Search results for: robotic resection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 397

Search results for: robotic resection

67 Microalgae Hydrothermal Liquefaction Process Optimization and Comprehension to Produce High Quality Biofuel

Authors: Lucie Matricon, Anne Roubaud, Geert Haarlemmer, Christophe Geantet

Abstract:

Introduction: This case discusses the management of two floor of mouth (FOM) Squamous Cell Carcinomas (SCC) not identified upon initial biopsy. Case Report: A 51 year-old male presented with right FOM erythroleukoplakia. Relevant medical history included alcoholic dependence syndrome and alcoholic liver disease. Relevant drug therapy encompassed acamprosate, folic acid, hydroxocobalamin and thiamine. The patient had a 55.5 pack-year smoking history and alcohol dependence from age 14, drinking 16 units/day. FOM incisional biopsy and histopathological analysis diagnosed Carcinoma in situ. Treatment involved wide local excision. Specimen analysis revealed two separate foci of pT1 moderately differentiated SCCs. Carcinoma staging scans revealed no pathological lymphadenopathy, no local invasion or metastasis. SCCs had been excised in completion with narrow margins. MDT discussion concluded that in view of the field changes it would be difficult to identify specific areas needing further excision, although techniques such as Lugol’s Iodine were considered. Further surgical resection, surgical neck management and sentinel lymph node biopsy was offered. The patient declined intervention, primary management involved close monitoring alongside alcohol and smoking cessation referral. Discussion: Narrow excisional margins can increase carcinoma recurrence risk. Biopsy failed to identify SCCs, despite sampling an area of clinical concern. For gross field change multiple incisional biopsies should be considered to increase chance of accurate diagnosis and appropriate treatment. Coupling of tobacco and alcohol has a synergistic effect, exponentially increasing the relative risk of oral carcinoma development. Tobacco and alcoholic control is fundamental in reducing treatment‑related side effects, recurrence risk, and second primary cancer development.

Keywords: microalgae, biofuels, hydrothermal liquefaction, biomass

Procedia PDF Downloads 127
66 Rethinking the Value of Pancreatic Cyst CEA Levels from Endoscopic Ultrasound Fine-Needle Aspiration (EUS-FNA): A Longitudinal Analysis

Authors: Giselle Tran, Ralitza Parina, Phuong T. Nguyen

Abstract:

Background/Aims: Pancreatic cysts (PC) have recently become an increasingly common entity, often diagnosed as incidental findings on cross-sectional imaging. Clinically, management of the lesions is difficult because of uncertainties in their potential for malignant degeneration. Prior series have reported that carcinoembryonic antigen (CEA), a biomarker collected from cyst fluid aspiration, has a high diagnostic accuracy for discriminating between mucinous and non-mucinous lesions, at the patient’s initial presentation. To the author’s best knowledge, no prior studies have reported PC CEA levels obtained from endoscopic ultrasound fine-needle aspiration (EUS-FNA) over years of serial EUS surveillance imaging. Methods: We report a consecutive retrospective series of 624 patients who underwent EUS evaluation for a PC between 11/20/2009 and 11/13/2018. Of these patients, 401 patients had CEA values obtained at the point of entry. Of these, 157 patients had two or more CEA values obtained over the course of their EUS surveillance. Of the 157 patients (96 F, 61 M; mean age 68 [range, 62-76]), the mean interval of EUS follow-up was 29.7 months [3.5-128]. The mean number of EUS procedures was 3 [2-7]. To assess CEA value fluctuations, we defined an appreciable increase in CEA as "spikes" – two-times increase in CEA on a subsequent EUS-FNA of the same cyst, with the second CEA value being greater than 1000 ng/mL. Using this definition, cysts with a spike in CEA were compared to those without a spike in a bivariate analysis to determine if a CEA spike is associated with poorer outcomes and the presence of high-risk features. Results: Of the 157 patients analyzed, 29 had a spike in CEA. Of these 29 patients, 5 had a cyst with size increase >0.5cm (p=0.93); 2 had a large cyst, >3cm (p=0.77); 1 had a cyst that developed a new solid component (p=0.03); 7 had a cyst with a solid component at any time during surveillance (p=0.08); 21 had a complex cyst (p=0.34); 4 had a cyst categorized as "Statistically Higher Risk" based on molecular analysis (p=0.11); and 0 underwent surgical resection (p=0.28). Conclusion: With serial EUS imaging in the surveillance of PC, an increase in CEA level defined as a spike did not predict poorer outcomes. Most notably, a spike in CEA did not correlate with the number of patients sent to surgery or patients with an appreciable increase in cyst size. A spike in CEA did not correlate with the development of a solid nodule within the PC nor progression on molecular analysis. Future studies should focus on the selected use of CEA analysis when patients undergo EUS surveillance evaluation for PCs.

Keywords: carcinoembryonic antigen (CEA), endoscopic ultrasound (EUS), fine-needle aspiration (FNA), pancreatic cyst, spike

Procedia PDF Downloads 138
65 The Effects of Social Media on the Dreams of Preadolescent Girls

Authors: Saveria Capecchi

Abstract:

The aim of the quali-quantitative research conducted in the spring of 2021 (still in the midst of the Covid-19 emergency) was to analyze the relationship between the imaginary of 142 girls aged 10-12 from two Italian cities in the Emilia-Romagna region (the capital, Bologna, and Parma) and the influence that various socialization agents can have on it, with particular attention to social media. In order to investigate the relationship between imagination and media, two tools were used: first, the girls wrote an essay in class about their future lives, imagining waking up one morning as a thirty-year-old adults. Six types of "dreams" reflecting the values and lifestyles characteristic of contemporary Italian society emerged. Additionally, the girls completed a questionnaire on their leisure time and, in particular, media consumption aimed at identifying their favorite characters. The results provided insights into understanding the reference values and lifestyles that define their subculture (they belong to the so-called Generation Z). Another interesting aspect of this research is the possibility of comparing the results with those of a similar study on preadolescent imaginary conducted in 1995, involving 292 girls from Milan and Bologna, belonging to the Millennial generation. The narratives about the imagined adult life reflect some crucial changes undergone by Italian society in a quarter of a century: there are advancements towards gender equality, and the imagined family is increasingly detached from tradition. There is a more persistent dream of a life marked by beauty, wealth, and fame, while at the same time, there is a greater social commitment, from solidarity with marginalized people to environmentalism. Furthermore, the mentioned new digital and robotic professions will project us into the near future.

Keywords: gender equality, gender stereotypes, imaginary, preadolescents, social media

Procedia PDF Downloads 47
64 Local Availability Influences Choice of Radical Treatment for Prostate Cancer

Authors: Jemini Vyas, Oluwatobi Adeyoe, Jenny Branagan, Chandran Tanabalan, Aakash Pai

Abstract:

Introduction: Radical prostatectomy and radiotherapy are both viable options for the treatment of localised prostate cancer. Over the years medicine has evolved towards a patient-centred approach. Patient decision-making is not motivated by clinical outcomes alone. Geographical location and ease of access to treating clinician are contributory factors. With the development of robotic surgery, prostatectomy has been centralised into tertiary centres. This has impacted on the distances that patients and their families are expected to travel. Methods: A single centre retrospective study was undertaken over a five-year period. All patients with localised prostate cancer, undergoing radical radiotherapy or prostatectomy were collected pre-centralisation. This was compared to the total number undergoing these treatments post centralisation. Results: Pre-centralisation, both radiotherapy and prostatectomy groups had to travel a median of less than five miles for treatment. Post-centralisation of pelvic surgery, prostatectomy patients had to travel a median of more than 40 miles, whilst travel distance for the radiotherapy group was unchanged. In the post centralisation cohort, there was a 63% decline in the number of patients undergoing radical prostatectomy per month from a mean of 5.1 to 1.9. The radical radiotherapy group had a concurrent 41% increase in patient numbers with a mean increase from 13.3 to 18.8 patients per month. Conclusion: Choice of radical treatment in localised prostate cancer is based on multiple factors. This study infers that local availability can influence choice of radical treatment. It is imperative that efforts are made to maintain accessibility to all viable options for prostate cancer patients, so that patient choice is not compromised.

