1996). Different concentrations ranging from 10–110 ug/ml of the extracts were added to 100 uM of DPPH (2,2, Diphenyl-2-picryl hydrazyl) and the absor¬bance was read at 517 nm after incubation. Ascorbic acid was used as the standard. Different concentrations of the methanol, petroleum ether and water extracts of G. penducalata and D. indica fruits were mixed with sodium nitroprusside and incubated. Griess reagent was added to the mixtures and their optical density was read at 546 nm following the method of Marcocci et al. (1994). Ascorbic acid was used as the standard. In order to find the scavenging activity of the extracts against hydroxyl radicals, the method of Kunchandy & Ohkawa (1990) was followed.The superoxide scavenging activity of the methanol, petroleum ether and water extracts of the fruits was deter¬mined by the method of Robak & Gryglewski (1998).Six replicates were maintained in each of the experiments and their SEM was evaluated based on which, non linear regres¬sion (curve fit), exponential growth were derived to calculate the IC50 values of the SAWE and standard compounds. All the statistical analyses were done by using paired t test. The hydroxyl radical scavenging activity of the various extracts of D. indica exhibited IC50 values < 110 ug/ml concentration, the scavenging activity of the extracts of G. penducalata was surprisingly>110 ug/ml.Similarly the oxygen free radical scavenging activity of the different extracts of D. indica exhibited an IC50 value of <110 ug/ml but the methanolic extract of the same exhib¬ited a better free radical scavenging activity compared to that of vitamin C. The methanolic extract of D. indica exhibited an IC50 value better than that of vitamin C. The DPPH scavenging activities of the various extracts of D. indica and G. penducalata were <110 ug/ml but the methanolic extract of D. indica exhibited an IC50 value bet¬ter than that of vitaminc C.The higher amounts of phenolic content in the methanolic extract of D. indica might be one of the major causes for its enhanced in vitro antioxidant activity.The present study concludes that Dillenia indica and Garcinia penducalata both possesses anti oxidant activi¬ties. The anti oxidant activity of Dillenia indica is superior to that of Garcinia penducalata due to its higher phenolic contentKeywords: antioxidants, free radicals, phenolic, scavenging
Procedia PDF Downloads 595139 Effect of Time on Stream on the Performances of Plasma Assisted Fe-Doped Cryptomelanes in Trichloroethylene (TCE) Oxidation
Authors: Sharmin Sultana, Nicolas Nuns, Pardis Simon, Jean-Marc Giraudon, Jean-Francois Lamonior, Nathalie D. Geyter, Rino Morent
Abstract:
Environmental issues, especially air pollution, have become a huge concern of environmental legislation as a consequence of growing awareness in our global world. In this regard, control of volatile organic compounds (VOCs) emission has become an important issue due to their potential toxicity, carcinogenicity, and mutagenicity. The research of innovative technologies for VOC abatement is stimulated to accommodate the new stringent standards in terms of VOC emission. One emerging strategy is the coupling of 2 existing complementary technologies, namely here non-thermal plasma (NTP) and heterogeneous catalysis, to get a more efficient process for VOC removal in air. The objective of this current work is to investigate the abatement of trichloroethylene (TCE-highly toxic chlorinated VOC) from moist air (RH=15%) as a function of time by combined use of multi-pin-to-plate negative DC corona/glow discharge with Fe-doped cryptomelanes catalyst downstream i.e. post plasma-catalysis (PPC) process. For catalyst alone case, experiments reveal that, initially, Fe doped cryptomelane (regardless the mode of Fe incorporation by co-precipitation (Fe-K-OMS-2)/ impregnation (Fe/K-OMS-2)) exhibits excellent activity to decompose TCE compared to cryptomelane (K-OMS-2) itself. A maximum obtained value of TCE abatement after 6 min is as follows: Fe-KOMS-2 (73.3%) > Fe/KOMS-2 (48.5) > KOMS-2 (22.6%). However, with prolonged operation time, whatever the catalyst under concern, the abatement of TCE decreases. After 111 min time of exposure, the catalysts can be ranked as follows: Fe/KOMS-2 (11%) < K-OMS-2 (12.3%) < Fe-KOMS-2 (14.5%). Clearly, this phenomenon indicates catalyst deactivation either by chlorination or by blocking the active sites. Remarkably, in PPC configuration (energy density = 60 J/L, catalyst temperature = 150°C), experiments reveal an enhanced performance towards TCE removal regardless the type of catalyst. After 6 min time on stream, the TCE removal efficiency amount as follows: K-OMS-2 (60%) < Fe/K-OMS-2 (79%) < Fe-K-OMS-2 (99.3%). The enhanced performances over Fe-K-OMS-2 catalyst are attributed to its high surface oxygen mobility and structural defects leading to high O₃ decomposition efficiency to give active species able to oxidize the plasma processed hazardous\by-products and the possibly remaining VOC into CO₂. Moreover, both undoped and doped catalysts remain strongly capable to abate TCE with time on stream. The TCE removal efficiencies of the PPC processes with Fe/KOMS-2 and KOMS-2 catalysts are not affected by time on stream indicating an excellent catalyst stability. When using the Fe-K-OMS-2 as catalyst, TCE abatement slightly reduces with time on stream. However, it is noteworthy to stress that still a constant abatement of 83% is observed during at least 30 minutes. These results prove that the combination of NTP with catalysts not only increases the catalytic activity but also allows to avoid, to some extent, the poisoning of catalytic sites resulting in an enhanced catalyst stability. In order to better understand the different surface processes occurring in the course of the total TCE oxidation in PPC experiments, a detailed X-ray Photoelectron Spectroscopy (XPS) and Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) study on the fresh and used catalysts is in progress.Keywords: Fe doped cryptomelane, non-thermal plasma, plasma-catalysis, stability, trichloroethylene
Procedia PDF Downloads 208138 Thermal Properties and Water Vapor Permeability for Cellulose-Based Materials
Authors: Stanislavs Gendelis, Maris Sinka, Andris Jakovics
Abstract:
Insulation materials made from natural sources have become more popular for the ecologisation of buildings, meaning wide use of such renewable materials. Such natural materials replace synthetic products which consume a large quantity of energy. The most common and the cheapest natural materials in Latvia are cellulose-based (wood and agricultural plants). The ecological aspects of such materials are well known, but experimental data about physical properties remains lacking. In this study, six different samples of wood wool panels and a mixture of hemp shives and lime (hempcrete) are analysed. Thermal conductivity and heat capacity measurements were carried out for wood wool and cement panels using the calibrated hot plate device. Water vapor permeability was tested for hempcrete material by using the gravimetric dry cup method. Studied wood wool panels are eco-friendly and harmless material, which is widely used in the interior design of public and residential buildings, where noise absorption and sound insulation is of importance. They are also suitable for high humidity facilities (e.g., swimming pools). The difference in panels was the width of used wood wool, which is linked to their density. The results of measured thermal conductivity are in a wide range, showing the worsening of properties with the increasing of the wool width (for the least dense 0.066, for the densest 0.091 W/(m·K)). Comparison with mineral insulation materials shows that thermal conductivity for such materials are 2-3 times higher and are comparable to plywood and fibreboard. Measured heat capacity was in a narrower range; here, the dependence on the wool width was not so strong due to the fact that heat capacity value is related to mass, not volume. The resulting heat capacity is a combination of two main components. A comparison of results for different panels allows to select the most suitable sample for a specific application because the dependencies of the thermal insulation and heat capacity properties on the wool width are not the same. Hempcrete is a much denser material compared to conventional thermal insulating materials. Therefore, its use helps to reinforce the structural capacity of the constructional framework, at the same time, it is lightweight. By altering the proportions of the ingredients, hempcrete can be produced as a structural, thermal, or moisture absorbent component. The water absorption and water vapor permeability are the most important properties of these materials. Information about absorption can be found in the literature, but there are no data about water vapor transmission properties. Water vapor permeability was tested for a sample of locally made hempcrete using different air humidity values to evaluate the possible difference. The results show only the slight influence of the air humidity on the water vapor permeability value. The absolute ‘sd value’ measured is similar to mineral wool and wood fiberboard, meaning that due to very low resistance, water vapor passes easily through the material. At the same time, other properties – structural and thermal of the hempcrete is totally different. As a result, an experimentally-based knowledge of thermal and water vapor transmission properties for cellulose-based materials was significantly improved.Keywords: heat capacity, hemp concrete, thermal conductivity, water vapor transmission, wood wool
Procedia PDF Downloads 224137 Comparative Assessment of Rainwater Management Alternatives for Dhaka City: Case Study of North South University
Authors: S. M. Islam, Wasi Uddin, Nazmun Nahar
