Search results for: composite cathodes of solid oxide fuel
3086 Solar Energy: The Alternative Electric Power Resource in Tropical Nigeria
Authors: Okorowo Cyril Agochi
Abstract:
More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man has greatly influenced climate change over the years as a result of consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discuses solar energy the abundant renewable energy in the tropical Nigeria, processes of harvesting and recommends same as an alternative means of electric power generation in a time the demand for power supersedes supply.Keywords: electric, power, renewable energy, solar energy, sun, tropical
Procedia PDF Downloads 5433085 Optimization of Synergism Extraction of Toxic Metals (Lead, Copper) from Chlorides Solutions with Mixture of Cationic and Solvating Extractants
Authors: F. Hassaine-Sadi, S. Chelouaou
Abstract:
In recent years, environmental contamination by toxic metals such as Pb, Cu, Ni, Zn ... has become a worldwide crucial problem, particularly in some areas where the population depends on groundwater for drinking daily consumption. Thus, the sources of metal ions come from the metal manufacturing industry, fertilizers, batteries, paints, pigments and so on. Solvent extraction of metal ions has given an important role in the development of metal purification processes such as the synergistic extraction of some divalent cations metals ( M²⁺), the ions metals from various sources. This work consists of a water purification technique that involves the lead and copper systems: Pb²⁺, H₃O+, Cl⁻ and Cu²⁺, H₃O⁺, Cl⁻ for diluted solutions by a mixture of tri-n-octylphosphine oxide (TOPO) or Tri-n-butylphosphate(TBP) and di (2-ethyl hexyl) phosphoric acid (HDEHP) dissolved in kerosene. The study of the fundamental parameters influencing the extraction synergism: cation exchange/extraction solvent have been examined.Keywords: synergistic extraction, lead, copper, environment
Procedia PDF Downloads 4453084 Coarse-Graining in Micromagnetic Simulations of Magnetic Hyperthermia
Authors: Razyeh Behbahani, Martin L. Plumer, Ivan Saika-Voivod
Abstract:
Micromagnetic simulations based on the stochastic Landau-Lifshitz-Gilbert equation are used to calculate dynamic magnetic hysteresis loops relevant to magnetic hyperthermia applications. With the goal to effectively simulate room-temperature loops for large iron-oxide based systems at relatively slow sweep rates on the order of 1 Oe/ns or less, a coarse-graining scheme is proposed and tested. The scheme is derived from a previously developed renormalization-group approach. Loops associated with nanorods, used as building blocks for larger nanoparticles that were employed in preclinical trials (Dennis et al., 2009 Nanotechnology 20 395103), serve as the model test system. The scaling algorithm is shown to produce nearly identical loops over several decades in the model grain sizes. Sweep-rate scaling involving the damping constant alpha is also demonstrated.Keywords: coarse-graining, hyperthermia, hysteresis loops, micromagnetic simulations
Procedia PDF Downloads 1493083 The High Precision of Magnetic Detection with Microwave Modulation in Solid Spin Assembly of NV Centres in Diamond
Authors: Zongmin Ma, Shaowen Zhang, Yueping Fu, Jun Tang, Yunbo Shi, Jun Liu
Abstract:
Solid-state quantum sensors are attracting wide interest because of their high sensitivity at room temperature. In particular, spin properties of nitrogen–vacancy (NV) color centres in diamond make them outstanding sensors of magnetic fields, electric fields and temperature under ambient conditions. Much of the work on NV magnetic sensing has been done so as to achieve the smallest volume, high sensitivity of NV ensemble-based magnetometry using micro-cavity, light-trapping diamond waveguide (LTDW), nano-cantilevers combined with MEMS (Micro-Electronic-Mechanical System) techniques. Recently, frequency-modulated microwaves with continuous optical excitation method have been proposed to achieve high sensitivity of 6 μT/√Hz using individual NV centres at nanoscale. In this research, we built-up an experiment to measure static magnetic field through continuous wave optical excitation with frequency-modulated microwaves method under continuous illumination with green pump light at 532 nm, and bulk diamond sample with a high density of NV centers (1 ppm). The output of the confocal microscopy was collected by an objective (NA = 0.7) and detected by a high sensitivity photodetector. We design uniform and efficient excitation of the micro strip antenna, which is coupled well with the spin ensembles at 2.87 GHz for zero-field splitting of the NV centers. Output of the PD signal was sent to an LIA (Lock-In Amplifier) modulated signal, generated by the microwave source by IQ mixer. The detected signal is received by the photodetector, and the reference signal enters the lock-in amplifier to realize the open-loop detection of the NV atomic magnetometer. We can plot ODMR spectra under continuous-wave (CW) microwave. Due to the high sensitivity of the lock-in amplifier, the minimum detectable value of the voltage can be measured, and the minimum detectable frequency can be made by the minimum and slope of the voltage. The magnetic field sensitivity can be derived from η = δB√T corresponds to a 10 nT minimum detectable shift in the magnetic field. Further, frequency analysis of the noise in the system indicates that at 10Hz the sensitivity less than 10 nT/√Hz.Keywords: nitrogen-vacancy (NV) centers, frequency-modulated microwaves, magnetic field sensitivity, noise density
Procedia PDF Downloads 4403082 A Study on the Non-Destructive Test Characterization of Carbon Fiber Reinforced Plastics Using Thermo-Graphic Camera
Authors: Hee Jae Shin, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Tae Ho Kim, Yoon Sun Lee, Lee Ku Kwac, Hong Gun Kim
Abstract:
Non-destructive testing and evaluation techniques for assessing the integrity of composite structures are essential to both reduce manufacturing costs and out of service time of transport means due to maintenance. In this study, Analyze into non-destructive test characterization of carbon fiber reinforced plastics(CFRP) internal and external defects using thermo-graphic camera and transient thermography method. non-destructive testing were characterized by defect size(∅8,∅10,∅12,∅14) and depth(1.2mm,2.4mm).Keywords: Non-Destructive Test (NDT), thermal characteristic, thermographic camera, Carbon Fiber Reinforced Plastics(CFRP).