Keywords: prostate, prostatectomy, radiotherapy, centralisation

Procedia PDF Downloads 89
63 Treatment of Papillary Thyroid Carcinoma Metastasis to the Sternum: A Case Report

Authors: Geliashvili T. M., Tyulyandina A. S., Valiev A. K., Kononets P. V., Kharatishvili T. K., Salkov A. G., Pronin A. I., Gadzhieva E. H., Parnas A. V., Ilyakov V. S.

Abstract:

Aim/Introduction: Metastasis (Mts) to the sternum, while extremely rare in differentiated thyroid cancer (DTC) (1), requires a personalized, multidisciplinary treatment approach. In aggressively growing Mts to the sternum, which rapidly become unresectable, a comprehensive therapeutic and diagnostic approach is particularly important. Materials and methods: We present a clinical case of solitary Mts to the sternum as first manifestation of a papillary thyroid microcarcinoma in a 55-year-old man. Results: 18F-FDG PET/CT after thyroidectomy confirmed the solitary Mts to the sternum with extremely high FDG uptake (SUVmax=71,1), which predicted its radioiodine-refractory (RIR). Due to close attachment to the mediastinum and rapid growth, Mts was considered unresectable. During the next three months, the patient received targeted therapy with the tyrosine kinase inhibitor (TKI) Lenvatinib 24 mg per day. 1st course of radioiodine therapy (RIT) 6 GBq was also performed, the results of which confirmed the RIR of the tumor process. As a result of systemic therapy (targeted therapy combined with RIT and suppressive hormone therapy with L-thyroxine), there was a significant biochemical response (decrease of serum thyroglobulin level from 50,000 ng/ml to 550 ng/ml) and a partial response with decrease of tumor size (from 80x69x123 mm to 65x50x112 mm) and decrease of FDG accumulation (SUVmax from 71.1 to 63). All of this made possible to perform surgical treatment of Mts - sternal extirpation with its replacement by an individual titanium implant. At the control examination, the stimulated thyroglobulin level was only 134 ng/ml, and PET/CT revealed postoperative areas of 18F-FDG metabolism in the removed sternal Mts. Also, 18F-FDG PET/CT in the early (metabolic) stage revealed two new bone Mts (in the area of L3 SUVmax=17,32 and right iliac bone SUVmax=13,73), which, as well as the removed sternal Mts, appeared to be RIRs at the 2nd course of RIT 6 GBq. Subsequently, on 02.2022, external beam radiation therapy (EBRT) was performed on the newly identified oligometastatic bone foci. At present, the patient is under dynamic monitoring and in the process of suppressive hormone therapy with L-thyroxine. Conclusion: Thus, only due to the early prescription of targeted TKI therapy was it possible to perform surgical resection of Mts to the sternum, thereby improve the patient's quality of life and preserve the possibility of radical treatment in case of oligometastatic disease progression.

Keywords: differentiated thyroid cancer, metastasis to the sternum, radioiodine therapy, radioiodine-refractory cancer, targeted therapy, lenvatinib

Procedia PDF Downloads 100
62 Impact of Economic Globalization on Ecological Footprint in India: Evidenced with Dynamic ARDL Simulations

Authors: Muhammed Ashiq Villanthenkodath, Shreya Pal

Abstract:

Purpose: This study scrutinizes the impact of economic globalization on ecological footprint while endogenizing economic growth and energy consumption from 1990 to 2018 in India. Design/methodology/approach: The standard unit root test has been employed for time series analysis to unveil the integration order. Then, the cointegration was confirmed using autoregressive distributed lag (ARDL) analysis. Further, the study executed the dynamic ARDL simulation model to estimate long-run and short-run results along with simulation and robotic prediction. Findings: The cointegration analysis confirms the existence of a long-run association among variables. Further, economic globalization reduces the ecological footprint in the long run. Similarly, energy consumption decreases the ecological footprint. In contrast, economic growth spurs the ecological footprint in India. Originality/value: This study contributes to the literature in many ways. First, unlike studies that employ CO2 emissions and globalization nexus, this study employs ecological footprint for measuring environmental quality; since it is the broader measure of environmental quality, it can offer a wide range of climate change mitigation policies for India. Second, the study executes a multivariate framework with updated series from 1990 to 2018 in India to explore the link between EF, economic globalization, energy consumption, and economic growth. Third, the dynamic autoregressive distributed lag (ARDL) model has been used to explore the short and long-run association between the series. Finally, to our limited knowledge, this is the first study that uses economic globalization in the EF function of India amid facing a trade-off between sustainable economic growth and the environment in the era of globalization.

Keywords: economic globalization, ecological footprint, India, dynamic ARDL simulation model

Procedia PDF Downloads 119
61 Applications of Evolutionary Optimization Methods in Reinforcement Learning

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.

Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods

Procedia PDF Downloads 75
60 Rare Case of Three Metachronous Cancers Occurring over the Period of Three Years: Clinical Importance of Investigating Neoplastic Growth Discovered during Follow-Up

Authors: Marin Kanarev, Delyan Stoyanov, Ivanna Popova, Nadezhda Petrova

Abstract:

Thanks to increased survival rates in patients bearing oncological malignancies due to recent developments in anti-cancer therapies and diagnostic techniques, observation of clinical cases of metachronous cancers is more common and can provide more in-depth knowledge of their development and, as a result, help clinicians apply suitable therapy. This unusual case of three metachronous tumors presented the opportunity to follow their occurrence, progression, and treatment thoroughly. A 77-year-old male presented with carcinoma ventriculi of the pylorus region, which was surgically removed via upper subtotal stomach resection, a lateral antecolical gastro-enteroanastomosis, and a subsequent Braun anastomosis. An EOX chemotherapy regimen followed. A CT scan four months later showed no indication of recurrence or dissemination. The same scan, performed as a part of the follow-up plan two years later, showed an indication of neoplastic growth in the urinary bladder. After the patient had been directed to a urologist, the suspicion was confirmed, and the growth was histologically diagnosed as a carcinoma of the urinary bladder. An immunohistochemistry test showed an expression of PDL1 of less than 5%, which resulted in treatment with GemCis chemotherapy regimen that led to full remission. Two years and seven months after the first surgery, a CT scan showed again that the two carcinomas were gone. However, four months later, elevated tumor markers prompted a PET/CT scan, which showed data indicative of recurring neoplastic growth in the region of the stomach cardia. It was diagnosed as an adenocarcinoma infiltrating the esophagus. Preoperative chemotherapy with the ECF regimen was completed in four courses, and a CT scan showed no progression of the disease. In less than a month after therapy, the patient underwent laparotomy, debridement, gastrectomy, and a subsequent mechanical terminal-lateral esophago-jejunoanasthomosis. It was verified that the tumor originated from metastasis from the carcinoma ventriculi, which was located in the pylorus. In conclusion, this case report highlights the importance of patient follow-up and studying recurring neoplastic growth. Despite the absence of symptoms, clinicians should maintain a high level of suspicion when evaluating the patient data and choosing the most suitable therapy.