Abstract:
Dhaka, the capital of Bangladesh, faces two contrasting problems; excess of water during monsoon season and scarcity of water during dry season. The first problem occurs due to rapid urbanization and mismanagement of rainwater whereas the second problem is related to climate change and increasing urban population. Inadequate drainage system also worsens the overall water management scenario in Dhaka city. Dhaka has a population density of 115,000 people per square miles. This results in a 2.5 billion liter water demand every day, 87% of which is fulfilled by groundwater. Over dependency on groundwater has resulted in more than 200 feet drop in the last 50 years and continues to decline at a rate of 9 feet per year. Considering the gravity of the problem, it is high time that practitioners, academicians and policymakers consider different water management practices and look into their cumulative impacts at different scales. The present study assesses different rainwater management options for North South University of Bangladesh and recommends the most feasible and sustainable rainwater management measure. North South University currently accommodates over 20,000 students, faculty members, and administrative staffs. To fulfill the water demand, there are two deep tube wells, which bring up approximately 150,000 liter of water every hour. The annual water demand is approximately 103 million liters. Dhaka receives approximately 1800 mm of rainfall every year. For the current study, two academic buildings and one administrative building consist of 4924 square meters of rooftop area was selected as catchment area. Both rainwater harvesting and groundwater recharge options were analyzed separately. It was estimated that by rainwater harvesting, annually a total of 7.2 million liters of water can be reused which is approximately 7% of the total annual water usage. In the monsoon, rainwater harvesting fulfills 12.2% of the monthly water demand. The approximate cost of the rainwater harvesting system is estimated to be 940975 bdt (USD 11500). For direct groundwater recharge, a system comprises of one de-siltation tank, two recharge tanks and one siltation tank were designed that requires approximately 532788 bdt (USD 6500). The payback period is approximately 7 years and 4 months for the groundwater recharge system whereas the payback period for rainwater harvesting option is approximately 12 years and 4 months. Based on the cost-benefit analysis, the present study finds the groundwater recharge system to be most suitable for North South University. The present study also demonstrates that if only one institution like North South University can add up a substantial amount of water to the aquifer, bringing other institutions in the network has the potential to create significant cumulative impact on replenishing the declining groundwater level of Dhaka city. As an additional benefit, it also prevents large amount of water being discharged into the storm sewers which results in severe flooding in Dhaka city during monsoon.Keywords: Dhaka, groundwater, harvesting, rainwater, recharge
Procedia PDF Downloads 125136 Carbon Nanotubes (CNTs) as Multiplex Surface Enhanced Raman Scattering Sensing Platforms
Authors: Pola Goldberg Oppenheimer, Stephan Hofmann, Sumeet Mahajan
Abstract:
Owing to its fingerprint molecular specificity and high sensitivity, surface-enhanced Raman scattering (SERS) is an established analytical tool for chemical and biological sensing capable of single-molecule detection. A strong Raman signal can be generated from SERS-active platforms given the analyte is within the enhanced plasmon field generated near a noble-metal nanostructured substrate. The key requirement for generating strong plasmon resonances to provide this electromagnetic enhancement is an appropriate metal surface roughness. Controlling nanoscale features for generating these regions of high electromagnetic enhancement, the so-called SERS ‘hot-spots’, is still a challenge. Significant advances have been made in SERS research, with wide-ranging techniques to generate substrates with tunable size and shape of the nanoscale roughness features. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for miniaturised sensing devices. Carbon nanotubes (CNTs) have been concurrently, a topic of extensive research however, their applications for plasmonics has been only recently beginning to gain interest. CNTs can provide low-cost, large-active-area patternable substrates which, coupled with appropriate functionalization capable to provide advanced SERS-platforms. Herein, advanced methods to generate CNT-based SERS active detection platforms will be discussed. First, a novel electrohydrodynamic (EHD) lithographic technique will be introduced for patterning CNT-polymer composites, providing a straightforward, single-step approach for generating high-fidelity sub-micron-sized nanocomposite structures within which anisotropic CNTs are vertically aligned. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements with each of the EHD-CNTs individual structural units functioning as an isolated sensor. Further, gold-functionalized VACNTFs are fabricated as SERS micro-platforms. The dependence on the VACNTs’ diameters and density play an important role in the Raman signal strength, thus highlighting the importance of structural parameters, previously overlooked in designing and fabricating optimized CNTs-based SERS nanoprobes. VACNTs forests patterned into predesigned pillar structures are further utilized for multiplex detection of bio-analytes. Since CNTs exhibit electrical conductivity and unique adsorption properties, these are further harnessed in the development of novel chemical and bio-sensing platforms.Keywords: carbon nanotubes (CNTs), EHD patterning, SERS, vertically aligned carbon nanotube forests (VACNTF)
Procedia PDF Downloads 333135 Alternative Energy and Carbon Source for Biosurfactant Production
Authors: Akram Abi, Mohammad Hossein Sarrafzadeh
Abstract:
Because of their several advantages over chemical surfactants, biosurfactants have given rise to a growing interest in the past decades. Advantages such as lower toxicity, higher biodegradability, higher selectivity and applicable at extreme temperature and pH which enables them to be used in a variety of applications such as: enhanced oil recovery, environmental and pharmaceutical applications, etc. Bacillus subtilis produces a cyclic lipopeptide, called surfactin, which is one of the most powerful biosurfactants with ability to decrease surface tension of water from 72 mN/m to 27 mN/m. In addition to its biosurfactant character, surfactin exhibits interesting biological activities such as: inhibition of fibrin clot formation, lyses of erythrocytes and several bacterial spheroplasts, antiviral, anti-tumoral and antibacterial properties. Surfactin is an antibiotic substance and has been shown recently to possess anti-HIV activity. However, application of biosurfactants is limited by their high production cost. The cost can be reduced by optimizing biosurfactant production using cheap feed stock. Utilization of inexpensive substrates and unconventional carbon sources like urban or agro-industrial wastes is a promising strategy to decrease the production cost of biosurfactants. With suitable engineering optimization and microbiological modifications, these wastes can be used as substrates for large-scale production of biosurfactants. As an effort to fulfill this purpose, in this work we have tried to utilize olive oil as second carbon source and also yeast extract as second nitrogen source to investigate the effect on both biomass and biosurfactant production improvement in Bacillus subtilis cultures. Since the turbidity of the culture was affected by presence of the oil, optical density was compromised and no longer could be used as an index of growth and biomass concentration. Therefore, cell Dry Weight measurements with applying necessary tactics for removing oil drops to prevent interference with biomass weight were carried out to monitor biomass concentration during the growth of the bacterium. The surface tension and critical micelle dilutions (CMD-1, CMD-2) were considered as an indirect measurement of biosurfactant production. Distinctive and promising results were obtained in the cultures containing olive oil compared to cultures without it: more than two fold increase in biomass production (from 2 g/l to 5 g/l) and considerable reduction in surface tension, down to 40 mN/m at surprisingly early hours of culture time (only 5hr after inoculation). This early onset of biosurfactant production in this culture is specially interesting when compared to the conventional cultures at which this reduction in surface tension is not obtained until 30 hour of culture time. Reducing the production time is a very prominent result to be considered for large scale process development. Furthermore, these results can be used to develop strategies for utilization of agro-industrial wastes (such as olive oil mill residue, molasses, etc.) as cheap and easily accessible feed stocks to decrease the high costs of biosurfactant production.Keywords: agro-industrial waste, bacillus subtilis, biosurfactant, fermentation, second carbon and nitrogen source, surfactin
Procedia PDF Downloads 303134 Assessment of On-Site Solar and Wind Energy at a Manufacturing Facility in Ireland
Authors: A. Sgobba, C. Meskell
Abstract:
