Search results for: numerical validation
4436 Numerical Modeling of Turbulent Natural Convection in a Square Cavity
Authors: Mohammadreza Sedighi, Mohammad Said Saidi, Hesamoddin Salarian
Abstract:
A numerical study has been performed to investigate the effect of using different turbulent models on natural convection flow field and temperature distributions in partially heated square cavity compare to benchmark. The temperature of the right vertical wall is lower than that of heater while other walls are insulated. The commercial CFD codes are used to model. Standard k-w model provided good agreement with the experimental data.Keywords: Buoyancy, Cavity, CFD, Heat Transfer, Natural Convection, Turbulence
Procedia PDF Downloads 3414435 Expert Review on Conceptual Design Model of Assistive Courseware for Low Vision (AC4LV) Learners
Authors: Nurulnadwan Aziz, Ariffin Abdul Mutalib, Siti Mahfuzah Sarif
Abstract:
This paper reports an ongoing project regarding the development of Conceptual Design Model of Assistive Courseware for Low Vision (AC4LV) learners. Having developed the intended model, it has to be validated prior to producing it as guidance for the developers to develop an AC4LV. This study requires two phases of validation process which are through expert review and prototyping method. This paper presents a part of the validation process which is findings from experts review on Conceptual Design Model of AC4LV which has been carried out through a questionnaire. Results from 12 international and local experts from various respectable fields in Human-Computer Interaction (HCI) were discussed and justified. In a nutshell, reviewed Conceptual Design Model of AC4LV was formed. Future works of this study are to validate the reviewed model through prototyping method prior to testing it to the targeted users.Keywords: assistive courseware, conceptual design model, expert review, low vision learners
Procedia PDF Downloads 5464434 Parameters of Validation Method of Determining Polycyclic Aromatic Hydrocarbons in Drinking Water by High Performance Liquid Chromatography
Authors: Jonida Canaj
Abstract:
A simple method of extraction and determination of fifteen priority polycyclic aromatic hydrocarbons (PAHs) from drinking water using high performance liquid chromatography (HPLC) has been validated with limits of detection (LOD) and limits of quantification (LOQ), method recovery and reproducibility, and other factors. HPLC parameters, such as mobile phase composition and flow standardized for determination of PAHs using fluorescent detector (FLD). PAH was carried out by liquid-liquid extraction using dichloromethane. Linearity of calibration curves was good for all PAH (R², 0.9954-1.0000) in the concentration range 0.1-100 ppb. Analysis of standard spiked water samples resulted in good recoveries between 78.5-150%(0.1ppb) and 93.04-137.47% (10ppb). The estimated LOD and LOQ ranged between 0.0018-0.98 ppb. The method described has been used for determination of the fifteen PAHs contents in drinking water samples.Keywords: high performance liquid chromatography, HPLC, method validation, polycyclic aromatic hydrocarbons, PAHs, water
Procedia PDF Downloads 1044433 Numerical Simulation of Phase Transfer during Cryosurgery for an Irregular Tumor Using Hybrid Approach
Authors: Rama Bhargava
Abstract:
In the current paper, numerical simulation has been performed for the two-dimensional time dependent Pennes’ heat transfer model which is solved for irregular diseased tumor cells. An elliptic cryoprobe of varying sizes is taken at the center of the computational domain in such a manner that the location of the probe is fixed throughout the computation. The phase transition occurs due to the effect of probe with infusion of different nanoparticles Au, Al₂O₃, Fe₃O₄. The cooling performance of these nanoparticles injected at very low temperature, has been studied by implementing a hybrid FEM/EFGM method in which the whole domain is decomposed into two subdomains. The results are shown in terms of temperature profile inside the computational domain. Rate of cooling is obtained for various nanoparticles and it is observed that infusion of Au nanoparticles is very much efficient in increasing the heating rate than other nanoparticles. Such numerical scheme has direct applications where the domain is irregular.Keywords: cryosurgery, hybrid EFGM/FEM, nanoparticles, simulation
Procedia PDF Downloads 2424432 Study of the Electromagnetic Resonances of a Cavity with an Aperture Using Numerical Method and Equivalent Circuit Method
Authors: Ming-Chu Yin, Ping-An Du
Abstract:
The shielding ability of a shielding cavity is affected greatly by its resonances, which include resonance modes and frequencies. The equivalent circuit method and numerical method of transmission line matrix (TLM) are used to analyze the effect of aperture-cavity coupling on electromagnetic resonances of a cavity with an aperture in this paper. Both theoretical and numerical results show that the resonance modes of a shielding cavity with an aperture can be considered as the combination of cavity and aperture inherent resonance modes with resonance frequencies shifting, and the reason of this shift is aperture-cavity coupling. Because aperture sizes are important parameters to aperture-cavity coupling, variation rules of electromagnetic resonances of a shielding cavity with its aperture sizes are given, which will be useful for the design of shielding cavities.Keywords: aperture-cavity coupling, equivalent circuit method, resonances, shielding equipment
Procedia PDF Downloads 4444431 Learner Awareness Levels Questionnaire: Development and Preliminary Validation of the English and Malay Versions to Measure How and Why Students Learn
Authors: S. Chee Choy, Pauline Swee Choo Goh, Yow Lin Liew
Abstract:
The purpose of this study is to evaluate the English version and a Malay translation of the 21-item Learner Awareness Questionnaire for its application to assess student learning in higher education. The Learner Awareness Questionnaire, originally written in English, is a quantitative measure of how and why students learn. The questionnaire gives an indication of the process and motives to learn using four scales: survival, establishing stability, approval, and loving to learn. Data in the present study came from 680 university students enrolled in various programs in Malaysia. The Malay version of the questionnaire supported a similar four-factor structure and internal consistency to the English version. The four factors of the Malay version also showed moderate to strong correlations with those of the English versions. The results suggest that the Malay version of the questionnaire is similar to the English version. However, further refinement for the questions is needed to strengthen the correlations between the two questionnaires.Keywords: student learning, learner awareness, questionnaire development, instrument validation
Procedia PDF Downloads 4264430 Buckling Analysis of Composite Shells under Compression and Torsional Loads: Numerical and Analytical Study
Authors: Güneş Aydın, Razi Kalantari Osgouei, Murat Emre Öztürk, Ahmad Partovi Meran, Ekrem Tüfekçi
Abstract:
Advanced lightweight laminated composite shells are increasingly being used in all types of modern structures, for enhancing their structural efficiency and performance. Such thin-walled structures are susceptible to buckling when subjected to various loading. This paper focuses on the buckling of cylindrical shells under axial compression and torsional loads. Effects of fiber orientation on the maximum buckling load of carbon fiber reinforced polymer (CFRP) shells are optimized. Optimum fiber angles have been calculated analytically by using MATLAB program. Numerical models have been carried out by using Finite Element Method program ABAQUS. Results from analytical and numerical analyses are also compared.Keywords: buckling, composite, cylindrical shell, finite element, compression, torsion, MATLAB, optimization
Procedia PDF Downloads 5874429 Numerical Modelling of Effective Diffusivity in Bone Tissue Engineering
Authors: Ayesha Sohail, Khadija Maqbool, Anila Asif, Haroon Ahmad
Abstract:
The field of tissue engineering is an active area of research. Bone tissue engineering helps to resolve the clinical problems of critical size and non-healing defects by the creation of man-made bone tissue. We will design and validate an efficient numerical model, which will simulate the effective diffusivity in bone tissue engineering. Our numerical model will be based on the finite element analysis of the diffusion-reaction equations. It will have the ability to optimize the diffusivity, even at multi-scale, with the variation of time. It will also have a special feature, with which we will not only be able to predict the oxygen, glucose and cell density dynamics, more accurately, but will also sort the issues arising due to anisotropy. We will fix these problems with the help of modifying the governing equations, by selecting appropriate spatio-temporal finite element schemes, by adaptive grid refinement strategy and by transient analysis.Keywords: scaffolds, porosity, diffusion, transient analysis
Procedia PDF Downloads 5414428 A Three-Dimensional (3D) Numerical Study of Roofs Shape Impact on Air Quality in Urban Street Canyons with Tree Planting
Authors: Bouabdellah Abed, Mohamed Bouzit, Lakhdar Bouarbi
Abstract:
The objective of this study is to investigate numerically the effect of roof shaped on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, Pvol = 96%. A three-dimensional computational fluid dynamics (CFD) model for evaluating air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier–Stokes (RANS) equations and the k-Epsilon EARSM turbulence model as close of the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against the wind tunnel experiment. Having established this, the wind flow and pollutant dispersion in urban street canyons of six roof shapes are simulated. The numerical simulation agrees reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated, this complexity is increased with presence of tree and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped. The results also indicated that the corners eddies provide additional ventilation and lead to lower traffic pollutant concentrations at the street canyon ends.Keywords: street canyon, pollutant dispersion, trees, building configuration, numerical simulation, k-Epsilon EARSM