Keywords: carcinoma, follow-up, metachronous, neoplastic growth, recurrence

Procedia PDF Downloads 84
59 A Step Magnitude Haptic Feedback Device and Platform for Better Way to Review Kinesthetic Vibrotactile 3D Design in Professional Training

Authors: Biki Sarmah, Priyanko Raj Mudiar

Abstract:

In the modern world of remotely interactive virtual reality-based learning and teaching, including professional skill-building training and acquisition practices, as well as data acquisition and robotic systems, the revolutionary application or implementation of field-programmable neurostimulator aids and first-hand interactive sensitisation techniques into 3D holographic audio-visual platforms have been a coveted dream of many scholars, professionals, scientists, and students. Integration of 'kinaesthetic vibrotactile haptic perception' along with an actuated step magnitude contact profiloscopy in augmented reality-based learning platforms and professional training can be implemented by using an extremely calculated and well-coordinated image telemetry including remote data mining and control technique. A real-time, computer-aided (PLC-SCADA) field calibration based algorithm must be designed for the purpose. But most importantly, in order to actually realise, as well as to 'interact' with some 3D holographic models displayed over a remote screen using remote laser image telemetry and control, all spatio-physical parameters like cardinal alignment, gyroscopic compensation, as well as surface profile and thermal compositions, must be implemented using zero-order type 1 actuators (or transducers) because they provide zero hystereses, zero backlashes, low deadtime as well as providing a linear, absolutely controllable, intrinsically observable and smooth performance with the least amount of error compensation while ensuring the best ergonomic comfort ever possible for the users.

Keywords: haptic feedback, kinaesthetic vibrotactile 3D design, medical simulation training, piezo diaphragm based actuator

Procedia PDF Downloads 157
58 Hardware-In-The-Loop Relative Motion Control: Theory, Simulation and Experimentation

Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini

Abstract:

This paper presents a Guidance and Control (G&C) strategy to address spacecraft maneuvering problem for future Rendezvous and Docking (RVD) missions. The proposed strategy allows safe and propellant efficient trajectories for space servicing missions including tasks such as approaching, inspecting and capturing. This work provides the validation test results of the G&C laws using a Hardware-In-the-Loop (HIL) setup with two robotic mockups representing the chaser and the target spacecraft. Through this paper, the challenges of the relative motion control in space are first summarized, and in particular, the constraints imposed by the mission, spacecraft and, onboard processing capabilities. Second, the proposed algorithm is introduced by presenting the formulation of constrained Model Predictive Control (MPC) to optimize the fuel consumption and explicitly handle the physical and geometric constraints in the system, e.g. thruster or Line-Of-Sight (LOS) constraints. Additionally, the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description and accordingly explained. The resulting convex optimization problem allows real-time implementation capability based on a detailed discussion on the computational time requirements and the obtained results with respect to the onboard computer and future trends of space processors capabilities. Finally, the performance of the algorithm is presented in the scope of a potential future mission and of the available equipment. The results also cover a comparison between the proposed algorithms with Linear–quadratic regulator (LQR) based control law to highlight the clear advantages of the MPC formulation.

Keywords: autonomous vehicles, embedded optimization, real-time experiment, rendezvous and docking, space robotics

Procedia PDF Downloads 121
57 Challenges of Translation Knowledge for Pediatric Rehabilitation Technology

Authors: Patrice L. Weiss, Barbara Mazer, Tal Krasovsky, Naomi Gefen

Abstract:

Knowledge translation (KT) involves the process of applying the most promising research findings to practical settings, ensuring that new technological discoveries enhance healthcare accessibility, effectiveness, and accountability. This perspective paper aims to discuss and provide examples of how the KT process can be implemented during a time of rapid advancement in rehabilitation technologies, which have the potential to greatly influence pediatric healthcare. The analysis is grounded in a comprehensive systematic review of literature, where key studies from the past 34 years were carefully interpreted by four expert researchers in scientific and clinical fields. This review revealed both theoretical and practical insights into the factors that either facilitate or impede the successful implementation of new rehabilitation technologies. By utilizing the Knowledge-to-Action cycle, which encompasses the knowledge creation funnel and the action cycle, we demonstrated its application in integrating advanced technologies into clinical practice and guiding healthcare policy adjustments. We highlighted three successful technology applications: powered mobility, head support systems, and telerehabilitation. Moreover, we investigated emerging technologies, such as brain-computer interfaces and robotic assistive devices, which face challenges related to cost, durability, and usability. Recommendations include prioritizing early and ongoing design collaborations, transitioning from research to practical implementation, and determining the optimal timing for clinical adoption of new technologies. In conclusion, this paper informs, justifies, and strengthens the knowledge translation process, ensuring it remains relevant, rigorous, and significantly contributes to pediatric rehabilitation and other clinical fields.

Keywords: knowledge translation, rehabilitation technology, pediatrics, barriers, facilitators, stakeholders

Procedia PDF Downloads 11
56 A Philosophical Investigation into African Conceptions of Personhood in the Fourth Industrial Revolution

Authors: Sanelisiwe Ndlovu

Abstract:

Cities have become testbeds for automation and experimenting with artificial intelligence (AI) in managing urban services and public spaces. Smart Cities and AI systems are changing most human experiences from health and education to personal relations. For instance, in healthcare, social robots are being implemented as tools to assist patients. Similarly, in education, social robots are being used as tutors or co-learners to promote cognitive and affective outcomes. With that general picture in mind, one can now ask a further question about Smart Cities and artificial agents and their moral standing in the African context of personhood. There has been a wealth of literature on the topic of personhood; however, there is an absence of literature on African personhood in highly automated environments. Personhood in African philosophy is defined by the role one can and should play in the community. However, in today’s technologically advanced world, a risk is that machines become more capable of accomplishing tasks that humans would otherwise do. Further, on many African communitarian accounts, personhood and moral standing are associated with active relationality with the community. However, in the Smart City, human closeness is gradually diminishing. For instance, humans already do engage and identify with robotic entities, sometimes even romantically. The primary aim of this study is to investigate how African conceptions of personhood and community interact in a highly automated environment such as Smart Cities. Accordingly, this study lies in presenting a rarely discussed African perspective that emphasizes the necessity and the importance of relationality in handling Smart Cities and AI ethically. Thus, the proposed approach can be seen as the sub-Saharan African contribution to personhood and the growing AI debates, which takes the reality of the interconnectedness of society seriously. And it will also open up new opportunities to tackle old problems and use existing resources to confront new problems in the Fourth Industrial Revolution.