The feasibility of on-site electricity production from solar and wind and the resulting load management for a specific manufacturing plant in Ireland are assessed. The industry sector accounts directly and indirectly for a high percentage of electricity consumption and global greenhouse gas emissions; therefore, it will play a key role in emission reduction and control. Manufacturing plants, in particular, are often located in non-residential areas since they require open spaces for production machinery, parking facilities for the employees, appropriate routes for supply and delivery, special connections to the national grid and other environmental impacts. Since they have larger spaces compared to commercial sites in urban areas, they represent an appropriate case study for evaluating the technical and economic viability of energy system integration with low power density technologies, such as solar and wind, for on-site electricity generation. The available open space surrounding the analysed manufacturing plant can be efficiently used to produce a discrete quantity of energy, instantaneously and locally consumed. Therefore, transmission and distribution losses can be reduced. The usage of storage is not required due to the high and almost constant electricity consumption profile. The energy load of the plant is identified through the analysis of gas and electricity consumption, both internally monitored and reported on the bills. These data are not often recorded and available to third parties since manufacturing companies usually keep track only of the overall energy expenditures. The solar potential is modelled for a period of 21 years based on global horizontal irradiation data; the hourly direct and diffuse radiation and the energy produced by the system at the optimum pitch angle are calculated. The model is validated using PVWatts and SAM tools. Wind speed data are available for the same period within one-hour step at a height of 10m. Since the hub of a typical wind turbine reaches a higher altitude, complementary data for a different location at 50m have been compared, and a model for the estimate of wind speed at the required height in the right location is defined. Weibull Statistical Distribution is used to evaluate the wind energy potential of the site. The results show that solar and wind energy are, as expected, generally decoupled. Based on the real case study, the percentage of load covered every hour by on-site generation (Level of Autonomy LA) and the resulting electricity bought from the grid (Expected Energy Not Supplied EENS) are calculated. The economic viability of the project is assessed through Net Present Value, and the influence the main technical and economic parameters have on NPV is presented. Since the results show that the analysed renewable sources can not provide enough electricity, the integration with a cogeneration technology is studied. Finally, the benefit to energy system integration of wind, solar and a cogeneration technology is evaluated and discussed.Keywords: demand, energy system integration, load, manufacturing, national grid, renewable energy sources
Procedia PDF Downloads 130133 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage
Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng
Abstract:
Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning
Procedia PDF Downloads 74132 Biological Monitoring: Vegetation Cover, Bird Assemblages, Rodents, Terrestrial and Aquatic Invertebrates from a Closed Landfill
Authors: A. Cittadino, P. Gantes, C. Coviella, M. Casset, A. Sanchez Caro
Abstract:
Three currently active landfills receive the waste from Buenos Aires city and the Great Buenos Aires suburbs. One of the first landfills to receive solid waste from this area was located in Villa Dominico, some 7 km south from Buenos Aires City. With an area of some 750 ha, including riparian habitats, divided into 14 cells, it received solid wastes from June 1979 through February 2004. In December 2010, a biological monitoring program was set up by CEAMSE and Universidad Nacional de Lujan, still operational to date. The aim of the monitoring program is to assess the state of several biological groups within the landfill and to follow their dynamics overtime in order to identify if any, early signs of damage the landfill activities might have over the biota present. Bird and rodent populations, aquatic and terrestrial invertebrates’ populations, cells vegetation coverage, and surrounding areas vegetation coverage and main composition are followed by quarterly samplings. Bird species richness and abundance were estimated by observation over walk transects on each environment. A total of 74 different species of birds were identified. Species richness and diversity were high for both riparian surrounding areas and within the landfill. Several grassland -typical of the 'Pampa'- bird species were found within the landfill, as well as some migratory and endangered bird species. Sherman and Tomahawk traps are set overnight for small mammal sampling. Rodent populations are just above detection limits, and the few specimens captured belong mainly to species common to rural areas, instead of city-dwelling species. The two marsupial species present in the region were captured on occasions. Aquatic macroinvertebrates were sampled on a watercourse upstream and downstream the outlet of the landfill’s wastewater treatment plant and are used to follow water quality using biological indices. Water quality ranged between weak and severe pollution; benthic invertebrates sampled before and after the landfill, show no significant differences in water quality using the IBMWP index. Insect biota from yellow sticky cards and pitfall traps showed over 90 different morphospecies, with Shannon diversity index running from 1.9 to 3.9, strongly affected by the season. An easy-to-perform non-expert demandant method was used to assess vegetation coverage. Two scales of determination are utilized: field observation (1 m resolution), and Google Earth images (that allow for a better than 5 m resolution). Over the eight year period of the study, vegetation coverage over the landfill cells run from a low 83% to 100% on different cells, with an average between 95 to 99% for the entire landfill depending on seasonality. Surrounding area vegetation showed almost 100% coverage during the entire period, with an average density from 2 to 6 species per sq meter and no signs of leachate damaged vegetation.Keywords: biological indicators, biota monitoring, landfill species diversity, waste management
Procedia PDF Downloads 140131 C-Coordinated Chitosan Metal Complexes: Design, Synthesis and Antifungal Properties
Authors: Weixiang Liu, Yukun Qin, Song Liu, Pengcheng Li
Abstract:
Plant diseases can cause the death of crops with great economic losses. Particularly, those diseases are usually caused by pathogenic fungi. Metal fungicides are a type of pesticide that has advantages of a low-cost, broad antimicrobial spectrum and strong sterilization effect. However, the frequent and wide application of traditional metal fungicides has caused serious problems such as environmental pollution, the outbreak of mites and phytotoxicity. Therefore, it is critically necessary to discover new organic metal fungicides alternatives that have a low metal content, low toxicity, and little influence on mites. Chitosan, the second most abundant natural polysaccharide next to cellulose, was proved to have broad-spectrum antifungal activity against a variety of fungi. However, the use of chitosan was limited due to its poor solubility and weaker antifungal activity compared with commercial fungicide. Therefore, in order to improve the water solubility and antifungal activity, many researchers grafted the active groups onto chitosan. The present work was to combine free metal ions with chitosan, to prepare more potent antifungal chitosan derivatives, thus, based on condensation reaction, chitosan derivative bearing amino pyridine group was prepared and subsequently followed by coordination with cupric ions, zinc ions and nickel ions to synthesize chitosan metal complexes. The calculations by density functional theory (DFT) show that the copper ions and nickel ions underwent dsp2 hybridization, the zinc ions underwent sp3 hybridization, and all of them are coordinated by the carbon atom in the p-π conjugate group and the oxygen atoms in the acetate ion. The antifungal properties of chitosan metal complexes against Phytophthora capsici (P. capsici), Gibberella zeae (G. zeae), Fusarium oxysporum (F. oxysporum) and Botrytis cinerea (B. cinerea) were also assayed. In addition, a plant toxicity experiment was carried out. The experiments indicated that the derivatives have significantly enhanced antifungal activity after metal ions complexation compared with the original chitosan. It was shown that 0.20 mg/mL of O-CSPX-Cu can 100% inhibit the growth of P. capsici and 0.20 mg/mL of O-CSPX-Ni can 87.5% inhibit the growth of B. cinerea. In general, their activities are better than the positive control oligosaccharides. The combination of the pyridine formyl groups seems to favor biological activity. Additionally, the ligand fashion was precisely analyzed, and the results revealed that the copper ions and nickel ions underwent dsp2 hybridization, the zinc ions underwent sp3 hybridization, and the carbon atoms of the p-π conjugate group and the oxygen atoms of acetate ion are involved in the coordination of metal ions. The phytotoxicity assay of O-CSPX-M was also conducted, unlike the traditional metal fungicides, the metal complexes were not significantly toxic to the leaves of wheat. O-CSPX-Zn can even increase chlorophyll content in wheat leaves at 0.40 mg/mL. This is mainly because chitosan itself promotes plant growth and counteracts the phytotoxicity of metal ions. The chitosan derivative described here may lend themselves to future applicative studies in crop protection.Keywords: coordination, chitosan, metal complex, antifungal properties
Procedia PDF Downloads 319130 Solomon 300 OD (Betacyfluthrin+Imidacloprid): A Combi-Product for the Management of Insect-Pests of Chilli (Capsicum annum L.)