Procedia PDF Downloads 3654427 Numerical Modeling to Validate Theoretical Models of Toppling Failure in Rock Slopes
Authors: Hooman Dabirmanesh, Attila M. Zsaki
Abstract:
Traditionally, rock slope stability is carried out using limit equilibrium analysis when investigating toppling failure. In these equilibrium methods, internal forces exerted between columns are not clearly defined, and to the authors’ best knowledge, there is no consensus in literature with respect to the results of analysis. A discrete element method-based numerical model was developed and applied to simulate the behavior of rock layers subjected to toppling failure. Based on this calibrated numerical model, a study of the location and distribution of internal forces that result in equilibrium was carried out. The sum of side forces was applied at a point on a block which properly represents the force to determine the inter-column force distribution. In terms of the side force distribution coefficient, the result was compared to those obtained from laboratory centrifuge tests. The results of the simulation show the suitable criteria to select the correct position for the internal exerted force between rock layers. In addition, the numerical method demonstrates how a theoretical method could be reliable by considering the interaction between the rock layers.Keywords: contact bond, discrete element, force distribution, limit equilibrium, tensile stress
Procedia PDF Downloads 1434426 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach
Procedia PDF Downloads 974425 Numerical Investigation of Flow and Heat Transfer Characteristics of a Natural Refrigerant within a Vortex Tube
Authors: Mirza Popovac
Abstract:
This paper investigates the application of the vortex tubes towards increasing the efficiency of high temperature heat pumps based on natural refrigerants, by recovering a part of the expansion work within the refrigerant cycle. To this purpose the 3D Navier-Stokes solver is used to perform a set of numerical simulations, investigating the vortex tube performance. Firstly, the fluid flow and heat transfer characteristics are analyzed for standard configurations of vortex tubes, and the obtained results are validated against the experimental and numerical data available in literature. Subsequently, different geometry specifications are analyzed, as well as the interplay between relevant heat pump operating conditions and the properties of natural refrigerants. Finally, the characteristic curve of performance will be derived for investigated vortex tubes specifications when used within high temperature heat pumps.Keywords: heat pump, vortex tube, CFD, natural refrigerant
Procedia PDF Downloads 1404424 A Numerical Studies for Improving the Performance of Vertical Axis Wind Turbine by a Wind Power Tower
Authors: Soo-Yong Cho, Chong-Hyun Cho, Chae-Whan Rim, Sang-Kyu Choi, Jin-Gyun Kim, Ju-Seok Nam
Abstract:
Recently, vertical axis wind turbines (VAWT) have been widely used to produce electricity even in urban. They have several merits such as low sound noise, easy installation of the generator and simple structure without yaw-control mechanism and so on. However, their blades are operated under the influence of the trailing vortices generated by the preceding blades. This phenomenon deteriorates its output power and makes difficulty predicting correctly its performance. In order to improve the performance of VAWT, wind power towers can be applied. Usually, the wind power tower can be constructed as a multi-story building to increase the frontal area of the wind stream. Hence, multiple sets of the VAWT can be installed within the wind power tower, and they can be operated at high elevation. Many different types of wind power tower can be used in the field. In this study, a wind power tower with circular column shape was applied, and the VAWT was installed at the center of the wind power tower. Seven guide walls were used as a strut between the floors of the wind power tower. These guide walls were utilized not only to increase the wind velocity within the wind power tower but also to adjust the wind direction for making a better working condition on the VAWT. Hence, some important design variables, such as the distance between the wind turbine and the guide wall, the outer diameter of the wind power tower, the direction of the guide wall against the wind direction, should be considered to enhance the output power on the VAWT. A numerical analysis was conducted to find the optimum dimension on design variables by using the