Keywords: smart city, artificial intelligence, personhood, community

Procedia PDF Downloads 197
55 The Effects of Inferior Tilt Fixation on a Glenoid Components in Reverse Shoulder-Arthroplasty

Authors: Soo Min Kim, Soo-Won Chae, Soung-Yon Kim, Haea Lee, Ju Yong Kang, Juneyong Lee, Seung-Ho Han

Abstract:

Reverse total shoulder arthroplasty (RTSA) has become an effective treatment option for cuff tear arthropathy and massive, irreparable rotator cuff tears and indications for its use are expanding. Numerous methods for optimal fixation of the glenoid component have been suggested, such as inferior overhang, inferior tilt, to maximize initial fixation and prevent glenoid component loosening. The inferior tilt fixation of a glenoid component has been suggested, which is expected to decrease scapular notching and to improve the stability of a glenoid component fixation in reverse total shoulder arthroplasty. Inferior tilt fixation of the glenoid component has been suggested, which can improve stability and, because it provides the most uniform compressive forces and imparts the least amount of tensile forces and micromotion, reduce the likelihood of mechanical failure. Another study reported that glenoid component inferior tilt improved impingement-free range of motion as well as minimized the scapular notching. Several authors have shown that inferior tilt of a glenoid component reduces scapular notching. However, controversy still exists regarding its importance in the literature. In this study the influence of inferior tilt fixation on the primary stability of a glenoid component has been investigated. Finite element models were constructed from cadaveric scapulae and glenoid components were implanted with neutral and 10° inferior tilts. Most previous biomechanical studies regarding the effect of glenoid component inferior tilt used a solid rigid polyurethane foam or sawbones block, not cadaveric scapulae, to evaluate the stability of the RTSA. Relative micromotions at the bone-glenoid component interface, and the distribution of bone stresses under the glenoid component and around the screws were analyzed and compared between neutral and 10° inferior tilt groups. Contact area between bone and screws and cut surface area of the cancellous bone exposed after reaming of the glenoid have also been investigated because of the fact that cancellous and cortical bone thickness vary depending on the resection level of the inferior glenoid bone. The greater relative micromotion of the bone-glenoid component interface occurred in the 10° inferior tilt group than in the neutral tilt group, especially at the inferior area of the bone-glenoid component interface. Bone stresses under the glenoid component and around the screws were also higher in the 10° inferior tilt group than in the neutral tilt group, especially at the inferior third of the glenoid bone surface under the glenoid component and inferior scapula. Thus inferior tilt fixation of the glenoid component may adversely affect the primary stability and longevity of the reverse total shoulder arthroplasty.

Keywords: finite element analysis, glenoid component, inferior tilt, reverse total shoulder arthroplasty

Procedia PDF Downloads 284
54 Histological Grade Concordance between Core Needle Biopsy and Corresponding Surgical Specimen in Breast Carcinoma

Authors: J. Szpor, K. Witczak, M. Storman, A. Orchel, D. Hodorowicz-Zaniewska, K. Okoń, A. Klimkowska

Abstract:

Core needle biopsy (CNB) is well established as an important diagnostic tool in diagnosing breast cancer and it is now considered the initial method of choice for diagnosing breast disease. In comparison to fine needle aspiration (FNA), CNB provides more architectural information allowing for the evaluation of prognostic and predictive factors for breast cancer, including histological grade—one of three prognostic factors used to calculate the Nottingham Prognostic Index. Several studies have previously described the concordance rate between CNB and surgical excision specimen in determination of histological grade (HG). The concordance rate previously ascribed to overall grade varies widely across literature, ranging from 59-91%. The aim of this study is to see how the data looks like in material at authors’ institution and are the results as compared to those described in previous literature. The study population included 157 women with a breast tumor who underwent a core needle biopsy for breast carcinoma and a subsequent surgical excision of the tumor. Both materials were evaluated for the determination of histological grade (scale from 1 to 3). HG was assessed only in core needle biopsies containing at least 10 well preserved HPF with invasive tumor. The degree of concordance between CNB and surgical excision specimen for the determination of tumor grade was assessed by Cohen’s kappa coefficient. The level of agreement between core needle biopsy and surgical resection specimen for overall histologic grading was 73% (113 of 155 cases). CNB correctly predicted the grade of the surgical excision specimen in 21 cases for grade 1 tumors (Kappa coefficient κ = 0.525 95% CI (0.3634; 0.6818), 52 cases for grade 2 (Kappa coefficient κ = 0.5652 95% CI (0.458; 0.667) and 40 cases for stage 3 tumors (Kappa coefficient κ = 0.6154 95% CI (0.4862; 0.7309). The highest level of agreement was observed in grade 3 malignancies. In 9 of 42 (21%) discordant cases, the grade was higher in the CNB than in the surgical excision. This composed 6% of the overall discordance. These results correspond to the noted in the literature, showing that underestimation occurs more frequently than overestimation. This study shows that authors’ institution’s histologic grading of CNBs and surgical excisions shows a fairly good correlation and is consistent with findings in previous reports. Despite the inevitable limitations of CNB, CNB is an effective method for diagnosing breast cancer and managing treatment options. Assessment of tumour grade by CNB is useful for the planning of treatment, so in authors’ opinion it is worthy to implement it in daily practice.

Keywords: breast cancer, concordance, core needle biopsy, histological grade

Procedia PDF Downloads 225
53 Axillary Evaluation with Targeted Axillary Dissection Using Ultrasound-Visible Clips after Neoadjuvant Chemotherapy for Patients with Node-Positive Breast Cancer

Authors: Naomi Sakamoto, Eisuke Fukuma, Mika Nashimoto, Yoshitomo Koshida

Abstract:

Background: Selective localization of the metastatic lymph node with clip and removal of clipped nodes with sentinel lymph node (SLN), known as targeted axillary dissection (TAD), reduced false-negative rates (FNR) of SLN biopsy (SLNB) after neoadjuvant chemotherapy (NAC). For the patients who achieved nodal pathologic complete response (pCR), accurate staging of axilla by TAD lead to omit axillary lymph node dissection (ALND), decreasing postoperative arm morbidity without a negative effect on overall survival. This study aimed to investigate the ultrasound (US) identification rate and success removal rate of two kinds of ultrasound-visible clips placed in metastatic lymph nodes during TAD procedure. Methods: This prospective study was conducted using patients with clinically T1-3, N1, 2, M0 breast cancer undergoing NAC followed by surgery. A US-visible clip was placed in the suspicious lymph node under US guidance before neoadjuvant chemotherapy. Before surgery, US examination was performed to evaluate the detection rate of clipped node. During the surgery, the clipped node was removed using several localization techniques, including hook-wire localization, dye-injection, or fluorescence technique, followed by a dual-technique SLNB and resection of palpable nodes if present. For the fluorescence technique, after injection of 0.1-0.2 mL of indocyanine green dye (ICG) into the clipped node, ICG fluorescent imaging was performed using the Photodynamic Eye infrared camera (Hamamatsu Photonics k. k., Shizuoka, Japan). For the dye injection method, 0.1-0.2 mL of pyoktanin blue dye was injected into the clipped node. Results: A total of 29 patients were enrolled. Hydromark™ breast biopsy site markers (Hydromark, T3 shape; Devicor Medical Japan, Tokyo, Japan) was used in 15patients, whereas a UltraCor™ Twirl™ breast marker (Twirl; C.R. Bard, Inc, NJ, USA) was placed in 14 patients. US identified the clipped node marked with the UltraCore Twirl in 100% (14/14) and with the Hydromark in 93.3% (14/15, p = ns). Success removal of clipped node marked with the UltraCore Twirl was achieved in 100% (14/14), whereas the node marked with the Hydromark was removed in 80% (12/15) (p = ns). Conclusions: The ultrasound identification rate differed between the two types of ultrasound-visible clips, which also affected the success removal rate of clipped nodes. Labelling the positive node with a US-highly-visible clip allowed successful TAD.