Authors: R. S. Giraddi, B. Thirupam Reddy, D. N. Kambrekar
Abstract:
Chilli (Capsicum annum L.) an important commercial vegetable crop is ravaged by a number of insect-pests during both vegetative and reproductive phase resulting into significant crop loss.Thrips, Scirtothripsdorsalis, mite, Polyphagotarsonemuslatus and whitefly, Bemisiatabaci are the key sap feeding insects, their infestation leads to leaf curl, stunted growth and yield loss.During flowering and fruit formation stage, gall midge fly, Asphondyliacapparis (Rubsaaman) infesting flower buds and young fruits andHelicoverpaarmigera (Hubner) feeding on matured green fruits are the important insect pests causing significant crop loss.The pest is known to infest both flower buds and young fruits resulting into malformation of flower buds and twisting of fruits.In order to manage these insect-pests a combi product consisting of imidacloprid and betacyfluthrin (Soloman 300 OD) was evaluated for its bio-efficacy, phytotoxicity and effect on predator activity.Imidacloprid, a systemic insecticide belonging to neo-nicotinoid group, is effective against insect pests such as aphids, whiteflies (sap feeders) and other insectsviz., termites and soil insects.Beta-Cyfluthrin is an insecticide of synthetic pyrethroid group which acts by contact action and ingestion. It acts on the insects' nervous system as sodium channel blocker consequently a disorder of the nervous system occurs leading finally to the death. The field experiments were taken up during 2015 and 2016 at the Main Agricultural Research Station of University of Agricultural Sciences, Dharwad, Karnataka, India.The trials were laid out in a Randomized Block Design (RBD) with three replications using popular land race of Byadagi crop variety.Results indicated that the product at 21.6 + 50.4% gai/ha (240 ml/ha) and 27.9 + 65% gai/ha (310 ml/ha) was found quite effective in controlling thrips (0.00 to 0.66 thrips per six leaves) as against the standard check insecticide recommended for thrips by the University of Agricultural Sciences, Dharwad wherein the density of thrips recorded was significantly higher (1.00 to 2.00 Nos./6 leaves). Similarly, the test insecticide was quite effective against other target insects, whiteflies, fruit borer and gall midge fly as indicated by lower insect population observed in the treatments as compared to standard insecticidal control. The predatory beetle activity was found to be normal in all experimental plots. Highest green fruit yield of 5100-5500 kg/ha was recorded in Soloman 300 OD applied crop at 310 ml/ha rate as compared to 4750 to 5050 kg/ha recorded in check. At present 6-8 sprays of insecticides are recommended for management of these insect-pests on the crop. If combi-products are used in pest management programmes, it is possible to reduce insecticide usages in crop ecosystem.Keywords: Imidacloprid, Betacyfluthrin, gallmidge fly, thrips, chilli
Procedia PDF Downloads 167129 Charged Amphiphilic Polypeptide Based Micelle Hydrogel Composite for Dual Drug Release
Authors: Monika Patel, Kazuaki Matsumura
Abstract:
Synthetic hydrogels, with their unique properties such as porosity, strength, and swelling in aqueous environment, are being used in many fields from food additives to regenerative medicines, from diagnostic and pharmaceuticals to drug delivery systems (DDS). But, hydrogels also have some limitations in terms of homogeneity of drug distribution and quantity of loaded drugs. As an alternate, polymeric micelles are extensively used as DDS. With the ease of self-assembly, and distinct stability they remarkably improve the solubility of hydrophobic drugs. However, presently, combinational therapy is the need of time and so are systems which are capable of releasing more than one drug. And it is one of the major challenges towards DDS to control the release of each drug independently, which simple DDS cannot meet. In this work, we present an amphiphilic polypeptide based micelle hydrogel composite to study the dual drug release for wound healing purposes using Amphotericin B (AmpB) and Curcumin as model drugs. Firstly, two differently charged amphiphilic polypeptide chains were prepared namely, poly L-Lysine-b-poly phenyl alanine (PLL-PPA) and poly Glutamic acid-b-poly phenyl alanine (PGA-PPA) through ring opening polymerization of amino acid N-carboxyanhydride. These polymers readily self-assemble to form micelles with hydrophobic PPA block as core and hydrophilic PLL/PGA as shell with an average diameter of about 280nm. The thus formed micelles were loaded with the model drugs. The PLL-PPA micelle was loaded with curcumin and PGA-PPA was loaded with AmpB by dialysis method. Drug loaded micelles showed a slight increase in the mean diameter and were fairly stable in solution and lyophilized forms. For forming the micelles hydrogel composite, the drug loaded micelles were dissolved and were cross linked using genipin. Genipin uses the free –NH2 groups in the PLL-PPA micelles to form a hydrogel network with free PGA-PPA micelles trapped in between the 3D scaffold formed. Different composites were tested by changing the weight ratios of the both micelles and were seen to alter its resulting surface charge from positive to negative with increase in PGA-PPA ratio. The composites with high surface charge showed a burst release of drug in initial phase, were as the composites with relatively low net charge showed a sustained release. Thus the resultant surface charge of the composite can be tuned to tune its drug release profile. Also, while studying the degree of cross linking among the PLL-PPA particles for effect on dual drug release, it was seen that as the degree of crosslinking increases, an increase in the tendency to burst release the drug (AmpB) is seen in PGA-PPA particle, were as on the contrary the PLL-PPA particles showed a slower release of Curcumin with increasing the cross linking density. Thus, two different pharmacokinetic profile of drugs were seen by changing the cross linking degree. In conclusion, a unique charged amphiphilic polypeptide based micelle hydrogel composite for dual drug delivery. This composite can be finely tuned on the basis of need of drug release profiles by changing simple parameters such as composition, cross linking and pH.Keywords: amphiphilic polypeptide, dual drug release, micelle hydrogel composite, tunable DDS
Procedia PDF Downloads 208128 Analysis of Flow Dynamics of Heated and Cooled Pylon Upstream to the Cavity past Supersonic Flow with Wall Heating and Cooling
Authors: Vishnu Asokan, Zaid M. Paloba
Abstract:
Flow over cavities is an important area of research due to the significant change in flow physics caused by cavity aspect ratio, free stream Mach number and the nature of upstream boundary layer approaching the cavity leading edge. Cavity flow finds application in aircraft wheel well, weapons bay, combustion chamber of scramjet engines, etc. These flows are highly unsteady, compressible and turbulent and it involves mass entrainment coupled with acoustics phenomenon. Variation of flow dynamics in an angled cavity with a heated and cooled pylon upstream to the cavity with spatial combinations of heat flux addition and removal to the wall studied numerically. The goal of study is to investigate the effect of energy addition, removal to the cavity walls and pylon cavity flow dynamics. Preliminary steady state numerical simulations on inclined cavities with heat addition have shown that wall pressure profiles, as well as the recirculation, are influenced by heat transfer to the compressible fluid medium. Such a hybrid control of cavity flow dynamics in the form of heat transfer and pylon geometry can open out greater opportunities in enhancement of mixing and flame holding requirements of supersonic combustors. Addition of pylon upstream to the cavity reduces the acoustic oscillations emanating from the geometry. A numerical unsteady analysis of supersonic flow past cavities exposed to cavity wall heating and cooling with heated and cooled pylon helps to get a clear idea about the oscillation suppression in the cavity. A Cavity of L/D 4 and aft wall angle 22 degree with an upstream pylon of h/D=1.5 mm with a wall angle 29 degree exposed to supersonic flow of Mach number 2 and heat flux of 40 W/cm² and -40 W/cm² modeled for the above study. In the preliminary study, the domain is modeled and validated numerically with a turbulence model of SST k-ω using an HLLC implicit scheme. Both qualitative and quantitative flow data extracted and analyzed using advanced CFD tools. Flow visualization is done using numerical Schlieren method as the fluid medium gives the density variation. The heat flux addition to the wall increases the secondary vortex size of the cavity and removal of energy leads to the reduction in vortex size. The flow field turbulence seems to be increasing at higher heat flux. The shear layer thickness increases as heat flux increases. The steady state analysis of wall pressure shows that there is variation on wall pressure as heat flux increases. Shift in frequency of unsteady wall pressure analysis is an interesting observation for the above study. The time averaged skin friction seems to be reducing at higher heat flux due to the variation in viscosity of fluid inside the cavity.Keywords: energy addition, frequency shift, Numerical Schlieren, shear layer, vortex evolution
Procedia PDF Downloads 143127 Defense Priming from Egg to Larvae in Litopenaeus vannamei with Non-Pathogenic and Pathogenic Bacteria Strains
Authors: Angelica Alvarez-Lee, Sergio Martinez-Diaz, Jose Luis Garcia-Corona, Humberto Lanz-Mendoza
Abstract:
World aquaculture is always looking for improvements to achieve productions with high yields avoiding the infection by pathogenic agents. The best way to achieve this is to know the biological model to create alternative treatments that could be applied in the hatcheries, which results in greater economic gains and improvements in human public health. In the last decade, immunomodulation in shrimp culture with probiotics, organic acids and different carbon sources has gained great interest, mainly in larval and juvenile stages. Immune priming is associated with a strong protective effect against a later pathogen challenge. This work provides another perspective about immunostimulation from spawning until hatching. The stimulation happens during development embryos and generates resistance to infection by pathogenic bacteria. Massive spawnings of white shrimp L. vannamei were obtained and placed in experimental units with 700 mL of sterile seawater at 30 °C, salinity of 28 ppm and continuous aeration at a density of 8 embryos.mL⁻¹. The immunostimulating effect of three death strains of non-pathogenic bacterial (Escherichia coli, Staphylococcus aureus and Bacillus subtilis) and a pathogenic strain for white shrimp (Vibrio parahaemolyticus) was evaluated. The strains killed by heat were adjusted to O.D. 0.5, at A 600 nm, and directly added to the seawater of each unit at a ratio of 1/100 (v/v). A control group of embryos without inoculum of dead bacteria was kept under the same physicochemical conditions as the rest of the treatments throughout the experiment and used as reference. The duration of the stimulus was 12 hours, then, the larvae that hatched were collected, counted and transferred to a new experimental unit (same physicochemical conditions but at a salinity of 28 ppm) to carry out a challenge of infection against the pathogen V. parahaemolyticus, adding directly to seawater an amount 1/100 (v/v) of the live strain adjusted to an OD 0.5; at A 600 nm. Subsequently, 24 hrs after infection, nauplii survival was evaluated. The results of this work shows that, after 24 hrs, the hatching rates of immunostimulated shrimp embryos with the dead strains of B. subtillis and V. parahaemolyticus are significantly higher compared to the rest of the treatments and the control. Furthermore, survival of L. vanammei after a challenge of infection of 24 hrs against the live strain of V. parahaemolyticus is greater (P < 0.05) in the larvae immunostimulated during the embryonic development with the dead strains B. subtillis and V. parahaemolyticus, followed by those that were treated with E. coli. In summary superficial antigens can stimulate the development cells to promote hatching and can have normal development in agreeing with the optical observations, plus exist a differential response effect between each treatment post-infection. This research provides evidence of the immunostimulant effect of death pathogenic and non-pathogenic bacterial strains in the rate of hatching and oversight of shrimp L. vannamei during embryonic and larval development. This research continues evaluating the effect of these death strains on the expression of genes related to the defense priming in larvae of L. vannamei that come from massive spawning in hatcheries before and after the infection challenge against V. parahaemolyticus.Keywords: immunostimulation, L. vannamei, hatching, survival