computational fluid dynamics (CFD) among many prediction methods. The CFD could be an accurate prediction method compared with the stream-tube methods. In order to obtain the accurate results in the CFD, it needs the transient analysis and the full three-dimensional (3-D) computation. However, this full 3-D CFD could be hard to be a practical tool because it requires huge computation time. Therefore, the reduced computational domain is applied as a practical method. In this study, the computations were conducted in the reduced computational domain and they were compared with the experimental results in the literature. It was examined the mechanism of the difference between the experimental results and the computational results. The computed results showed this computational method could be an effective method in the design methodology using the optimization algorithm. After validation of the numerical method, the CFD on the wind power tower was conducted with the important design variables affecting the performance of VAWT. The results showed that the output power of the VAWT obtained using the wind power tower was increased compared to them obtained without the wind power tower. In addition, they showed that the increased output power on the wind turbine depended greatly on the dimension of the guide wall.Keywords: CFD, performance, VAWT, wind power tower
Procedia PDF Downloads 3874423 Understanding the 3R's Element in the Creation of Ecological Form That Leads to Ecodesign
Authors: Mohd Hasni Chumiran
Abstract:
The rapid growth of global industrialism over the past few decades has led to various environmental issues and ecological instability, all due to human activity. In order to solve this global issue, the manufacturers alike have begun to embrace the use of ecodesign products. However, when considering a specific field, multiple questions have been raised and industrial designers (the practising designer's R&D group) have been unable to define the ecological cycle methodology. In this paper, we investigate the validation of problematic in the creation of ecodesign products with the 'reduce, reuse and recycle' (3R’s) method, which is an untested product design theory. The aim of this research is to address the 3R’s method can be extracted in order to transmit an ecological form of ecodesign, specifically among Malaysian furniture manufacturers. By operating the Descriptive Study I (DS-I) phase: Design Research Methodology (DRM), the research has applied two research approaches by the methodological triangulation tradition. To achieve the result, this validation of descriptive structure (design theory) shall be matched with the research hypothesis along the use of research questions.Keywords: design research methodology, ecodesign, ecological form, industrial design
Procedia PDF Downloads 2314422 An Entropy Stable Three Dimensional Ideal MHD Solver with Guaranteed Positive Pressure
Authors: Andrew R. Winters, Gregor J. Gassner
Abstract:
A high-order numerical magentohydrodynamics (MHD) solver built upon a non-linear entropy stable numerical flux function that supports eight traveling wave solutions will be described. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver is especially well-suited for flows involving strong discontinuities due to its strong stability without the need to enforce artificial low density or energy limits. Furthermore, a new formulation of the numerical algorithm to guarantee positivity of the pressure during the simulation is described and presented. By construction, the solver conserves mass, momentum, and energy and is entropy stable. High spatial order is obtained through the use of a third order limiting technique. High temporal order is achieved by utilizing the family of strong stability preserving (SSP) Runge-Kutta methods. Main attributes of the solver are presented as well as details on an implementation of the new solver into the multi-physics, multi-scale simulation code FLASH. The accuracy, robustness, and computational efficiency is demonstrated with a variety of numerical tests. Comparisons are also made between the new solver and existing methods already present in FLASH framework.Keywords: entropy stability, finite volume scheme, magnetohydrodynamics, pressure positivity
Procedia PDF Downloads 3434421 Quantitative Structure-Activity Relationship Modeling of Detoxication Properties of Some 1,2-Dithiole-3-Thione Derivatives
Authors: Nadjib Melkemi, Salah Belaidi
Abstract:
Quantitative Structure-Activity Relationship (QSAR) studies have been performed on nineteen molecules of 1,2-dithiole-3-thione analogues. The compounds used are the potent inducers of enzymes involved in the maintenance of reduced glutathione pools as well as phase-2 enzymes important to electrophile detoxication. A multiple linear regression (MLR) procedure was used to design the relationships between molecular descriptor and detoxication properties of the 1,2-dithiole-3-thione derivatives. The predictivity of the model was estimated by cross-validation with the leave-one-out method. Our results suggest a QSAR model based of the following descriptors: qS2, qC3, qC5, qS6, DM, Pol, log P, MV, SAG, HE and EHOMO for the specific activity of quinone reductase; qS1, qS2, qC3, qC4, qC5, qS6, DM, Pol, logP, MV, SAG, HE and EHOMO for the production of growth hormone. To confirm the predictive power of the models, an external set of molecules was used. High correlation between experimental and predicted activity values was observed, indicating the validation and the good quality of the derived QSAR models.Keywords: QSAR, quinone reductase activity, production of growth hormone, MLR
Procedia PDF Downloads 3504420 Experimental and Numerical Processes of Open Die Forging of Multimetallic Materials with the Usage of Different Lubricants
Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can, Damla Gunel
Abstract:
This work investigates experimental and numerical analysis of open die forging of multimetallic materials. Multimetallic material production has recently become an interesting research field. The mechanical properties of the materials to be used for the formation of multimetallic materials and the mechanical properties of the multimetallic materials produced will be compared and the material flows of the use of different lubricants will be examined. Furthermore, in this work, the mechanical properties of multimetallic metallic materials produced using different materials will be examined by using different lubricants. The advantages and disadvantages of different lubricants will be approached with the bi-metallic material to be produced. Cylindrical specimens consisting of two different materials were used in the experiments. Specimens were prepared as aluminum sleeve and copper core and upset at different reduction. This metal combination present a material model of which chemical composition is different. ABAQUS software was used for the simulations. Simulation and experimental results have also shown reasonable agreement.Keywords: multimetallic, forging, experimental, numerical
Procedia PDF Downloads 2784419 Development of Numerical Method for Mass Transfer across the Moving Membrane with Selective Permeability: Approximation of the Membrane Shape by Level Set Method for Numerical Integral
Authors: Suguru Miyauchi, Toshiyuki Hayase
Abstract:
Biological membranes have selective permeability, and the capsules or cells enclosed by the membrane show the deformation by the osmotic flow. This mass transport phenomenon is observed everywhere in a living body. For the understanding of the mass transfer in a body, it is necessary to consider the mass transfer phenomenon across the membrane as well as the deformation of the membrane by a flow. To our knowledge, in the numerical analysis, the method for mass transfer across the moving membrane has not been established due to the difficulty of the treating of the mass flux permeating through the moving membrane with selective permeability. In the existing methods for the mass transfer across the membrane, the approximate delta function is used to communicate the quantities on the interface. The methods can reproduce the permeation of the solute, but cannot reproduce the non-permeation. Moreover, the computational accuracy decreases with decreasing of the permeable coefficient of the membrane. This study aims to develop the numerical method capable of treating three-dimensional problems of mass transfer across the moving flexible membrane. One of the authors developed the numerical method with high accuracy based on the finite element method. This method can capture the discontinuity on the membrane sharply due to the consideration of the jumps in concentration and concentration gradient in the finite element discretization. The formulation of the method takes into account the membrane movement, and both permeable and non-permeable membranes can be treated. However, searching the cross points of the membrane and fluid element boundaries and splitting the fluid element into sub-elements are needed for the numerical integral. Therefore, cumbersome operation is required for a three-dimensional problem. In this paper, we proposed an improved method to avoid the search and split operations, and confirmed its effectiveness. The membrane shape was treated implicitly by introducing the level set function. As the construction of the level set function, the membrane shape in one fluid element was expressed by the shape function of the finite element method. By the numerical experiment, it was found that the shape function with third order appropriately reproduces the membrane shapes. The same level of accuracy compared with the previous method using search and split operations was achieved by using a number of sampling points of the numerical integral. The effectiveness of the method was confirmed by solving several model problems.Keywords: finite element method, level set method, mass transfer, membrane permeability