Procedia PDF Downloads 5363081 Modeling of the Heat and Mass Transfer in Fluids through Thermal Pollution in Pipelines
Authors: V. Radulescu, S. Dumitru
Abstract:
Introduction: Determination of the temperature field inside a fluid in motion has many practical issues, especially in the case of turbulent flow. The phenomenon is greater when the solid walls have a different temperature than the fluid. The turbulent heat and mass transfer have an essential role in case of the thermal pollution, as it was the recorded during the damage of the Thermoelectric Power-plant Oradea (closed even today). Basic Methods: Solving the theoretical turbulent thermal pollution represents a particularly difficult problem. By using the semi-empirical theories or by simplifying the made assumptions, based on the experimental measurements may be assured the elaboration of the mathematical model for further numerical simulations. The three zones of flow are analyzed separately: the vicinity of the solid wall, the turbulent transition zone, and the turbulent core. For each area are determined the distribution law of temperature. It is determined the dependence of between the Stanton and Prandtl numbers with correction factors, based on measurements experimental. Major Findings/Results: The limitation of the laminar thermal substrate was determined based on the theory of Landau and Levice, using the assumption that the longitudinal component of the velocity pulsation and the pulsation’s frequency varies proportionally with the distance to the wall. For the calculation of the average temperature, the formula is used a similar solution as for the velocity, by an analogous mediation. On these assumptions, the numerical modeling was performed with a gradient of temperature for the turbulent flow in pipes (intact or damaged, with cracks) having 4 different diameters, between 200-500 mm, as there were in the Thermoelectric Power-plant Oradea. Conclusions: It was made a superposition between the molecular viscosity and the turbulent one, followed by addition between the molecular and the turbulent transfer coefficients, necessary to elaborate the theoretical and the numerical modeling. The concept of laminar boundary layer has a different thickness when it is compared the flow with heat transfer and that one without a temperature gradient. The obtained results are within the margin of error of 5%, between the semi-empirical classical theories and the developed model, based on the experimental data. Finally, it is obtained a general correlation between the Stanton number and the Prandtl number, for a specific flow (with associated Reynolds number).Keywords: experimental measurements, numerical correlations, thermal pollution through pipelines, turbulent thermal flow
Procedia PDF Downloads 1643080 Optical and Magnetic Properties of Ferromagnetic Co-Ni Co-Doped TiO2 Thin Films
Authors: Rabah Bensaha, Badreddine Toubal
Abstract:
We investigate the structural, optical and magnetic properties of TiO2, Co-doped TiO2, Ni-doped TiO2 and Co-Ni co-doped TiO2 thin films prepared by the sol-gel dip coating method. Fully anatase phase was obtained by adding metal ions without any detectable impurity phase or oxide formed. AFM and SEM micrographs clearly confirm that the addition of Co-Ni affects the shape of anatase nanoparticles. The crystallite sizes and surface roughness of TiO2 films increase with Co-doping, Ni-doping and Co–Ni co-doping, respectively. The refractive index, thickness and optical band gap values of the films were obtained by means of optical transmittance spectra measurements. The band gap of TiO2 sample was decreased by Co-doping, Ni-doping and Co–Ni co-doping TiO2 films. Both undoped and Co-Ni co-doped films were found to be ferromagnetic at room temperature may due to the presence of oxygen vacancy defect and the probable formation of metal clusters Co-Ni.Keywords: Co-Ni co-doped, anatase TiO2, ferromagnetic, sol-gel method, thin films
Procedia PDF Downloads 4443079 Box-Behnken Design for the Biosorption of Cationic Dye from Aqueous Solution Using a Zero-Valent Iron Nano Algal Composite
Authors: V. Sivasubramanian, M. Jerold
Abstract:
The advancement of adsorption is the development of nano-biocomposite for the sorption dyes and heavy metal ions. In fact, Nanoscale zerovalent iron (NZVI) is cost-effective reducing agent and a most reliable biosorbent for the dye biosorption. In this study, nano zero valent iron Sargassum swartzii (nZVI-SS) biocomposite, a novel marine algal based biosorbent, was used for the removal of simulated crystal violet (CV) in batch mode of operation. The Box-Behnen design (BBD) experimental results revealed the biosoprtion was maximum at pH 7.5, biosorbent dosage 0.1 g/L and initial CV concentration of 100 mg/L. Therefore, the result implies that nZVI-SS biocomposite is a cheap and most promising biosorbent for the removal of CV from wastewater.Keywords: algae, biosorption, zero-valent, dye, waste water
Procedia PDF Downloads 2483078 Ab Initio Multiscale Catalytic Synthesis/Cracking Reaction Modelling of Ammonia as Liquid Hydrogen Carrier
Authors: Blaž Likozar, Andraž Pavlišič, Matic Pavlin, Taja Žibert, Aleksandra Zamljen, Sašo Gyergyek, Matej Huš
Abstract:
Ammonia is gaining recognition as a carbon-free fuel for energy-intensive applications, particularly transportation, industry, and power generation. Due to its physical properties, high energy density of 3 kWh kg-1, and high gravimetric hydrogen capacity of 17.6 wt%, ammonia is an efficient energy vector for green hydrogen, capable of mitigating hydrogen’s storage, distribution, and infrastructure deployment limitations. Chemicalstorage in the form of ammonia provides an efficient and affordable solution for energy storage, which is currently a critical step in overcoming the intermittency of abundant renewable energy sources with minimal or no environmental impact. Experiments were carried out to validate the modelling in a packed bed reactor, which proved to be agreeing.Keywords: hydrogen, ammonia, catalysis, modelling, kinetics