Procedia PDF Downloads 143126 Determination of Gross Alpha and Gross Beta Activity in Water Samples by iSolo Alpha/Beta Counting System
Authors: Thiwanka Weerakkody, Lakmali Handagiripathira, Poshitha Dabare, Thisari Guruge
Abstract:
The determination of gross alpha and beta activity in water is important in a wide array of environmental studies and these parameters are considered in international legislations on the quality of water. This technique is commonly applied as screening method in radioecology, environmental monitoring, industrial applications, etc. Measuring of Gross Alpha and Beta emitters by using iSolo alpha beta counting system is an adequate nuclear technique to assess radioactivity levels in natural and waste water samples due to its simplicity and low cost compared with the other methods. Twelve water samples (Six samples of commercially available bottled drinking water and six samples of industrial waste water) were measured by standard method EPA 900.0 consisting of the gas-less, firm wear based, single sample, manual iSolo alpha beta counter (Model: SOLO300G) with solid state silicon PIPS detector. Am-241 and Sr90/ Y90 calibration standards were used to calibrate the detector. The minimum detectable activities are 2.32mBq/L and 406mBq/L, for alpha and beta activity, respectively. Each of the 2L water samples was evaporated (at low heat) to a small volume and transferred into 50mm stainless steel counting planchet evenly (for homogenization) and heated by IR lamp and the constant weighted residue was obtained. Then the samples were counted for gross alpha and beta. Sample density on the planchet area was maintained below 5mg/cm. Large quantities of solid wastes sludges and waste water are generated every year due to various industries. This water can be reused for different applications. Therefore implementation of water treatment plants and measuring water quality parameters in industrial waste water discharge is very important before releasing them into the environment. This waste may contain different types of pollutants, including radioactive substances. All these measured waste water samples having gross alpha and beta activities, lower than the maximum tolerance limits for industrial waste water discharge of industrial waste in to inland surface water, that is 10-9µCi/mL and 10-8µCi/mL for gross alpha and beta respectively (National Environmental Act, No. 47 of 1980). This is according to extraordinary gazette of the democratic socialist republic of Sri Lanka in February 2008. The measured water samples were below the recommended radioactivity levels and do not pose any radiological hazard when releasing the environment. Drinking water is an essential requirement of life. All the drinking water samples were below the permissible levels of 0.5Bq/L for gross alpha activity and 1Bq/L for gross beta activity. The values have been proposed by World Health Organization in 2011; therefore the water is acceptable for consumption of humans without any further clarification with respect to their radioactivity. As these screening levels are very low, the individual dose criterion (IDC) would usually not be exceeded (0.1mSv y⁻¹). IDC is a criterion for evaluating health risks from long term exposure to radionuclides in drinking water. Recommended level of 0.1mSv/y expressed a very low level of health risk. This monitoring work will be continued further for environmental protection purposes.Keywords: drinking water, gross alpha, gross beta, waste water
Procedia PDF Downloads 198125 Electromagnetic Simulation Based on Drift and Diffusion Currents for Real-Time Systems
Authors: Alexander Norbach
Abstract:
The script in this paper describes the use of advanced simulation environment using electronic systems (Microcontroller, Operational Amplifiers, and FPGA). The simulation may be used for all dynamic systems with the diffusion and the ionisation behaviour also. By additionally required observer structure, the system works with parallel real-time simulation based on diffusion model and the state-space representation for other dynamics. The proposed deposited model may be used for electrodynamic effects, including ionising effects and eddy current distribution also. With the script and proposed method, it is possible to calculate the spatial distribution of the electromagnetic fields in real-time. For further purpose, the spatial temperature distribution may be used also. With upon system, the uncertainties, unknown initial states and disturbances may be determined. This provides the estimation of the more precise system states for the required system, and additionally, the estimation of the ionising disturbances that occur due to radiation effects. The results have shown that a system can be also developed and adopted specifically for space systems with the real-time calculation of the radiation effects only. Electronic systems can take damage caused by impacts with charged particle flux in space or radiation environment. In order to be able to react to these processes, it must be calculated within a shorter time that ionising radiation and dose is present. All available sensors shall be used to observe the spatial distributions. By measured value of size and known location of the sensors, the entire distribution can be calculated retroactively or more accurately. With the formation, the type of ionisation and the direct effect to the systems and thus possible prevent processes can be activated up to the shutdown. The results show possibilities to perform more qualitative and faster simulations independent of kind of systems space-systems and radiation environment also. The paper gives additionally an overview of the diffusion effects and their mechanisms. For the modelling and derivation of equations, the extended current equation is used. The size K represents the proposed charge density drifting vector. The extended diffusion equation was derived and shows the quantising character and has similar law like the Klein-Gordon equation. These kinds of PDE's (Partial Differential Equations) are analytically solvable by giving initial distribution conditions (Cauchy problem) and boundary conditions (Dirichlet boundary condition). For a simpler structure, a transfer function for B- and E- fields was analytically calculated. With known discretised responses g₁(k·Ts) and g₂(k·Ts), the electric current or voltage may be calculated using a convolution; g₁ is the direct function and g₂ is a recursive function. The analytical results are good enough for calculation of fields with diffusion effects. Within the scope of this work, a proposed model of the consideration of the electromagnetic diffusion effects of arbitrary current 'waveforms' has been developed. The advantage of the proposed calculation of diffusion is the real-time capability, which is not really possible with the FEM programs available today. It makes sense in the further course of research to use these methods and to investigate them thoroughly.Keywords: advanced observer, electrodynamics, systems, diffusion, partial differential equations, solver
Procedia PDF Downloads 131124 Flood Risk Assessment, Mapping Finding the Vulnerability to Flood Level of the Study Area and Prioritizing the Study Area of Khinch District Using and Multi-Criteria Decision-Making Model
Authors: Muhammad Karim Ahmadzai
Abstract:
Floods are natural phenomena and are an integral part of the water cycle. The majority of them are the result of climatic conditions, but are also affected by the geology and geomorphology of the area, topography and hydrology, the water permeability of the soil and the vegetation cover, as well as by all kinds of human activities and structures. However, from the moment that human lives are at risk and significant economic impact is recorded, this natural phenomenon becomes a natural disaster. Flood management is now a key issue at regional and local levels around the world, affecting human lives and activities. The majority of floods are unlikely to be fully predicted, but it is feasible to reduce their risks through appropriate management plans and constructions. The aim of this Case Study is to identify, and map areas of flood risk in the Khinch District of Panjshir Province, Afghanistan specifically in the area of Peshghore, causing numerous damages. The main purpose of this study is to evaluate the contribution of remote sensing technology and Geographic Information Systems (GIS) in assessing the susceptibility of this region to flood events. Panjsher is facing Seasonal floods and human interventions on streams caused floods. The beds of which have been trampled to build houses and hotels or have been converted into roads, are causing flooding after every heavy rainfall. The streams crossing settlements and areas with high touristic development have been intensively modified by humans, as the pressure for real estate development land is growing. In particular, several areas in Khinch are facing a high risk of extensive flood occurrence. This study concentrates on the construction of a flood susceptibility map, of the study area, by combining vulnerability elements, using the Analytical Hierarchy Process/ AHP. The Analytic Hierarchy Process, normally called AHP, is a powerful yet simple method for making decisions. It is commonly used for project prioritization and selection. AHP lets you capture your strategic goals as a set of weighted criteria that you then use to score projects. This method is used to provide weights for each criterion which Contributes to the Flood Event. After processing of a digital elevation model (DEM), important secondary data were extracted, such as the slope map, the flow direction and the flow accumulation. Together with additional thematic information (Landuse and Landcover, topographic wetness index, precipitation, Normalized Difference Vegetation Index, Elevation, River Density, Distance from River, Distance to Road, Slope), these led to the final Flood Risk Map. Finally, according to this map, the Priority Protection Areas and Villages and the structural and nonstructural measures were demonstrated to Minimize the Impacts of Floods on residential and Agricultural areas.Keywords: flood hazard, flood risk map, flood mitigation measures, AHP analysis