Keywords: breast cancer, neoadjuvant chemotherapy, targeted axillary dissection, breast tissue marker, clip

Procedia PDF Downloads 56
52 A Leader-Follower Kinematic-Based Control System for a Cable-Driven Hyper-Redundant Manipulator

Authors: Abolfazl Zaraki, Yoshikatsu Hayashi, Harry Thorpe, Vincent Strong, Gisle-Andre Larsen, William Holderbaum

Abstract:

Thanks to the high maneuverability of the cable-driven hyper-redundant manipulators (HRMs), this class of robots has shown a superior capability in highly confined and unstructured space applications. Although the large number of degrees of freedom (DOF) of HRMs enhances the motion flexibility and the robot’s reachability range, it highly increases the complexity of the kinematic configuration which makes the kinematic control problem very challenging or even impossible to solve. This paper presents our current progress achieved on the development of a kinematic-based leader-follower control system which is designed to control not only the robot’s body posture but also to control the trajectory of the robot’s movement in a semi-autonomous manner (the human operator is retained in the robot’s control loop). To obtain the forward kinematic model, the coordinate frames are established by the classical Denavit–Hartenburg (D-H) convention for a hyper-redundant serial manipulator which has a controlled cables-driven mechanism. To solve the inverse kinematics of the robot, unlike the conventional methods, a leader-follower mechanism, based on the sequential inverse kinematic, is followed. Using this mechanism, the inverse kinematic problem is solved for all sequential joints starting from the head joint to the base joint of the robot. To verify the kinematic design and simulate the robot motion, the MATLAB robotic toolbox is used. The simulation result demonstrated the promising capability of the proposed leader-follower control system in controlling the robot motion and trajectory in our confined space application.

Keywords: hyper-redundant robots, kinematic analysis, semi-autonomous control, serial manipulators

Procedia PDF Downloads 153
51 The Impact of Intelligent Control Systems on Biomedical Engineering and Research

Authors: Melkamu Tadesse Getachew

Abstract:

Intelligent control systems have revolutionized biomedical engineering, advancing research and enhancing medical practice. This review paper examines the impact of intelligent control on various aspects of biomedical engineering. It analyzes how these systems enhance precision and accuracy in biomedical instrumentation, improving diagnostics, monitoring, and treatment. Integration challenges are addressed, and potential solutions are proposed. The paper also investigates the optimization of drug delivery systems through intelligent control. It explores how intelligent systems contribute to precise dosing, targeted drug release, and personalized medicine. Challenges related to controlled drug release and patient variability are discussed, along with potential avenues for overcoming them. The comparison of algorithms used in intelligent control systems in biomedical control is also reviewed. The implications of intelligent control in computational and systems biology are explored, showcasing how these systems enable enhanced analysis and prediction of complex biological processes. Challenges such as interpretability, human-machine interaction, and machine reliability are examined, along with potential solutions. Intelligent control in biomedical engineering also plays a crucial role in risk management during surgical operations. This section demonstrates how intelligent systems improve patient safety and surgical outcomes when integrated into surgical robots, augmented reality, and preoperative planning. The challenges associated with these implementations and potential solutions are discussed in detail. In summary, this review paper comprehensively explores the widespread impact of intelligent control on biomedical engineering, showing the future of human health issues promising. It discusses application areas, challenges, and potential solutions, highlighting the transformative potential of these systems in advancing research and improving medical practice.

Keywords: Intelligent control systems, biomedical instrumentation, drug delivery systems, robotic surgical instruments, Computational monitoring and modeling

Procedia PDF Downloads 34
50 Swift Rising Pattern of Emerging Construction Technology Trends in the Construction Management

Authors: Gayatri Mahajan

Abstract:

Modern Construction Technology (CT) includes a broad range of advanced techniques and practices that bound the recent developments in material technology, design methods, quantity surveying, facility management, services, structural analysis and design, and other management education. Adoption of recent digital transformation technology is the need of today to speed up the business and is also the basis of construction improvement. Incorporating and practicing the technologies such as cloud-based communication and collaboration solution, Mobile Apps and 5G,3D printing, BIM and Digital Twins, CAD / CAM, AR/ VR, Big Data, IoT, Wearables, Blockchain, Modular Construction, Offsite Manifesting, Prefabrication, Robotic, Drones and GPS controlled equipment expedite the progress in the Construction industry (CI). Resources used are journaled research articles, web/net surfing, books, thesis, reports/surveys, magazines, etc. The outline of the research organization for this study is framed at four distinct levels in context to conceptualization, resources, innovative and emerging trends in CI, and better methods for completion of the construction projects. The present study conducted during 2020-2022 reveals that implementing these technologies improves the level of standards, planning, security, well-being, sustainability, and economics too. Application uses, benefits, impact, advantages/disadvantages, limitations and challenges, and policies are dealt with to provide information to architects and builders for smooth completion of the project. Results explain that construction technology trends vary from 4 to 15 for CI, and eventually, it reaches 27 for Civil Engineering (CE). The perspective of the most recent innovations, trends, tools, challenges, and solutions is highly embraced in the field of construction. The incorporation of the above said technologies in the pandemic Covid -19 and post-pandemic might lead to a focus on finding out effective ways to adopt new-age technologies for CI.

Keywords: BIM, drones, GPS, mobile apps, 5G, modular construction, robotics, 3D printing

Procedia PDF Downloads 99
49 Advantages of Computer Navigation in Knee Arthroplasty

Authors: Mohammad Ali Al Qatawneh, Bespalchuk Pavel Ivanovich

Abstract:

Computer navigation has been introduced in total knee arthroplasty to improve the accuracy of the procedure. Computer navigation improves the accuracy of bone resection in the coronal and sagittal planes. It was also noted that it normalizes the rotational alignment of the femoral component and fully assesses and balances the deformation of soft tissues in the coronal plane. The work is devoted to the advantages of using computer navigation technology in total knee arthroplasty in 62 patients (11 men and 51 women) suffering from gonarthrosis, aged 51 to 83 years, operated using a computer navigation system, followed up to 3 years from the moment of surgery. During the examination, the deformity variant was determined, and radiometric parameters of the knee joints were measured using the Knee Society Score (KSS), Functional Knee Society Score (FKSS), and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) scales. Also, functional stress tests were performed to assess the stability of the knee joint in the frontal plane and functional indicators of the range of motion. After surgery, improvement was observed in all scales; firstly, the WOMAC values decreased by 5.90 times, and the median value to 11 points (p < 0.001), secondly KSS increased by 3.91 times and reached 86 points (p < 0.001), and the third one is that FKSS data increased by 2.08 times and reached 94 points (p < 0.001). After TKA, the axis deviation of the lower limbs of more than 3 degrees was observed in 4 patients at 6.5% and frontal instability of the knee joint just in 2 cases at 3.2%., The lower incidence of sagittal instability of the knee joint after the operation was 9.6%. The range of motion increased by 1.25 times; the volume of movement averaged 125 degrees (p < 0.001). Computer navigation increases the accuracy of the spatial orientation of the endoprosthesis components in all planes, reduces the variability of the axis of the lower limbs within ± 3 °, allows you to achieve the best results of surgical interventions, and can be used to solve most basic tasks, allowing you to achieve excellent and good outcomes of operations in 100% of cases according to the WOMAC scale. With diaphyseal deformities of the femur and/or tibia, as well as with obstruction of their medullary canal, the use of computer navigation is the method of choice. The use of computer navigation prevents the occurrence of flexion contracture and hyperextension of the knee joint during the distal sawing of the femur. Using the navigation system achieves high-precision implantation for the endoprosthesis; in addition, it achieves an adequate balance of the ligaments, which contributes to the stability of the joint, reduces pain, and allows for the achievement of a good functional result of the treatment.