Procedia PDF Downloads 693077 Corrosion Protection and Failure Mechanism of ZrO₂ Coating on Zirconium Alloy Zry-4 under Varied LiOH Concentrations in Lithiated Water at 360°C and 18.5 MPa
Authors: Guanyu Jiang, Donghai Xu, Huanteng Liu
Abstract:
After the Fukushima-Daiichi accident, the development of accident tolerant fuel cladding materials to improve reactor safety has become a hot topic in the field of nuclear industry. ZrO₂ has a satisfactory neutron economy and can guarantee the fission chain reaction process, which enables it to be a promising coating for zirconium alloy cladding. Maintaining a good corrosion resistance in primary coolant loop during normal operations of Pressurized Water Reactors is a prerequisite for ZrO₂ as a protective coating on zirconium alloy cladding. Research on the corrosion performance of ZrO₂ coating in nuclear water chemistry is relatively scarce, and existing reports failed to provide an in-depth explanation for the failure causes of ZrO₂ coating. Herein, a detailed corrosion process of ZrO₂ coating in lithiated water at 360 °C and 18.5 MPa was proposed based on experimental research and molecular dynamics simulation. Lithiated water with different LiOH solutions in the present work was deaerated and had a dissolved oxygen concentration of < 10 ppb. The concentration of Li (as LiOH) was determined to be 2.3 ppm, 70 ppm, and 500 ppm, respectively. Corrosion tests were conducted in a static autoclave. Modeling and corresponding calculations were operated on Materials Studio software. The calculation of adsorption energy and dynamics parameters were undertaken by the Energy task and Dynamics task of the Forcite module, respectively. The protective effect and failure mechanism of ZrO₂ coating on Zry-4 under varied LiOH concentrations was further revealed by comparison with the coating corrosion performance in pure water (namely 0 ppm Li). ZrO₂ coating provided a favorable corrosion protection with the occurrence of localized corrosion at low LiOH concentrations. Factors influencing corrosion resistance mainly include pitting corrosion extension, enhanced Li+ permeation, short-circuit diffusion of O²⁻ and ZrO₂ phase transformation. In highly-concentrated LiOH solutions, intergranular corrosion, internal oxidation, and perforation resulted in coating failure. Zr ions were released to coating surface to form flocculent ZrO₂ and ZrO₂ clusters due to the strong diffusion and dissolution tendency of α-Zr in the Zry-4 substrate. Considering that primary water of Pressurized Water Reactors usually includes 2.3 ppm Li, the stability of ZrO₂ make itself a candidate fuel cladding coating material. Under unfavorable conditions with high Li concentrations, more boric acid should be added to alleviate caustic corrosion of ZrO₂ coating once it is used. This work can provide some references to understand the service behavior of nuclear coatings under variable water chemistry conditions and promote the in-pile application of ZrO₂ coating.Keywords: ZrO₂ coating, Zry-4, corrosion behavior, failure mechanism, LiOH concentration
Procedia PDF Downloads 853076 Investigating the Influence of Potassium Ion Doping on Lithium-Ion Battery Performance
Authors: Liyew Yizengaw Yitayih
Abstract:
This nanotechnology study focuses on how potassium ions (K+) affect lithium-ion (Li-ion) battery performance. By adding potassium ions (K+) to the lithium tin oxide (LiSnO) anode and employing styrene-butadiene rubber (SBR) as a binder, the doping of K+ was specifically studied. The methods employed in this study include computer modeling and simulation, material fabrication, and electrochemical characterization. The potassium ions (Li+) were successfully doped into the LiSnO lattice during charge/discharge cycles, which increased the lithium-ion diffusivity and electrical conductivity within the anode. However, it was found that internal doping of potassium ions (K+) into the LiSnO lattice occurred at high potassium ion concentrations (>16.6%), which hampered lithium ion transfer because of repulsion and physical blockage. The electrochemical efficiency of lithium-ion batteries was improved by this comprehensive study's presentation of potassium ions' (K+) potential advantages when present in the appropriate concentrations in electrode materials.Keywords: lithium-ion battery, LiSnO anode, potassium doping, lithium-ion diffusivity, electronic conductivity
Procedia PDF Downloads 653075 Optical Assessment of Marginal Sealing Performance around Restorations Using Swept-Source Optical Coherence Tomography
Authors: Rima Zakzouk, Yasushi Shimada, Yasunori Sumi, Junji Tagami
Abstract:
Background and purpose: The resin composite has become the main material for the restorations of caries in recent years due to aesthetic characteristics, especially with the development of the adhesive techniques. The quality of adhesion to tooth structures is depending on an exchange process between inorganic tooth material and synthetic resin and a micromechanical retention promoted by resin infiltration in partially demineralized dentin. Optical coherence tomography (OCT) is a noninvasive diagnostic method for obtaining cross-sectional images that produce high-resolution of the biological tissue at the micron scale. The aim of this study was to evaluate the gap formation at adhesive/tooth interface of two-step self-etch adhesives that are preceded with or without phosphoric acid pre-etching in different regions of teeth using SS-OCT. Materials and methods: Round tapered cavities (2×2 mm) were prepared in cervical part of bovine incisors teeth and divided into 2 groups (n=10): first group self-etch adhesive (Clearfil SE Bond) was applied for SE group and second group treated with acid etching before applying the self-etch adhesive for PA group. Subsequently, both groups were restored with Estelite Flow Quick Flowable Composite Resin and observed under OCT. Following 5000 thermal cycles, the same section was obtained again for each cavity using OCT at 1310-nm wavelength. Scanning was repeated after two months to monitor the gap progress. Then the gap length was measured using image analysis software, and the statistics analysis were done between both groups using SPSS software. After that, the cavities were sectioned and observed under Confocal Laser Scanning Microscope (CLSM) to confirm the result of OCT. Results: Gaps formed at the bottom of the cavity was longer than the gap formed at the margin and dento-enamel junction in both groups. On the other hand, pre-etching treatment led to damage the DEJ regions creating longer gap. After 2 months the results showed almost progress in the gap length significantly at the bottom regions in both groups. In conclusions, phosphoric acid etching treatment did not reduce the gap lrngth in most regions of the cavity. Significance: The bottom region of tooth was more exposed to gap formation than margin and DEJ regions, The DEJ damaged with phosphoric acid treatment.Keywords: optical coherence tomography, self-etch adhesives, bottom, dento enamel junction
Procedia PDF Downloads 2273074 Wet Chemical Synthesis for Fe-Ni Alloy Nanocrystalline Powder
Authors: Neera Singh, Devendra Kumar, Om Parkash
Abstract:
We have synthesized nanocrystalline Fe-Ni alloy powders where Ni varies as 10, 30 and 50 mole% by a wet chemical route (sol-gel auto-combustion) followed by reduction in hydrogen atmosphere. The ratio of citrate to nitrate was maintained at 0.3 where citric acid has worked as a fuel during combustion. The reduction of combusted powders was done at 700°C/1h in hydrogen atmosphere using an atmosphere controlled quartz tube furnace. Phase and microstructure analysis has shown the formation of α-(Fe,Ni) and γ-(Fe,Ni) phases after reduction. An increase in Ni concentration resulted in more γ-(Fe,Ni) formation where complete γ-(Fe,Ni) formation was achieved at 50 mole% Ni concentration. Formation of particles below 50 nm size range was confirmed using Scherrer’s formula and Transmission Electron Microscope. The work is aimed at the effect of Ni concentration on phase, microstructure and magnetic properties of synthesized alloy powders.Keywords: combustion, microstructure, nanocrystalline, reduction
Procedia PDF Downloads 1813073 Structural Performance of Mechanically Connected Stone Panels under Cyclic Loading: Application to Aesthetic and Environmental Building Skin Design
Authors: Michel Soto Chalhoub
Abstract:
Building designers in the Mediterranean region and other parts of the world utilize natural stone panels on the exterior façades as skin cover. This type of finishing is not only intended for aesthetic reasons but also environmental. The stone, since the earliest ages of civilization, has been used in construction and to-date some of the most appealing buildings owe their beauty to stone finishing. The stone also provides warmth in winter and freshness in summer as it moderates heat transfer and absorbs radiation. However, as structural codes became increasingly stringent about the dynamic performance of buildings, it became essential to study the performance of stone panels under cyclic loading – a condition that arises under the building is subjected to wind or earthquakes. The present paper studies the performance of stone panels using mechanical connectors when subjected to load reversal. In this paper, we present a theoretical model that addresses modes of failure in the steel connectors, by yield, and modes of failure in the stone, by fracture. Then we provide an experimental set-up and test results for rectangular stone panels of varying thickness. When the building is subjected to an earthquake, its rectangular panels within the structural system are subjected to shear deformations, which in turn impart stress into the stone cover. Rectangular stone panels, which typically range from 40cmx80cm to 60cmx120cm, need to be designed to withstand transverse loading from the direct application of lateral loads, and to withstand simultaneously in-plane loading (membrane stress) caused by inter-story drift and overall building lateral deflection. Results show correlation between the theoretical model which we derive from solid mechanics fundamentals and the experimental results, and lead to practical design recommendations. We find that for panel thickness below a certain threshold, it is more advantageous to utilize structural adhesive materials to connect stone panels to the main structural system of the building. For larger panel thicknesses, it is recommended to utilize mechanical connectors with special detailing to ensure a minimum level of ductility and energy dissipation.Keywords: solid mechanics, cyclic loading, mechanical connectors, natural stone, seismic, wind, building skin
Procedia PDF Downloads 2553072 Microstructure and Mechanical Properties of Nb: Si: (a-C) Thin Films Prepared Using Balanced Magnetron Sputtering System
Authors: Sara Khamseh, Elahe Sharifi
Abstract:
321 alloy steel is austenitic stainless steel with high oxidation resistance and is commonly used to fabricate heat exchangers and steam generators. However, the low hardness and weak tribological performance can cause dangerous failures during industrial operations. The well-designed protective coatings on 321 alloy steel surfaces with high hardness and good tribological performance can guarantee their safe applications. The surface protection of metal substrates using protective coatings showed high efficiency in prevailing these problems. Carbon-based multicomponent coatings, such as metal-added amorphous carbon coatings, are crucially necessary because of their remarkable mechanical and tribological performances. In the current study, (Nb: Si: a-C) multicomponent coatings (a-C: amorphous carbon) were coated on 321 alloys using a balanced magnetron (BM) sputtering system at room temperature. The effects of the Si/Nb ratio on microstructure, mechanical and tribological characteristics of (Nb: Si: a-C) composite coatings were investigated. The XRD and Raman analysis results showed that the coatings formed a composite structure of cubic diamond (C-D), NbC, and graphite-like carbon (GLC). The NbC phase's abundance decreased when the C-D phase's affluence increased with an increasing Si/Nb ratio. The coatings' indentation hardness and plasticity index (H³/E² ratio) increased with an increasing Si/Nb ratio. The better mechanical properties of the coatings with higher Si content can be attributed to the higher cubic diamond (C-D) content. The cubic diamond (C-D) is a challenging phase and can positively affect the mechanical performance of the coatings. It is well documented that in hard protective coatings, Si encourages amorphization. In addition, THE studies showed that Nb and Mo can act as a catalyst for nucleation and growth of hard cubic (C-D) and hexagonal (H-D) diamond phases in a-C coatings. In the current study, it seems that fully arranged nanocomposite coatings contain hard C-D and NbC phases that embedded in the amorphous carbon (GLC) phase is formed. This unique structure decreased grain boundary density and defects and resulted in high hardness and H³/E² ratio. Moreover, the COF and wear rate of the coatings decreased with increasing Si/Nb ratio. This can be attributed to the good mechanical properties of the coatings and the formation of graphite-like carbon (GLC) structure with lamellae arrangement in the coatings. The complex and self-lubricant coatings are successfully formed on the surface of 321 alloys. The results of the present study clarified that Si addition to (Nb: a-C) coatings improve the mechanical and tribological performance of the coatings on 321 alloy.Keywords: COF, mechanical properties, microstructure, (Nb: Si: a-C) coatings, Wear rate
Procedia PDF Downloads 903071 Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification
Authors: Makram Ben Jeddou
Abstract:
The ABC classification is widely used by managers for inventory control. The classical ABC classification is based on the Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to take into account other important criteria. From these models, we will consider the ZF model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score based on a normalized average between a good and a bad optimized index can affect the ABC items classification. We will then focus on the weights assigned to each index and propose a classification compromise.Keywords: ABC classification, multi criteria inventory classification models, ZF-model
Procedia PDF Downloads 5083070 Interaction of Vegetable Fillers with Polyethylene Matrix in Biocomposites
Authors: P. V. Pantyukhov, T. V. Monakhova, A. A. Popov
Abstract:
The paper studies the diffusion of low molecular weight components from vegetable fillers into polyethylene matrix during the preparation of biocomposites. In order to identify the diffusible substances a model experiment used where the hexadecane acted as a model of polyethylene. It was determined that polyphenolic compounds and chlorophyll penetrate from vegetable fillers to hexadecane to the maximum extent. There was found a correlation between the amount of polyphenolic compounds diffusible from the fillers to hexadecane and thermal oxidation kinetics of real biocomposites based on polyethylene and vegetable fillers. Thus, it has been assumed the diffusion of polyphenols and chlorophyll from vegetable fillers into polyethylene matrix during the preparation of biocomposites.Keywords: biocomposite, composite, diffusion, polyethylene, vegetable filler
Procedia PDF Downloads 4463069 Plasma Systems Application in Treating Automobile Exhaust Gases for a Clean Environment (Case Study)
Authors: Tahsen Abdalwahab Ibraheem Albehege
Abstract:
Exhaust fuel purification is of great importance to prevent the emission of major pollutants into the atmosphere such as diesel particulates and nitrogen oxides and meet environmental regulations, so environmental impacts are a primary concern of Diesel Exhaust Gas (DEG) which contains hazardous substances harmful to the environment as well as human health.We can not plasma formed through directing electrical energy to create free electrons, which in turn can react with gaseous species, but we can by used to treat engine exhaust gases. . By NO that has been reportedly oxidized to HNO3 and then into ammonium nitrate, and then condensed and removed. In general, thermal plasmas are formed by heating a system to high temperatures 2,000 degrees C, however this can be inefficient and can require extensive thermal management.Keywords: plasma system application, project physics, oxidizing environment, electromagnetically
Procedia PDF Downloads 993068 Local Activities of the Membranes Associated with Glycosaminoglycan-Chitosan Complexes in Bone Cells
Authors: Chih-Chang Yeh, Min-Fang Yang, Hsin-I Chang
Abstract:
Chitosan is a cationic polysaccharide derived from the partial deacetylation of chitin. Hyaluronic acid (HA), chondroitin sulfate (CS) and heparin (HP) are anionic glycosaminoglycans (GCGs) which can regulate osteogenic activity. In this study, chitosan membranes were prepared by glutaraldehyde crosslinking reaction and then complexed with three different types of GCGs. 7F2 osteoblasts-like cells and macrophages Raw264.7 were used as models to study the influence of chitosan membranes on osteometabolism. Although chitosan membranes are highly hydrophilic, the membranes associated with GCG-chitosan complexes showed about 60-70% cell attachment. Furthermore, the membranes associated with HP-chitosan complexes could increase ALP activity in comparison with chitosan films only. Three types of the membranes associated with GCG-chitosan complexes could significantly inhibit LPS induced-nitric oxide expression. In addition, chitosan membranes associated with HP and HA can down-regulate tartrate-resistant acid phosphatase (TRAP) activity but not CS-chitosan complexes. Based on these results, we conclude that chitosan membranes associated with HP can increase ALP activity in osteoblasts and chitosan membranes associated with HP and HA reduce TRAP activity in osteoclasts.Keywords: osteoblast, osteoclast, chitosan, glycosaminoglycan
Procedia PDF Downloads 5283067 Influence of Some Technological Parameters on the Content of Voids in Composite during On-Line Consolidation with Filament Winding Technology
Authors: M. Stefanovska, B. Samakoski, S. Risteska, G. Maneski
Abstract:
In this study was performed in situ consolidation of polypropylene matrix/glass reinforced roving by combining heating systems and roll pressing. The commingled roving during hoop winding was winded on a cylindrical mandrel. The work also presents the advances made in the processing of these materials into composites by conventional technique filament winding. Experimental studies were performed with changing parameters – temperature, pressure and speed. Finally, it describes the investigation of the optimal processing conditions that maximize the mechanical properties of the composites. These properties are good enough for composites to be used as engineering materials in many structural applications.Keywords: commingled fiber, consolidation heat, filament winding, voids
Procedia PDF Downloads 2663066 Review of Modern Gas turbine Blade Cooling Technologies used in Aircraft
Authors: Arun Prasath Subramanian
Abstract:
The turbine Inlet Temperature is an important parameter which determines the efficiency of a gas turbine engine. The increase in this parameter is limited by material constraints of the turbine blade.The modern Gas turbine blade has undergone a drastic change from a simple solid blade to a modern multi-pass blade with internal and external cooling techniques. This paper aims to introduce the reader the concept of turbine blade cooling, the classification of techniques and further explain some of the important internal cooling technologies used in a modern gas turbine blade along with the various factors that affect the cooling effectiveness.Keywords: gas turbine blade, cooling technologies, internal cooling, pin-fin cooling, jet impingement cooling, rib turbulated cooling, metallic foam cooling
Procedia PDF Downloads 3193065 Lithium-Ion Battery State of Charge Estimation Using One State Hysteresis Model with Nonlinear Estimation Strategies
Authors: Mohammed Farag, Mina Attari, S. Andrew Gadsden, Saeid R. Habibi
Abstract:
Battery state of charge (SOC) estimation is an important parameter as it measures the total amount of electrical energy stored at a current time. The SOC percentage acts as a fuel gauge if it is compared with a conventional vehicle. Estimating the SOC is, therefore, essential for monitoring the amount of useful life remaining in the battery system. This paper looks at the implementation of three nonlinear estimation strategies for Li-Ion battery SOC estimation. One of the most common behavioral battery models is the one state hysteresis (OSH) model. The extended Kalman filter (EKF), the smooth variable structure filter (SVSF), and the time-varying smoothing boundary layer SVSF are applied on this model, and the results are compared.Keywords: state of charge estimation, battery modeling, one-state hysteresis, filtering and estimation
Procedia PDF Downloads 4443064 Insulation Properties of Rod-Plane Electrode Covered with ATH/SIR Nano-Composite in Dry-Air
Authors: Jae-Yong Sim, Jung-Hun Kwon, Ji-Sung Park, Kee-Joe Lim
Abstract:
One of the latest trends for insulation systems to improve the insulation performance is the use of eco-friendly hybrid insulation using compressed dry-air. Despite the excellent insulation performance of sulphurhexafluoride (SF6) gas, its use has been restricted due to the problems with significant global warming potential (GWP). Accordingly, lightning impulse performance of the hybrid insulation system covered with an aluminum trihydrate/silicone rubber (ATH/SIR) nanocomposite was examined in air at atmospheric pressure and in compressed air at pressures between 0.2 and 0.6 MPa. In the experiments, the most common breakdown path took place along the surface of the covered rod. The insulation reliability after several discharges should be guaranteed in hybrid insulation. On the other hand, the surface of the covered rod was carbonized after several discharges. Therefore, nanoscale ATH can be used as a reinforcement of covered dielectrics to inhibit carbonization on the surface of a covered rod. The results were analyzed in terms of the surface resistivity of the cover dielectrics.Keywords: nanocomposite, hybrid insulation, ATH, dry-air
Procedia PDF Downloads 4503063 Multi-Criteria Selection and Improvement of Effective Design for Generating Power from Sea Waves