Procedia PDF Downloads 119123 Epidemiology of Healthcare-Associated Infections among Hematology/Oncology Patients: Results of a Prospective Incidence Survey in a Tunisian University Hospital
Authors: Ezzi Olfa, Bouafia Nabiha, Ammar Asma, Ben Cheikh Asma, Mahjoub Mohamed, Bannour Wadiaa, Achour Bechir, Khelif Abderrahim, Njah Mansour
Abstract:
Background: In hematology/oncology, health care improvement has allowed increasingly aggressive management in diagnostic and therapeutic procedures. Nevertheless, these intensified procedures have been associated with higher risk of healthcare associated infections (HAIs). We undertook this study to estimate the burden of HAIs in the cancer patients in an onco -hematology unit in a Tunisian university hospital. Materials/Methods: A prospective, observational study, based on active surveillance for a period of 06 months from Mars through September 2016, was undertaken in the department of onco-hematology in a university hospital in Tunisia. Patients, who stayed in the unit for ≥ 48 h, were followed until hospital discharge. The Centers for Disease Control and Prevention criteria (CDC) for site-specific infections were used as standard definitions for HAIs. Results: One hundred fifty patients were included in the study. The gender distribution was 33.3% for girls and 66.6% boys. They have a mean age of 23.12 years (SD = 18.36 years). The main patient’s diagnosis is: Acute Lymphoblastic Leukemia (ALL): 48.7 %( n=73). The mean length of stay was 21 days +/- 18 days. Almost 8% of patients had an implantable port (n= 12), 34.9 % (n=52) had a lumber puncture and 42.7 % (n= 64) had a medullary puncture. Chemotherapy was instituted in 88% of patients (n=132). Eighty (53.3%) patients had neutropenia at admission. The incidence rate of HAIs was 32.66 % per patient; the incidence density was 15.73 per 1000 patient-days in the unit. Mortality rate was 9.3% (n= 14), and 50% of cases of death were caused by HAIs. The most frequent episodes of infection were: infection of skin and superficial mucosa (5.3%), pulmonary aspergillosis (4.6%), Healthcare associated pneumonia (HAP) (4%), Central venous catheter associated infection (4%), digestive infection (5%), and primary bloodstream infection (2.6%). Finally, fever of unknown origin (FUO) incidence rate was 14%. In case of skin and superficial infection (n= 8), 4 episodes were documented, and organisms implicated were Escherichia.coli, Geotricum capitatum and Proteus mirabilis. For pulmonary aspergillosis, 6 cases were diagnosed clinically and radiologically, and one was proved by positive aspergillus antigen in bronchial aspiration. Only one patient died due this infection. In HAP (6 cases), four episodes were diagnosed clinically and radiologically. No bacterial etiology was established in these cases. Two patients died due to HAP. For primary bloodstream infection (4 cases), implicated germs were Enterobacter cloacae, Geotricum capitatum, klebsiella pneumoniae, and Streptococcus pneumoniae. Conclusion: This type of prospective study is an indispensable tool for internal quality control. It is necessary to evaluate preventive measures and design control guides and strategies aimed to reduce the HAI’s rate and the morbidity and mortality associated with infection in a hematology/oncology unit.Keywords: cohort prospective studies, healthcare associated infections, hematology oncology department, incidence
Procedia PDF Downloads 390122 Enhanced Functional Production of a Crucial Biomolecule Human Serum Albumin in Escherichia coli
Authors: Ashima Sharma
Abstract:
Human Serum Albumin (HSA)- one of the most demanded therapeutic proteins with immense biotechnological applications- is a large multidomain protein containing 17 disulfide bonds. The current source of HSA is human blood plasma which is a limited and unsafe source. Thus, there exists an indispensable need to promote non-animal derived recombinant HSA (rHSA) production. Escherichia coli is one of the most convenient hosts which had contributed to the production of more than 30% of the FDA approved recombinant pharmaceuticals. It grows rapidly and reaches high cell density using inexpensive and simple substrates. E. coli derived recombinant products have more economic potential as fermentation processes are cheaper compared to the other expression hosts. The major bottleneck in exploiting E. coli as a host for a disulfide-rich multidomain protein is the formation of aggregates of overexpressed protein. The majority of the expressed HSA forms inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA from inclusion bodies is not preferred because it is difficult to obtain a large multidomain disulfide bond rich protein like rHSA in its functional native form. Purification is tedious, time-consuming, laborious and expensive. Because of such limitations, the E. coli host system was neglected for rHSA production for the past few decades despite its numerous advantages. In the present work, we have exploited the capabilities of E. coli as a host for the enhanced functional production of rHSA (~60% of the total expressed rHSA in the soluble fraction). Parameters like intracellular environment, temperature, induction type, duration of induction, cell lysis conditions etc. which play an important role in enhancing the level of production of the desired protein in its native form in vivo have been optimized. We have studied the effect of assistance of different types of exogenously employed chaperone systems on the functional expression of rHSA in the E. coli host system. Different aspects of cell growth parameters during the production of rHSA in presence and absence of molecular chaperones in E. coli have also been studied. Upon overcoming the difficulties to produce functional rHSA in E. coli, it has been possible to produce significant levels of functional protein through engineering the biological system of protein folding in the cell, the E. coli-derived rHSA has been purified to homogeneity. Its detailed physicochemical characterization has been performed by monitoring its conformational properties, secondary and tertiary structure elements, surface properties, ligand binding properties, stability issues etc. These parameters of the recombinant protein have been compared with the naturally occurring protein from the human source. The outcome of the comparison reveals that the recombinant protein resembles exactly the same as the natural one. Hence, we propose that the E. coli-derived rHSA is an ideal biosimilar for human blood plasma-derived serum albumin. Therefore, in the present study, we have introduced and promoted the E. coli- derived rHSA as an alternative to the preparation from a human source, pHSA.Keywords: recombinant human serum albumin, Escherichia coli, biosimilar, chaperone assisted protein folding
Procedia PDF Downloads 210121 Distribution of Micro Silica Powder at a Ready Mixed Concrete
Authors: Kyong-Ku Yun, Dae-Ae Kim, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han
Abstract:
Micro silica is collected as a by-product of the silicon and ferrosilicon alloy production in electric arc furnace using highly pure quartz, wood chips, coke and the like. It consists of about 85% of silicon which has spherical particles with an average particle size of 150 μm. The bulk density of micro silica varies from 150 to 700kg/m^3 and the fineness ranges from 150,000 to 300,000cm^2/g. An amorphous structure with a high silicon oxide content of micro silica induces an active reaction with calcium hydroxide (Ca(OH)₂) generated by the cement hydrate of a large surface area (about 20 m^² / g), and they are also known to form calcium, silicate, hydrate conjugate (C-S-H). Micro silica tends to act as a filler because of the fine particles and the spherical shape. These particles do not get covered by water and they fit well in the space between the relatively rough cement grains which does not freely fluidize concrete. On the contrary, water demand increases since micro silica particles have a tendency to absorb water because of the large surface area. The overall effect of micro silica depends on the amount of micro silica added with other parameters in the water-(cement + micro silica) ratio, and the availability of superplasticizer. In this research, it was studied on cellular sprayed concrete. This method involves a direct re-production of ready mixed concrete into a high performance at a job site. It could reduce the cost of construction by an adding a cellular and a micro silica into a ready mixed concrete truck in a field. Also, micro silica which is difficult with mixing due to high fineness in the field can be added and dispersed in concrete by increasing the fluidity of ready mixed concrete through the surface activity of cellular. Increased air content is converged to a certain level of air content by spraying and it also produces high-performance concrete by remixing of powders in the process of spraying. As it does not use a field mixing equipment the cost of construction decrease and it can be constructed after installing special spray machine in a commercial pump car. Therefore, use of special equipment is minimized, providing economic feasibility through the utilization of existing equipment. This study was carried out to evaluate a highly reliable method of confirming dispersion through a high performance cellular sprayed concrete. A mixture of 25mm coarse aggregate and river sand was applied to the concrete. In addition, by applying silica fume and foam, silica fume dispersion is confirmed in accordance with foam mixing, and the mean and standard deviation is obtained. Then variation coefficient is calculated to finally evaluate the dispersion. Comparison and analysis of before and after spraying were conducted on the experiment variables of 21L, 35L foam for each 7%, 14% silica fume respectively. Taking foam and silica fume as variables, the experiment proceed. Casting a specimen for each variable, a five-day sample is taken from each specimen for EDS test. In this study, it was examined by an experiment materials, plan and mix design, test methods, and equipment, for the evaluation of dispersion in accordance with micro silica and foam.Keywords: micro silica, distribution, ready mixed concrete, foam
Procedia PDF Downloads 220120 Effect of Methoxy and Polyene Additional Functionalized Group on the Photocatalytic Properties of Polyene-Diphenylaniline Organic Chromophores for Solar Energy Applications
Authors: Ife Elegbeleye, Nnditshedzeni Eric, Regina Maphanga, Femi Elegbeleye, Femi Agunbiade
Abstract:
The global potential of other renewable energy sources such as wind, hydroelectric, bio-mass, and geothermal is estimated to be approximately 13 %, with hydroelectricity constituting a larger percentage. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from the sunlight strikes the Earth in one hour (4.3 × 1020 J) than all the energy consumed on the planet in a year (4.1 × 1020 J), hence, solar energy remains the most abundant clean, renewable energy resources for mankind. Photovoltaic (PV) devices such as silicon solar cells, dye sensitized solar cells are utilized for harnessing solar energy. Polyene-diphenylaniline organic molecules are important sets of molecules that has stirred many research interest as photosensitizers in TiO₂ semiconductor-based dye sensitized solar cells (DSSCs). The advantages of organic dye molecule over metal-based complexes are higher extinction coefficient, moderate cost, good environmental compatibility, and electrochemical properties. The polyene-diphenylaniline organic dyes with basic configuration of donor-π-acceptor are affordable, easy to synthesize and possess chemical structures that can easily be modified to optimize their photocatalytic and spectral properties. The enormous interest in polyene-diphenylaniline dyes as photosensitizers is due to their fascinating spectral properties which include visible light to near infra-red-light absorption. In this work, density functional theory approach via GPAW software, Avogadro and ASE were employed to study the effect of methoxy functionalized group on the spectral properties of polyene-diphenylaniline dyes and their photons absorbing characteristics in the visible region to near infrared region of the solar spectrum. Our results showed that the two-phenyl based complexes D5 and D7 exhibits maximum absorption peaks at 750 nm and 850 nm, while D9 and D11 with methoxy group shows maximum absorption peak at 800 nm and 900 nm respectively. The highest absorption wavelength is notable for D9 and D11 containing additional polyene and methoxy groups. Also, D9 and D11 chromophores with the methoxy group shows lower energy gap of 0.98 and 0.85 respectively than the corresponding D5 and D7 dyes complexes with energy gap of 1.32 and 1.08. The analysis of their electron injection kinetics ∆Ginject into the band gap of TiO₂ shows that D9 and D11 with the methoxy group has higher electron injection kinetics of -2.070 and -2.030 than the corresponding polyene-diphenylaniline complexes without the addition of polyene group with ∆Ginject values of -2.820 and -2.130 respectively. Our findings suggest that the addition of functionalized group as an extension of the organic complexes results in higher light harvesting efficiencies and bathochromic shift of the absorption spectra to higher wavelength which suggest higher current densities and open circuit voltage in DSSCs. The study suggests that the photocatalytic properties of organic chromophores/complexes with donor-π-acceptor configuration can be enhanced by the addition of functionalized groups.Keywords: renewable energy resource, solar energy, dye sensitized solar cells, polyene-diphenylaniline organic chromophores
Procedia PDF Downloads 115119 The Temporal Pattern of Bumble Bees in Plant Visiting
Authors: Zahra Shakoori, Farid Salmanpour
Abstract:
Pollination services are a vital service for the ecosystem to maintain environmental stability. The decline of pollinators can disrupt the ecological balance by affecting components of biodiversity. Bumble bees are crucial pollinators, playing a vital role in maintaining plant diversity. This study investigated the temporal patterns of their visitation to flowers in Kiasar National Park, Iran. Observations were conducted in Jun 2024, totaling 442 person-minutes of observation. Five species of bumble bees were identified. The study revealed that they consistently visited an average of 12-15 flowers per minute, regardless of species. The findings highlight the importance of protecting natural habitats, where their populations are thriving in the absence of human-induced stressors. This study was conducted in Kiasar National Park, located in the southeast of Mazandaran, northern Iran. The surveyed area, at an altitude of 1800-2200 meters, includes both forest and pasture. Bumble bee surveys were carried out on sunny days from June 2024, starting at dawn and ending at sunset. To avoid double-counting, we systematically searched for foraging habitats on low-sloping ridges with high mud density, frequently moving between patches. We recorded bumble bee visits to flowers and plant species per minute using direct observation, a stopwatch, and a pre-prepared form. We used statistical analysis of variance (ANOVA) with a confidence level of 95% to examine potential differences in foraging rates across different bumble bee species, flowers, plant bases, and plant species visited. Bumble bee identification relied on morphological indicators. A total of 442 person-minutes of bumble bee observations were recorded. Five species of bumble bees (Bombus fragrans, Bombus haematurus, Bombus lucorum, Bombus melanurus, Bombus terrestris) were identified during the study. The results of this study showed that the visits of bumble bees to flower sources were not different from each other. In general, bumble bees visit an average of 12-15 flowers every 60 seconds. In addition, at the same time they visit between 3-5 plant bases. Finally, they visit an average of 1 to 3 plant species per minute. While many taxa contribute to pollination, insects—especially bees—are crucial for maintaining plant diversity and ecosystem functions. As plant diversity increases, the stopping rate of pollinating insects rises, which reduces their foraging activity. Bumble bees, therefore, stop more frequently in natural areas than in agricultural fields due to higher plant diversity. Our findings emphasize the need to protect natural habitats like Kiasar National Park, where bumble bees thrive without human-induced stressors like pesticides, livestock grazing, and pollution. With bumble bee populations declining globally, further research is essential to understand their behavior in different environments and develop effective conservation strategies to protect them.Keywords: bumble bees, pollination, pollinator, plant diversity, Iran
Procedia PDF Downloads 33118 A Case Study on the Estimation of Design Discharge for Flood Management in Lower Damodar Region, India
Authors: Susmita Ghosh
Abstract:
Catchment area of Damodar River, India experiences seasonal rains due to the south-west monsoon every year and depending upon the intensity of the storms, floods occur. During the monsoon season, the rainfall in the area is mainly due to active monsoon conditions. The upstream reach of Damodar river system has five dams store the water for utilization for various purposes viz, irrigation, hydro-power generation, municipal supplies and last but not the least flood moderation. But, in the downstream reach of Damodar River, known as Lower Damodar region, is severely and frequently suffering from flood due to heavy monsoon rainfall and also release from upstream reservoirs. Therefore, an effective flood management study is required to know in depth the nature and extent of flood, water logging, and erosion related problems, affected area, and damages in the Lower Damodar region, by conducting mathematical model study. The design flood or discharge is needed to decide to assign the respective model for getting several scenarios from the simulation runs. The ultimate aim is to achieve a sustainable flood management scheme from the several alternatives. there are various methods for estimating flood discharges to be carried through the rivers and their tributaries for quick drainage from inundated areas due to drainage congestion and excess rainfall. In the present study, the flood frequency analysis is performed to decide the design flood discharge of the study area. This, on the other hand, has limitations in respect of availability of long peak flood data record for determining long type of probability density function correctly. If sufficient past records are available, the maximum flood on a river with a given frequency can safely be determined. The floods of different frequency for the Damodar has been calculated by five candidate distributions i.e., generalized extreme value, extreme value-I, Pearson type III, Log Pearson and normal. Annual peak discharge series are available at Durgapur barrage for the period of 1979 to 2013 (35 years). The available series are subjected to frequency analysis. The primary objective of the flood frequency analysis is to relate the magnitude of extreme events to their frequencies of occurrence through the use of probability distributions. The design flood for return periods of 10, 15 and 25 years return period at Durgapur barrage are estimated by flood frequency method. It is necessary to develop flood hydrographs for the above floods to facilitate the mathematical model studies to find the depth and extent of inundation etc. Null hypothesis that the distributions fit the data at 95% confidence is checked with goodness of fit test, i.e., Chi Square Test. It is revealed from the goodness of fit test that the all five distributions do show a good fit on the sample population and is therefore accepted. However, it is seen that there is considerable variation in the estimation of frequency flood. It is therefore considered prudent to average out the results of these five distributions for required frequencies. The inundated area from past data is well matched using this flood.Keywords: design discharge, flood frequency, goodness of fit, sustainable flood management
Procedia PDF Downloads 203117 Design and Synthesis of an Organic Material with High Open Circuit Voltage of 1.0 V
Authors: Javed Iqbal
Abstract:
The growing need for energy by the human society and depletion of conventional energy sources demands a renewable, safe, infinite, low-cost and omnipresent energy source. One of the most suitable ways to solve the foreseeable world’s energy crisis is to use the power of the sun. Photovoltaic devices are especially of wide interest as they can convert solar energy to electricity. Recently the best performing solar cells are silicon-based cells. However, silicon cells are expensive, rigid in structure and have a large timeline for the payback of cost and electricity. Organic photovoltaic cells are cheap, flexible and can be manufactured in a continuous process. Therefore, organic photovoltaic cells are an extremely favorable replacement. Organic photovoltaic cells utilize sunlight as energy and convert it into electricity through the use of conductive polymers/ small molecules to separate electrons and electron holes. A major challenge for these new organic photovoltaic cells is the efficiency, which is low compared with the traditional silicon solar cells. To overcome this challenge, usually two straightforward strategies have been considered: (1) reducing the band-gap of molecular donors to broaden the absorption range, which results in higher short circuit current density (JSC) of devices, and (2) lowering the highest occupied molecular orbital (HOMO) energy of molecular donors so as to increase the open-circuit voltage (VOC) of applications devices.8 Keeping in mind the cost of chemicals it is hard to try many materials on test basis. The best way is to find the suitable material in the bulk. For this purpose, we use computational approach to design molecules based on our organic chemistry knowledge and determine their physical and electronic properties. In this study, we did DFT calculations with different options to get high open circuit voltage and after getting suitable data from calculation we finally did synthesis of a novel D–π–A–π–D type low band-gap small molecular donor material (ZOPTAN-TPA). The Aarylene vinylene based bis(arylhalide) unit containing a cyanostilbene unit acts as a low-band- gap electron-accepting block, and is coupled with triphenylamine as electron-donating blocks groups. The motivation for choosing triphenylamine (TPA) as capped donor was attributed to its important role in stabilizing the separated hole from an exciton and thus improving the hole-transporting properties of the hole carrier.3 A π-bridge (thiophene) is inserted between the donor and acceptor unit to reduce the steric hindrance between the donor and acceptor units and to improve the planarity of the molecule. The ZOPTAN-TPA molecule features a low HOMO level of 5.2 eV and an optical energy gap of 2.1 eV. Champion OSCs based on a solution-processed and non-annealed active-material blend of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and ZOPTAN-TPA in a mass ratio of 2:1 exhibits a power conversion efficiency of 1.9 % and a high open-circuit voltage of over 1.0 V.Keywords: high open circuit voltage, donor, triphenylamine, organic solar cells