Keywords: knee joint, arthroplasty, computer navigation, advantages

Procedia PDF Downloads 82
48 Characteristics of Aerosols Properties Over Different Desert-Influenced Aeronet Sites

Authors: Abou Bakr Merdji, Alaa Mhawish, Xiaofeng Xu, Chunsong Lu

Abstract:

The characteristics of optical and microphysical properties of aerosols near deserts are analyzed using 11 AErosol RObotic NETwork (AERONET) sites located in 6 major desert areas (the Sahara, Arabia, Thar, Karakum, Taklamakan, and Gobi) between 1998 and 2021. The regional mean of Aerosol Optical Depth (AOD) (coarse AOD (CAOD)) are 0.44 (0.187), 0.38 (0.26), 0.35 (0.24), 0.23 (0.11), 0.20 (0.14), 0.10 (0.05) in the Thar, Arabian, Sahara, Karakum, Taklamakan and Gobi Deserts respectively, while an opposite for AE and Fine Mode Fraction (FMF). Higher extinctions are associated with larger particles (dust) over all the main desert regions. This is shown by the almost inversely proportional variations of AOD and CAOD compared with AE and FMF. Coarse particles contribute the most to the total AOD over the Sahara Desert compared to those in the other deserts all year round. Related to the seasonality of dust events, the maximum AOD (CAOD) generally appears in summer and spring, while the minimum is in winter. The mean values of absorbing AOD (AAOD), Absorbing AE (AAE), and the Single Scattering Albedo (SSA) for all sites ranged from 0.017 to 0.037, from 1.16 to 2.81 and from 0.844 to 0.944, respectively. Generally, the highest absorbing aerosol load are observed over the Thar, followed by the Karakum, the Sahara, the Gobi, and then the Taklamakan Deserts, while the largest absorbing particles are observed in the Sahara followed by Arabia, Thar, Karakum, Gobi, and the smallest over the Taklamakan Desert. Similar absorption qualities are observed over the Sahara, Arabia, Thar, and Karakum Deserts, with SSA values varying between 0.90 and 0.91, whereas the most and least absorbing particles are observed at the Taklamakan and the Gobi Deserts, respectively. The seasonal AAODs are distinctly different over the deserts, with parts of Sahara and Arabia, and the Dalanzadgad sites experiencing the maximum in summer, the Southern Sahara, Western Arabia, Jaipur, and Dushanbe in winter, while the Eastern Arabia and the Muztagh Ata in autumn. AAOD and SSA spectra are consistent with dust-dominated conditions that resulted from aerosol typing (dust and polluted dust) at most deserts, with a possible presence of other absorbing particles apart from dust at Arabia, the Taklamakan, and the Gobi Desert sites.

Keywords: sahara, AERONET, desert, dust belt, aerosols, optical properties

Procedia PDF Downloads 79
47 Hydroxyapatite Based Porous Scaffold for Tooth Tissue Engineering

Authors: Pakize Neslihan Taslı, Alev Cumbul, Gul Merve Yalcın, Fikrettin Sahin

Abstract:

A key experimental trial in the regeneration of large oral and craniofacial defects is the neogenesis of osseous and ligamentous interfacial structures. Currently, oral regenerative medicine strategies are unpredictable for repair of tooth supporting tissues destroyed as a consequence of trauma, chronic infection or surgical resection. A different approach combining the gel-casting method with Hydroxy Apatite HA-based scaffold and different cell lineages as a hybrid system leads to successively mimic the early stage of tooth development, in vitro. HA is widely accepted as a bioactive material for guided bone and tooth regeneration. In this study, it was reported that, HA porous scaffold preparation, characterization and evaluation of structural and chemical properties. HA is the main factor that exists in tooth and it is in harmony with structural, biological, and mechanical characteristics. Here, this study shows mimicking immature tooth at the late bell stage design and construction of HA scaffolds for cell transplantation of human Adipose Stem Cells (hASCs), human Bone Marrow Stem Cells (hBMSCs) and Gingival Epitelial cells for the formation of human tooth dentin-pulp-enamel complexes in vitro. Scaffold characterization was demonstrated by SEM, FTIR and pore size and density measurements. The biological contraction of dental tissues against each other was demonstrated by mRNA gene expressions, histopatologic observations and protein release profile by ELISA tecnique. The tooth shaped constructs with a pore size ranging from 150 to 300 µm arranged by gathering right amounts of materials provide interconnected macro-porous structure. The newly formed tissue like structures that grow and integrate within the HA designed constructs forming tooth cementum like tissue, pulp and bone structures. These findings are important as they emphasize the potential biological effect of the hybrid scaffold system. In conclusion, this in vitro study clearly demonstrates that designed 3D scaffolds shaped as a immature tooth at the late bell stage were essential to form enamel-dentin-pulp interfaces with an appropriate cell and biodegradable material combination. The biomimetic architecture achieved here is providing a promising platform for dental tissue engineering.

Keywords: tooth regeneration, tissue engineering, adipose stem cells, hydroxyapatite tooth engineering, porous scaffold

Procedia PDF Downloads 227
46 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection

Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young

Abstract:

Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.

Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving

Procedia PDF Downloads 241
45 Shared Decision Making in Oropharyngeal Cancer: The Development of a Decision Aid for Resectable Oropharyngeal Carcinoma, a Mixed Methods Study

Authors: Anne N. Heirman, Lisette van der Molen, Richard Dirven, Gyorgi B. Halmos, Michiel W.M. van den Brekel

Abstract:

Background: Due to the rising incidence of oropharyngeal squamous cell cancer (OPSCC), many patients are challenged with choosing between transoral(robotic) surgery and radiotherapy, with equal survival and oncological outcomes. Also, functional outcomes are of little difference over the years. With this study, the wants and needs of patients and caregivers are identified to develop a comprehensible patient decision aid (PDA). Methods: The development of this PDA is based on the International Patient Decision Aid Standards criteria. In phase 1, relevant literature was reviewed and compared to current counseling papers. We interviewed ten post-treatment patients and ten doctors from four head and neck centers in the Netherlands, which were transcribed verbatim and analyzed. With these results, the first draft of the PDA was developed. Phase 2 beholds testing the first draft for comprehensibility and usability. Phase 3 beholds testing for feasibility. After this phase, the final version of the PDA was developed. Results: All doctors and patients agreed a PDA was needed. Phase 1 showed that 50% of patients felt well-informed after standard care and 35% missed information about treatment possibilities. Side effects and functional outcomes were rated as the most important for decision-making. With this information, the first version was developed. Doctors and patients stated (phase 2) that they were satisfied with the comprehensibility and usability, but there was too much text. The PDA underwent text reduction revisions and got more graphics. After revisions, all doctors found the PDA feasible and would contribute to regular counseling. Patients were satisfied with the results and wished they would have seen it before their treatment. Conclusion: Decision-making for OPSCC should focus on differences in side-effects and functional outcomes. Patients and doctors found the PDA to be of great value. Future research will explore the benefits of the PDA in clinical practice.