Authors: Khaled M. Khader, Mamdouh I. Elimy, Omayma A. Nada
Abstract:
Sustainable development is the nominal goal of most countries at present. In general, fossil fuels are the development mainstay of most world countries. Regrettably, the fossil fuel consumption rate is very high, and the world is facing the problem of conventional fuels depletion soon. In addition, there are many problems of environmental pollution resulting from the emission of harmful gases and vapors during fuel burning. Thus, clean, renewable energy became the main concern of most countries for filling the gap between available energy resources and their growing needs. There are many renewable energy sources such as wind, solar and wave energy. Energy can be obtained from the motion of sea waves almost all the time. However, power generation from solar or wind energy is highly restricted to sunny periods or the availability of suitable wind speeds. Moreover, energy produced from sea wave motion is one of the cheapest types of clean energy. In addition, renewable energy usage of sea waves guarantees safe environmental conditions. Cheap electricity can be generated from wave energy using different systems such as oscillating bodies' system, pendulum gate system, ocean wave dragon system and oscillating water column device. In this paper, a multi-criteria model has been developed using Analytic Hierarchy Process (AHP) to support the decision of selecting the most effective system for generating power from sea waves. This paper provides a widespread overview of the different design alternatives for sea wave energy converter systems. The considered design alternatives have been evaluated using the developed AHP model. The multi-criteria assessment reveals that the off-shore Oscillating Water Column (OWC) system is the most appropriate system for generating power from sea waves. The OWC system consists of a suitable hollow chamber at the shore which is completely closed except at its base which has an open area for gathering moving sea waves. Sea wave's motion pushes the air up and down passing through a suitable well turbine for generating power. Improving the power generation capability of the OWC system is one of the main objectives of this research. After investigating the effect of some design modifications, it has been concluded that selecting the appropriate settings of some effective design parameters such as the number of layers of Wells turbine fans and the intermediate distance between the fans can result in significant improvements. Moreover, simple dynamic analysis of the Wells turbine is introduced. Furthermore, this paper strives for comparing the theoretical and experimental results of the built experimental prototype.Keywords: renewable energy, oscillating water column, multi-criteria selection, Wells turbine
Procedia PDF Downloads 1633062 Theoretical Investigation of Structural and Electronic Properties of AlBi
Authors: S. Louhibi-Fasla, H. Achour, B. Amrani
Abstract:
The purpose of this work is to provide some additional information to the existing data on the physical properties of AlBi with state-of-the-art first-principles method of the full potential linear augmented plane wave (FPLAPW). Additionally to the structural properties, the electronic properties have also been investigated. The dependence of the volume, the bulk modulus, the variation of the thermal expansion α, as well as the Debye temperature are successfully obtained in the whole range from 0 to 30 GPa and temperature range from 0 to 1200 K. The latter are the basis of solid-state science and industrial applications and their study is of importance to extend our knowledge on their specific behaviour when undergoing severe constraints of high pressure and high temperature environments.Keywords: AlBi, FP-LAPW, structural properties, electronic properties
Procedia PDF Downloads 3813061 Optimal Diesel Engine Technology Analysis Matching the Platform of the Helicopter
Authors: M. Wendeker, K. Siadkowska, P. Magryta, Z. Czyz, K. Skiba
Abstract:
In the paper environmental impact analysis the optimal Diesel engine for a light helicopter was performed. The paper consist an answer to the question of what the optimal Diesel engine for a light helicopter is, taking into consideration its expected performance and design capacity. The use of turbocharged engine with self-ignition and an electronic control system can substantially reduce the negative impact on the environment by decreasing toxic substance emission, fuel consumption and therefore carbon dioxide emission. In order to establish the environmental benefits of the diesel engine technologies, mathematical models were created, providing additional insight on the environmental impact and performance of a classic turboshaft and an advanced diesel engine light helicopter, incorporating technology developments.Keywords: diesel engine, helicopter, simulation, environmental impact
Procedia PDF Downloads 5703060 Exploring the Gas Sensing Performance of Cu-Doped Iron Oxide Derived from Metal-Organic Framework
Authors: Annu Sheokand, Vinay Kumar
Abstract:
Hydrogen sulfide (H₂S) detection is essential for environmental monitoring and industrial safety due to its high toxicity, even at low concentrations. This study explores the H₂S gas sensing properties of Cu-doped Fe₂O₃ materials derived from metal-organic frameworks (MOFs), which offer high surface area and controlled porosity for optimized gas sensing. The structural and morphological characteristics of the synthesized material were thoroughly analyzed using techniques such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis Spectroscopy. The resulting sensor exhibited remarkable sensitivity and selectivity, achieving a detection limit at the ppb level for H₂S. The study indicates that Cu doping significantly enhances the gas sensing performance of Fe₂O₃ by introducing abundant active sites within the material. These enhanced sensing properties emphasize the potential of MOF-derived Cu-doped Fe₂O₃ as a highly effective material for H₂S gas sensors in various applications.Keywords: detection limit, doping, MOF, sensitivity, sensor