Procedia PDF Downloads 242116 Inventory and Pollinating Role of Bees (Hymenoptera: apoidea) on Turnip (Brassica rapa L.) and Radish (Raphanus sativus L.) (Brassicaceae) in Constantine Area (Algeria)
Authors: Benachour Karima
Abstract:
Pollination is a key factor in crop production and the presence of insect pollinators, mainly wild bees, is essential for improving yields. In this work, visiting apoids of two vegetable crops, the turnip (Brassica rapa L.) and the radish (Raphanus sativus L.) (Brassicaceae) were recorded during flowering times of 2003 and 2004 in Constantine area (36°22’N 06°37’E, 660 m). The observations were conducted in a plot of approximately 308 m2 of the Institute of Nutrition, Food and Food Technology (University of Mentouri Brothers). To estimate the density of bees (per 100 flowers or m2), 07 plots (01m2 for each one) are defined from the edge of the culture and in the first two rows. From flowering and every two days, foraging insects are recorded from 09 am until 17 pm (Gmt+1).The purpose of visit (collecting nectar, pollen or both) and pollinating efficiency (estimated by the number of flowers visited per minute and the number of positive visits) were noted for the most abundant bees on flowers. The action of pollinating insects is measured by comparing seed yields of 07 plots covered with tulle with 07 other accessible to pollinators. 04 families of Apoidea: Apidae, Halictidae, Andrenidae and Megachilidae were observed on the two plants. On turnip, the honeybee is the most common visitor (on average 214visites/ m2), it is followed by the Halictidae Lasioglossum mediterraneum whose visits are less intense (20 individuals/m2). Visits by Andrenidae, represented by several species such as Andrena lagopus, A.flavipes, A.agilissima and A.rhypara were episodic. The honeybee collected mainly nectar, its visits were all potentially fertilizing (contact with stigma) and more frequent (on average 14 flowers/min. L.mediterraneum visited only 05 flrs/min, it collected mostly the two products together and all its visits were also positive. On radish, the wild bee Ceratina cucurbitina recorded the highest number of visits (on average 06 individuals/100flo wers), the Halictidae represented mainly by L.mediterraneum, and L.malachurum, L.pauxillum were less abundant. C.cucurbitina visited on average 10 flowers /min and all its visits are positive. Visits of Halictidae were less frequent (05-06 flowers/min) and not all fertilizing. Seed yield of Brassica rapa (average number of pods /plant, seeds/ pods and average weight of 1000 seeds) was significantly higher in the presence of pollinators. Similarly, the pods of caged plants gave a percentage of aborted seeds (10.3%) significantly higher than that obtained on free plants (4.12%), the pods of caged plants also gave a percentage of malformed seeds (1.9%) significantly higher than that of the free plants (0.9%). For radish, the seed yield in the presence and absence of insects are almost similar. Only the percentage of malformed seeds (3.8%) obtained from the pods of caged plants was significantly higher in comparison with pods of free plants (1.9%). Following these results, it is clear that pollinators especially bees are essential for the production and improvement of crop yields and therefore it is necessary to protect this fauna increasingly threatened.Keywords: foraging behavior, honey bee, radish, seed yield, turnip, wild bee
Procedia PDF Downloads 215115 Effects of Temperature and Mechanical Abrasion on Microplastics
Authors: N. Singh, G. K. Darbha
Abstract:
Since the last decade, a wave of research has begun to study the prevalence and impact of ever-increasing plastic pollution in the environment. The wide application and ubiquitous distribution of plastic have become a global concern due to its persistent nature. The disposal of plastics has emerged as one of the major challenges for waste management landfills. Microplastics (MPs) have found its existence in almost every environment, from the high altitude mountain lake to the deep sea sediments, polar icebergs, coral reefs, estuaries, beaches, and river, etc. Microplastics are fragments of plastics with size less than 5 mm. Microplastics can be classified as primary microplastics and secondary microplastics. Primary microplastics includes purposefully introduced microplastics into the end products for consumers (microbeads used in facial cleansers, personal care product, etc.), pellets (used in manufacturing industries) or fibres (from textile industries) which finally enters into the environment. Secondary microplastics are formed by disintegration of larger fragments under the exposure of sunlight, mechanical abrasive forces by rain, waves, wind and/or water. A number of factors affect the quantity of microplastic present in freshwater environments. In addition to physical forces, human population density proximal to the water body, proximity to urban centres, water residence time, and size of the water body also affects plastic properties. With time, other complex processes in nature such as physical, chemical and biological break down plastics by interfering with its structural integrity. Several studies demonstrate that microplastics found in wastewater sludge being used as manure for agricultural fields, thus having the tendency to alter the soil environment condition influencing the microbial population as well. Inadequate data are available on the fate and transport of microplastics under varying environmental conditions that are required to supplement important information for further research. In addition, microplastics have the tendency to absorb heavy metals and hydrophobic organic contaminants such as PAHs and PCBs from its surroundings and thus acting as carriers for these contaminants in the environment system. In this study, three kinds of microplastics (polyethylene, polypropylene and expanded polystyrene) of different densities were chosen. Plastic samples were placed in sand with different aqueous media (distilled water, surface water, groundwater and marine water). It was incubated at varying temperatures (25, 35 and 40 °C) and agitation levels (rpm). The results show that the number of plastic fragments enhanced with increase in temperature and agitation speed. Moreover, the rate of disintegration of expanded polystyrene is high compared to other plastics. These results demonstrate that temperature, salinity, and mechanical abrasion plays a major role in degradation of plastics. Since weathered microplastics are more harmful as compared to the virgin microplastics, long-term studies involving other environmental factors are needed to have a better understanding of degradation of plastics.Keywords: environmental contamination, fragmentation, microplastics, temperature, weathering
Procedia PDF Downloads 173114 Investigation of Yard Seam Workings for the Proposed Newcastle Light Rail Project
Authors: David L. Knott, Robert Kingsland, Alistair Hitchon
Abstract:
The proposed Newcastle Light Rail is a key part of the revitalisation of Newcastle, NSW and will provide a frequent and reliable travel option throughout the city centre, running from Newcastle Interchange at Wickham to Pacific Park in Newcastle East, a total of 2.7 kilometers in length. Approximately one-third of the route, along Hunter and Scott Streets, is subject to potential shallow underground mine workings. The extent of mining and seams mined is unclear. Convicts mined the Yard Seam and overlying Dudley (Dirty) Seam in Newcastle sometime between 1800 and 1830. The Australian Agricultural Company mined the Yard Seam from about 1831 to the 1860s in the alignment area. The Yard Seam was about 3 feet (0.9m) thick, and therefore, known as the Yard Seam. Mine maps do not exist for the workings in the area of interest and it was unclear if both or just one seam was mined. Information from 1830s geological mapping and other data showing shaft locations were used along Scott Street and information from the 1908 Royal Commission was used along Hunter Street to develop an investigation program. In addition, mining was encountered for several sites to the south of the alignment at depths of about 7 m to 25 m. Based on the anticipated depths of mining, it was considered prudent to assess the potential for sinkhole development on the proposed alignment and realigned underground utilities and to obtain approval for the work from Subsidence Advisory NSW (SA NSW). The assessment consisted of a desktop study, followed by a subsurface investigation. Four boreholes were drilled along Scott Street and three boreholes were drilled along Hunter Street using HQ coring techniques in the rock. The placement of boreholes was complicated by the presence of utilities in the roadway and traffic constraints. All the boreholes encountered the Yard Seam, with conditions varying from unmined coal to an open void, indicating the presence of mining. The geotechnical information obtained from the boreholes was expanded by using various downhole techniques including; borehole camera, borehole sonar, and downhole geophysical logging. The camera provided views of the rock and helped to explain zones of no recovery. In addition, timber props within the void were observed. Borehole sonar was performed in the void and provided an indication of room size as well as the presence of timber props within the room. Downhole geophysical logging was performed in the boreholes to measure density, natural gamma, and borehole deviation. The data helped confirm that all the mining was in the Yard Seam and that the overlying Dudley Seam had been eroded in the past over much of the alignment. In summary, the assessment allowed the potential for sinkhole subsidence to be assessed and a mitigation approach developed to allow conditional approval by SA NSW. It also confirmed the presence of mining in the Yard Seam, the depth to the seam and mining conditions, and indicated that subsidence did not appear to have occurred in the past.Keywords: downhole investigation techniques, drilling, mine subsidence, yard seam
Procedia PDF Downloads 314