Keywords: head-and-neck oncology, oropharyngeal cancer, patient decision aid, development, shared decision making

Procedia PDF Downloads 137
44 Empirical Modeling and Optimization of Laser Welding of AISI 304 Stainless Steel

Authors: Nikhil Kumar, Asish Bandyopadhyay

Abstract:

Laser welding process is a capable technology for forming the automobile, microelectronics, marine and aerospace parts etc. In the present work, a mathematical and statistical approach is adopted to study the laser welding of AISI 304 stainless steel. A robotic control 500 W pulsed Nd:YAG laser source with 1064 nm wavelength has been used for welding purpose. Butt joints are made. The effects of welding parameters, namely; laser power, scanning speed and pulse width on the seam width and depth of penetration has been investigated using the empirical models developed by response surface methodology (RSM). Weld quality is directly correlated with the weld geometry. Twenty sets of experiments have been conducted as per central composite design (CCD) design matrix. The second order mathematical model has been developed for predicting the desired responses. The results of ANOVA indicate that the laser power has the most significant effect on responses. Microstructural analysis as well as hardness of the selected weld specimens has been carried out to understand the metallurgical and mechanical behaviour of the weld. Average micro-hardness of the weld is observed to be higher than the base metal. Higher hardness of the weld is the resultant of grain refinement and δ-ferrite formation in the weld structure. The result suggests that the lower line energy generally produce fine grain structure and improved mechanical properties than the high line energy. The combined effects of input parameters on responses have been analyzed with the help of developed 3-D response surface and contour plots. Finally, multi-objective optimization has been conducted for producing weld joint with complete penetration, minimum seam width and acceptable welding profile. Confirmatory tests have been conducted at optimum parametric conditions to validate the applied optimization technique.

Keywords: ANOVA, laser welding, modeling and optimization, response surface methodology

Procedia PDF Downloads 291
43 Robotics Technology Supported Pedagogic Models in Science, Technology, Engineering, Arts and Mathematics Education

Authors: Sereen Itani

Abstract:

As the world aspires for technological innovation, Innovative Robotics Technology-Supported Pedagogic Models in STEAM Education (Science, Technology, Engineering, Arts, and Mathematics) are critical in our global education system to build and enhance the next generation 21st century skills. Thus, diverse international schools endeavor in attempts to construct an integrated robotics and technology enhanced curriculum based on interdisciplinary subjects. Accordingly, it is vital that the globe remains resilient in STEAM fields by equipping the future learners and educators with Innovative Technology Experiences through robotics to support such fields. A variety of advanced teaching methods is employed to learn about Robotics Technology-integrated pedagogic models. Therefore, it is only when STEAM and innovations in Robotic Technology becomes integrated with real-world applications that transformational learning can occur. Robotics STEAM education implementation faces major challenges globally. Moreover, STEAM skills and concepts are communicated in separation from the real world. Instilling the passion for robotics and STEAM subjects and educators’ preparation could lead to the students’ majoring in such fields by acquiring enough knowledge to make vital contributions to the global STEAM industries. Thus, this necessitates the establishment of Pedagogic models such as Innovative Robotics Technologies to enhance STEAM education and develop students’ 21st-century skills. Moreover, an ICT innovative supported robotics classroom will help educators empower and assess students academically. Globally, the Robotics Design System and platforms are developing in schools and university labs creating a suitable environment for the robotics cross-discipline STEAM learning. Accordingly, the research aims at raising awareness about the importance of robotics design systems and methodologies of effective employment of robotics innovative technology-supported pedagogic models to enhance and develop (STEAM) education globally and enhance the next generation 21st century skills.

Keywords: education, robotics, STEAM (Science, Technology, Engineering, Arts and Mathematics Education), challenges

Procedia PDF Downloads 374
42 Decommissioning of Nuclear Power Plants: The Current Position and Requirements

Authors: A. Stifi, S. Gentes

Abstract:

Undoubtedly from construction's perspective, the use of explosives will remove a large facility such as a 40-storey building , that took almost 3 to 4 years for construction, in few minutes. Usually, the reconstruction or decommissioning, the last phase of life cycle of any facility, is considered to be the shortest. However, this is proved to be wrong in the case of nuclear power plant. Statistics says that in the last 30 years, the construction of a nuclear power plant took an average time of 6 years whereas it is estimated that decommissioning of such plants may take even a decade or more. This paper is all about the decommissioning phase of a nuclear power plant which needs to be given more attention and encouragement from the research institutes as well as the nuclear industry. Currently, there are 437 nuclear power reactors in operation and 70 reactors in construction. With around 139 nuclear facilities already been shut down and are in different decommissioning stages and approximately 347 nuclear reactors will be in decommissioning phase in the next 20 years (assuming the operation time of a reactor as 40 years), This fact raises the following two questions (1) How far is the nuclear and construction Industry ready to face the challenges of decommissioning project? (2) What is required for a safety and reliable decommissioning project delivery? The decommissioning of nuclear facilities across the global have severe time and budget overruns. Largely the decommissioning processes are being executed by the force of manual labour where the change in regulations is respectively observed. In term of research and development, some research projects and activities are being carried out in this area, but the requirement seems to be much more. The near future of decommissioning shall be better through a sustainable development strategy where all stakeholders agree to implement innovative technologies especially for dismantling and decontamination processes and to deliever a reliable and safety decommissioning. The scope of technology transfer from other industries shall be explored. For example, remotery operated robotic technologies used in automobile and production industry to reduce time and improve effecincy and saftey shall be tried here. However, the innovative technologies are highly requested but they are alone not enough, the implementation of creative and innovative management methodologies should be also investigated and applied. Lean Management with it main concept "elimination of waste within process", is a suitable example here. Thus, the cooperation between international organisations and related industries and the knowledge-sharing may serve as a key factor for the successful decommissioning projects.

Keywords: decommissioning of nuclear facilities, innovative technology, innovative management, sustainable development

Procedia PDF Downloads 464
41 FMCW Doppler Radar Measurements with Microstrip Tx-Rx Antennas

Authors: Yusuf Ulaş Kabukçu, Si̇nan Çeli̇k, Onur Salan, Mai̇de Altuntaş, Mert Can Dalkiran, Gökseni̇n Bozdağ, Metehan Bulut, Fati̇h Yaman

Abstract:

This study presents a more compact implementation of the 2.4GHz MIT Coffee Can Doppler Radar for 2.6GHz operating frequency. The main difference of our prototype depends on the use of microstrip antennas which makes it possible to transport with a small robotic vehicle. We have designed our radar system with two different channels: Tx and Rx. The system mainly consists of Voltage Controlled Oscillator (VCO) source, low noise amplifiers, microstrip antennas, splitter, mixer, low pass filter, and necessary RF connectors with cables. The two microstrip antennas, one is element for transmitter and the other one is array for receiver channel, was designed, fabricated and verified by experiments. The system has two operation modes: speed detection and range detection. If the switch of the operation mode is ‘Off’, only CW signal transmitted for speed measurement. When the switch is ‘On’, CW is frequency-modulated and range detection is possible. In speed detection mode, high frequency (2.6 GHz) is generated by a VCO, and then amplified to reach a reasonable level of transmit power. Before transmitting the amplified signal through a microstrip patch antenna, a splitter used in order to compare the frequencies of transmitted and received signals. Half of amplified signal (LO) is forwarded to a mixer, which helps us to compare the frequencies of transmitted and received (RF) and has the IF output, or in other words information of Doppler frequency. Then, IF output is filtered and amplified to process the signal digitally. Filtered and amplified signal showing Doppler frequency is used as an input of audio input of a computer. After getting this data Doppler frequency is shown as a speed change on a figure via Matlab script. According to experimental field measurements the accuracy of speed measurement is approximately %90. In range detection mode, a chirp signal is used to form a FM chirp. This FM chirp helps to determine the range of the target since only Doppler frequency measured with CW is not enough for range detection. Such a FMCW Doppler radar may be used in border security of the countries since it is capable of both speed and range detection.