Procedia PDF Downloads 2504418 Numerical Study of Natural Convection in a Triangular Enclosure as an Attic for Different Geometries and Boundary Conditions
Authors: H. Golchoobian, S. Saedodin, M. H. Taheri, A. Sarafraz
Abstract:
In this paper, natural convection in an attic is numerically investigated. The geometry of the problem is considered to be a triangular enclosure. ANSYS Fluent software is used for modeling and numerical solution. This study is for steady state. Four right-angled triangles with height to base ratios of 2, 1, 0.5 and 0.25 are considered. The behavior of various parameters related to its performance, including temperature distribution and velocity vectors are evaluated, and graphs for the Nusselt number have been drawn. Also, in this study, the effect of geometric shape of enclosure with different height-to-base ratios has been evaluated for three types of boundary conditions of winter, summer day and one another state. It can be concluded that as the bottom side temperature and ratio of base to height of the enclosure increases, the convective effects become more prominent and circulation happened.Keywords: enclosure, natural convection, numerical solution, Nusselt number, triangular
Procedia PDF Downloads 1974417 Computational Fluid Dynamics Simulations of Thermal and Flow Fields inside a Desktop Personal Computer Cabin
Authors: Mohammad Salehi, Mohammad Erfan Doraki
Abstract:
In this paper, airflow analysis inside a desktop computer case is performed by simulating computational fluid dynamics. The purpose is to investigate the cooling process of the central processing unit (CPU) with thermal capacities of 80 and 130 watts. The airflow inside the computer enclosure, selected from the microATX model, consists of the main components of heat production such as CPU, hard disk drive, CD drive, floppy drive, memory card and power supply unit; According to the amount of thermal power produced by the CPU with 80 and 130 watts of power, two different geometries have been used for a direct and radial heat sink. First, the independence of the computational mesh and the validation of the solution were performed, and after ensuring the correctness of the numerical solution, the results of the solution were analyzed. The simulation results showed that changes in CPU temperature and other components linearly increased with increasing CPU heat output. Also, the ambient air temperature has a significant effect on the maximum processor temperature.Keywords: computational fluid dynamics, CPU cooling, computer case simulation, heat sink
Procedia PDF Downloads 1224416 A Numerical Solution Based on Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem
Authors: Rajeev, N. K. Raigar
Abstract:
In this study, one dimensional phase change problem (a Stefan problem) is considered and a numerical solution of this problem is discussed. First, we use similarity transformation to convert the governing equations into ordinary differential equations with its boundary conditions. The solutions of ordinary differential equation with the associated boundary conditions and interface condition (Stefan condition) are obtained by using a numerical approach based on operational matrix of differentiation of shifted second kind Chebyshev wavelets. The obtained results are compared with existing exact solution which is sufficiently accurate.Keywords: operational matrix of differentiation, similarity transformation, shifted second kind chebyshev wavelets, stefan problem
Procedia PDF Downloads 4024415 Biases in Numerically Invariant Joint Signatures
Authors: Reza Aghayan
Abstract:
This paper illustrates that numerically invariant joint signatures suffer biases in the resulting signatures. Next, we classify the arising biases as Bias Type 1 and Bias Type 2 and show how they can be removed.Keywords: Euclidean and affine geometries, differential invariant signature curves, numerically invariant joint signatures, numerical analysis, numerical bias, curve analysis
Procedia PDF Downloads 5974414 Health Risk Assessment of Exposing to Benzene in Office Building around a Chemical Industry Based on Numerical Simulation
Authors: Majid Bayatian, Mohammadreza Ashouri
Abstract:
Releasing hazardous chemicals is one of the major problems for office buildings in the chemical industry and, therefore, environmental risks are inherent to these environments. The adverse health effects of the airborne concentration of benzene have been a matter of significant concern, especially in oil refineries. The chronic and acute adverse health effects caused by benzene exposure have attracted wide attention. Acute exposure to benzene through inhalation could cause headaches, dizziness, drowsiness, and irritation of the skin. Chronic exposures have reported causing aplastic anemia and leukemia at the occupational settings. Association between chronic occupational exposure to benzene and the development of aplastic anemia and leukemia were documented by several epidemiological studies. Numerous research works have investigated