Procedia PDF Downloads 133059 Conservation of Ibis Statue Made of Composite Materials Dating to 3RD Intermediate Period - Late Period
Authors: Badawi Mahmoud, Eid Mohamed, Salih Hytham, Tahoun Mamdouh
Abstract:
Cultural properties made of types of materials; we can classify them broadly into three categories. There are organic cultural properties which have their origin in the animal and plant kingdoms. There are the inorganic cultural properties made of metal or stone. Then there are those made of both organic and inorganic materials such as metal with wood. Most cultural properties are made from several materials rather than from one single material. Cultural properties reveal a lot of information about the past and often have great artistic value. It is important to extend the life of cultural properties and preserve themif possible, that is intended to preserve them for future generations. The study of metallic relics usually includes examining the techniques used to make them and the extent to which they have corroded. The conservation science of archaeological artifacts demands an accurate grasp of the interior of the article, which cannot be seen. This is essential to elucidate the method of manufacture and provides information that is important for cleaning, restoration, and other processes of conservation. Conservation treatment does not ensure the prevention of further degradation of the archaeological artifact. Instead, it is an attempt to inhibit further degradation as much as possible. Ancient metallic artifacts are made of many materials. Some are made of a single metal, such as iron, copper, or bronze. There are also composite relics made of several metals. Almost all metals (except gold) corrode while they rest underground. Corrosion is caused by the interaction of oxygen, water, and various ions. Chloride ions play a major role in the advance of corrosion. Excavated metallic relics are usually scientifically examined as to their structure and materials and treated for preservation before being displayed for exhibition or stored in a storehouse. Bird statue hermit body is made of wood and legs and beak bronze, the object broken separated to three parts. This statue came to Grand Egyptian Museum – Conservation Centre (GEM-CC) Inorganic Lab. Statuette representing the god djehoty shaped of the bird (ibis) sculpture made of bronze and wood the body of statues made from wood and bronze from head and leg and founded remains of black resin maybe it found with mummy, the base installed by wooden statue of the ancient writings there dating, the archaeological unit decided the dating is 3rd intermediate period - late period. This study aims to do conservation process for this statue, attempt to inhibit further degradation as much as possible and fill fractures and cracks in the wooden part.Keywords: inorganic materials, metal, wood, corrosion, ibis
Procedia PDF Downloads 2553058 Detection of Nanotoxic Material Using DNA Based QCM
Authors: Juneseok You, Chanho Park, Kuehwan Jang, Sungsoo Na
Abstract:
Sensing of nanotoxic materials is strongly important, as their engineering applications are growing recently and results in that nanotoxic material can harmfully influence human health and environment. In current study we report the quartz crystal microbalance (QCM)-based, in situ and real-time sensing of nanotoxic-material by frequency shift. We propose the in situ detection of nanotoxic material of zinc oxice by using QCM functionalized with a taget-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz electrode is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated the in-situ and fast detection of zinc oxide using the quartz crystal microbalance (QCM). The detection was derived from the DNA hybridization between the DNA on the quartz electrode. The results suggest that QCM-based detection opens a new avenue for the development of a practical water-testing sensor.Keywords: nanotoxic material, qcm, frequency, in situ sensing
Procedia PDF Downloads 4223057 Synthesis, Characterization of Pd Nanoparticle Supported on Amine-Functionalized Graphene and Its Catalytic Activity for Suzuki Coupling Reaction
Authors: Surjyakanta Rana, Sreekantha B. Jonnalagadda
Abstract:
Synthesis of well distributed Pd nanoparticles (3 – 7 nm) on organo amine-functionalized graphene is reported, which demonstrated excellent catalytic activity towards Suzuki coupling reaction. The active material was characterized by X-ray diffraction (XRD), BET surface area, X-ray photoelectron spectra (XPS), Fourier-transfer infrared spectroscopy (FTIR), Raman spectra, Scanning electron microscope (SEM), Transmittance electron microscopy (TEM) analysis and HRTEM. FT-IR revealed that the organic amine functional group was successfully grafted onto the graphene oxide surface. The formation of palladium nanoparticles was confirmed by XPS, TEM and HRTEM techniques. The catalytic activity in the coupling reaction was superb with 100% conversion and 98 % yield and also activity remained almost unaltered up to six cycles. Typically, an extremely high turnover frequency of 185,078 h-1 is observed in the C-C Suzuki coupling reaction using organo di-amine functionalized graphene as catalyst.Keywords: Di-amine, graphene, Pd nanoparticle, suzuki coupling
Procedia PDF Downloads 375