Keywords: doppler radar, FMCW, range detection, speed detection

Procedia PDF Downloads 388
40 Effects of Robot-Assisted Hand Training on Upper Extremity Performance in Patients with Stroke: A Randomized Crossover Controlled, Assessor-Blinded Study

Authors: Hsin-Chieh Lee, Fen-Ling Kuo, Jui-Chi Lin

Abstract:

Background: Upper extremity functional impairment that occurs after stroke includes hemiplegia, synergy movement, muscle hypertonicity, and somatosensory impairment, which result in inefficient and inaccurate movement. Robot-assisted rehabilitation is an intensive training approach that is effective in sensorimotor and hand function recovery. However, these systems mostly focused on the proximal part of the upper limb rather than the distal part. The device used in our study was Gloreha Sinfonia, which focuses on the distal part of the upper limb and uses a dynamic support system to facilitate the whole limb function. The objective of this study was to investigate the effects of robot-assisted therapy (RT) with Gloreha device on sensorimotor, and ADLs in patients with stroke. Method: Patients with stroke (N=25) participated AB or BA (A = 12 RT sessions and B = 12 conventional therapy (CT) sessions) for 6 weeks (60 min at each session, twice a week), with 1-month break for washout period. The performance of the patients was assessed by a blinded assessor at 4 time points (pretest 1, posttest 1, pretest 2, posttest 2) which including the Fugl–Meyer Assessment-upper extremity (FMA-UE), box and block test, electromyography of the extensor digitorum communis (EDC) and brachioradialis, a grip dynamometer for motor evaluation; Semmes–Weinstein hand monofilament and Revision of the Nottingham Sensory Assessment for sensory evaluation; and the Modified Barthel Index (MBI) for assessing the ADL ability. Result: RT group significantly improved FMA-UE proximal scores (p = 0.038), FMA-UE total scores (p = 0.046), and MBI (p = 0.030). The EDC exhibited higher efficiency during the small block grasping task in the RT group than in the CT group (p = 0.050). Conclusions: RT with the Gloreha device might lead to beneficial effects on arm motor function, ADL ability, and EDC muscle recruitment efficacy in patients with subacute to chronic stroke.

Keywords: activities of daily living, hand function, robotic rehabilitation, stroke

Procedia PDF Downloads 108
39 Cognitive Dissonance in Robots: A Computational Architecture for Emotional Influence on the Belief System

Authors: Nicolas M. Beleski, Gustavo A. G. Lugo

Abstract:

Robotic agents are taking more and increasingly important roles in society. In order to make these robots and agents more autonomous and efficient, their systems have grown to be considerably complex and convoluted. This growth in complexity has led recent researchers to investigate forms to explain the AI behavior behind these systems in search for more trustworthy interactions. A current problem in explainable AI is the inner workings with the logic inference process and how to conduct a sensibility analysis of the process of valuation and alteration of beliefs. In a social HRI (human-robot interaction) setup, theory of mind is crucial to ease the intentionality gap and to achieve that we should be able to infer over observed human behaviors, such as cases of cognitive dissonance. One specific case inspired in human cognition is the role emotions play on our belief system and the effects caused when observed behavior does not match the expected outcome. In such scenarios emotions can make a person wrongly assume the antecedent P for an observed consequent Q, and as a result, incorrectly assert that P is true. This form of cognitive dissonance where an unproven cause is taken as truth induces changes in the belief base which can directly affect future decisions and actions. If we aim to be inspired by human thoughts in order to apply levels of theory of mind to these artificial agents, we must find the conditions to replicate these observable cognitive mechanisms. To achieve this, a computational architecture is proposed to model the modulation effect emotions have on the belief system and how it affects logic inference process and consequently the decision making of an agent. To validate the model, an experiment based on the prisoner's dilemma is currently under development. The hypothesis to be tested involves two main points: how emotions, modeled as internal argument strength modulators, can alter inference outcomes, and how can explainable outcomes be produced under specific forms of cognitive dissonance.

Keywords: cognitive architecture, cognitive dissonance, explainable ai, sensitivity analysis, theory of mind

Procedia PDF Downloads 125
38 Positron Emission Tomography Parameters as Predictors of Pathologic Response and Nodal Clearance in Patients with Stage IIIA NSCLC Receiving Trimodality Therapy

Authors: Andrea L. Arnett, Ann T. Packard, Yolanda I. Garces, Kenneth W. Merrell

Abstract:

Objective: Pathologic response following neoadjuvant chemoradiation (CRT) has been associated with improved overall survival (OS). Conflicting results have been reported regarding the pathologic predictive value of positron emission tomography (PET) response in patients with stage III lung cancer. The aim of this study was to evaluate the correlation between post-treatment PET response and pathologic response utilizing novel FDG-PET parameters. Methods: This retrospective study included patients with non-metastatic, stage IIIA (N2) NSCLC cancer treated with CRT followed by resection. All patients underwent PET prior to and after neoadjuvant CRT. Univariate analysis was utilized to assess correlations between PET response, nodal clearance, pCR, and near-complete pathologic response (defined as the microscopic residual disease or less). Maximal standard uptake value (SUV), standard uptake ratio (SUR) [normalized independently to the liver (SUR-L) and blood pool (SUR-BP)], metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were measured pre- and post-chemoradiation. Results: A total of 44 patients were included for review. Median age was 61.9 years, and median follow-up was 2.6 years. Histologic subtypes included adenocarcinoma (72.2%) and squamous cell carcinoma (22.7%), and the majority of patients had the T2 disease (59.1%). The rate of pCR and near-complete pathologic response within the primary lesion was 28.9% and 44.4%, respectively. The average reduction in SUVmₐₓ was 9.2 units (range -1.9-32.8), and the majority of patients demonstrated some degree of favorable treatment response. SUR-BP and SUR-L showed a mean reduction of 4.7 units (range -0.1-17.3) and 3.5 units (range –1.7-12.6), respectively. Variation in PET response was not significantly associated with histologic subtype, concurrent chemotherapy type, stage, or radiation dose. No significant correlation was found between pathologic response and absolute change in MTV or TLG. Reduction in SUVmₐₓ and SUR were associated with increased rate of pathologic response (p ≤ 0.02). This correlation was not impacted by normalization of SUR to liver versus mediastinal blood pool. A threshold of > 75% decrease in SUR-L correlated with near-complete response, with a sensitivity of 57.9% and specificity of 85.7%, as well as positive and negative predictive values of 78.6% and 69.2%, respectively (diagnostic odds ratio [DOR]: 5.6, p=0.02). A threshold of >50% decrease in SUR was also significantly associated pathologic response (DOR 12.9, p=0.2), but specificity was substantially lower when utilizing this threshold value. No significant association was found between nodal PET parameters and pathologic nodal clearance. Conclusions: Our results suggest that treatment response to neoadjuvant therapy as assessed on PET imaging can be a predictor of pathologic response when evaluated via SUV and SUR. SUR parameters were associated with higher diagnostic odds ratios, suggesting improved predictive utility compared to SUVmₐₓ. MTV and TLG did not prove to be significant predictors of pathologic response but may warrant further investigation in a larger cohort of patients.

Keywords: lung cancer, positron emission tomography (PET), standard uptake ratio (SUR), standard uptake value (SUV)

Procedia PDF Downloads 225