benzene emissions and determined benzene concentration at different locations of the refinery plant and stated considerable health risks. The high cost of industrial control measures requires justification through lifetime health risk assessment of exposed workers and the public. In the present study, a Computational Fluid Dynamics (CFD) model has been proposed to assess the exposure risk of office building around a refinery due to its release of benzene. For simulation, GAMBIT, FLUENT, and CFD Post software were used as pre-processor, processor, and post-processor, and the model was validated based on comparison with experimental results of benzene concentration and wind speed. Model validation results showed that the model is highly validated, and this model can be used for health risk assessment. The simulation and risk assessment results showed that benzene could be dispersion to an office building nearby, and the exposure risk has been unacceptable. According to the results of this study, a validated CFD model, could be very useful for decision-makers for control measures and possibly support them for emergency planning of probable accidents. Also, this model can be used to assess exposure to various types of accidents as well as other pollutants such as toluene, xylene, and ethylbenzene in different atmospheric conditions.Keywords: health risk assessment, office building, Benzene, numerical simulation, CFD
Procedia PDF Downloads 1294413 A Comparative Study between FEM and Meshless Methods
Authors: Jay N. Vyas, Sachin Daxini
Abstract:
Numerical simulation techniques are widely used now in product development and testing instead of expensive, time-consuming and sometimes dangerous laboratory experiments. Numerous numerical methods are available for performing simulation of physical problems of different engineering fields. Grid based methods, like Finite Element Method, are extensively used in performing various kinds of static, dynamic, structural and non-structural analysis during product development phase. Drawbacks of grid based methods in terms of discontinuous secondary field variable, dealing fracture mechanics and large deformation problems led to development of a relatively a new class of numerical simulation techniques in last few years, which are popular as Meshless methods or Meshfree Methods. Meshless Methods are expected to be more adaptive and flexible than Finite Element Method because domain descretization in Meshless Method requires only nodes. Present paper introduces Meshless Methods and differentiates it with Finite Element Method in terms of following aspects: Shape functions used, role of weight function, techniques to impose essential boundary conditions, integration techniques for discrete system equations, convergence rate, accuracy of solution and computational effort. Capabilities, benefits and limitations of Meshless Methods are discussed and concluded at the end of paper.Keywords: numerical simulation, Grid-based methods, Finite Element Method, Meshless Methods
Procedia PDF Downloads 3894412 Dynamic Analysis and Vibration Response of Thermoplastic Rolling Elements in a Rotor Bearing System
Authors: Nesrine Gaaliche
Abstract:
This study provides a finite element dynamic model for analyzing rolling bearing system vibration response. The vibration responses of polypropylene bearings with and without defects are studied using FE analysis and compared to experimental data. The viscoelastic behavior of thermoplastic is investigated in this work to evaluate the influence of material flexibility and damping viscosity. The vibrations are detected using 3D dynamic analysis. Peak vibrations are more noticeable in an inner ring defect than in an outer ring defect, according to test data. The performance of thermoplastic bearings is compared to that of metal parts using vibration signals. Both the test and numerical results show that Polypropylene bearings exhibit less vibration than steel counterparts. Unlike bearings made from metal, polypropylene bearings absorb vibrations and handle shaft misalignments. Following validation of the overall vibration spectrum data, Von Mises stresses inside the rings are assessed under high loads. Stress is significantly high under the balls, according to the simulation findings. For the test cases, the computational findings correspond closely to the experimental results.Keywords: viscoelastic, FE analysis, polypropylene, bearings
Procedia PDF Downloads 1044411 Control of a Plane Jet Spread by Tabs at the Nozzle Exit
Authors: Makito Sakai, Takahiro Kiwata, Takumi Awa, Hiroshi Teramoto, Takaaki Kono, Kuniaki Toyoda
Abstract:
Using experimental and numerical results, this paper describes the effects of tabs on the flow characteristics of a plane jet at comparatively low Reynolds numbers while focusing on the velocity field and the vortical structure. The flow visualization and velocity measurements were respectively carried out using laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). In addition, three-dimensional (3D) plane jet numerical simulations were performed using ANSYS Fluent, a commercially available computational fluid dynamics (CFD) software application. We found that the spreads of jets perturbed by large delta tabs and round tabs were larger than those produced by the other tabs tested. Additionally, it was determined that a plane jet with square tabs had the smallest jet spread downstream, and the jet’s centerline velocity was larger than those of jets perturbed by the other tabs tested. It was also observed that the spanwise vortical structure of a plane jet with tabs disappeared completely. Good agreement was found between the experimental and numerical simulation velocity profiles in the area near the nozzle exit when the laminar flow model was used. However, we also found that large eddy simulation (LES) is better at predicting the developing flow field of a plane jet than the laminar and the standard k-ε turbulent models.Keywords: plane jet, flow control, tab, flow measurement, numerical simulation
Procedia PDF Downloads 3344410 Geomechanical Technologies for Assessing Three-Dimensional Stability of Underground Excavations Utilizing Remote-Sensing, Finite Element Analysis, and Scientific Visualization
Authors: Kwang Chun, John Kemeny
Abstract:
Light detection and ranging (LiDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease of use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of a three-dimensional numerical model that can be used in a geotechnical stability analysis such as FEM or DEM. To date, however, straightforward techniques in reconstructing the numerical model from the scanned data of the underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating all the various processes, from LiDAR scanning to finite element numerical analysis. The study focuses on converting LiDAR 3D point clouds of geologic structures containing complex surface geometries into a finite element model. This methodology has been applied to Kartchner Caverns in Arizona, where detailed underground and surface point clouds can be used for the analysis of underground stability. Numerical simulations were performed using the finite element code Abaqus and presented by 3D computing visualization solution, ParaView. The results are useful in studying the stability of all types of underground excavations including underground mining and tunneling.Keywords: finite element analysis, LiDAR, remote-sensing, scientific visualization, underground stability
Procedia PDF Downloads 1734409 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing
Authors: Saqib Aziz, Brad Alexander, Christoph Gengnagel, Stefan Weinzierl
Abstract:
This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full-scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the building information modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit, the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models, which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.Keywords: acoustical design, additive manufacturing, computational design, multimodal optimization
Procedia PDF Downloads 1574408 The Development of a New Block Method for Solving Stiff ODEs
Authors: Khairil I. Othman, Mahfuzah Mahayaddin, Zarina Bibi Ibrahim
Abstract:
We develop and demonstrate a computationally efficient numerical technique to solve first order stiff differential equations. This technique is based on block method whereby three approximate points are calculated. The Cholistani of varied step sizes are presented in divided difference form. Stability regions of the formulae are briefly discussed in this paper. Numerical results show that this block method perform very well compared to existing methods.Keywords: block method, divided difference, stiff, computational
Procedia PDF Downloads 4284407 Seismic Retrofit of Rectangular Columns Using Fiber Reinforced Polymers
Authors: E. L. Elghazy, A. M. Sanad, M. G. Ghoneim
Abstract:
Over the past two decades research has shown that fiber reinforced polymers can be efficiently, economically and safely used for strengthening and rehabilitation of reinforced concrete (RC) structures. Designing FRP confined concrete columns requires reliable analytical tools that predict the level of performance and ductility enhancement. A numerical procedure is developed aiming at determining the type and thickness of FRP jacket needed to achieve a certain level of ductility enhancement. The procedure starts with defining the stress strain curve, which is used to obtain moment curvature relationship then displacement ductility ratio of reinforced concrete cross-sections subjected to bending moment and axial force. Three sets of published experimental tests were used to validate the numerical procedure. Comparisons between predicted results obtained by using the proposed procedure and actual results of experimental tests proved the reliability of the proposed procedure.Keywords: columns, confinement, ductility, FRP, numerical
Procedia PDF Downloads 448