Search results for: hydrological characteristic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1663

Search results for: hydrological characteristic

1333 Climate Change Impact on Water Resources above the Territory of Georgia

Authors: T. Davitashvili

Abstract:

At present impact of global climate change on the territory of Georgia is evident at least on the background of the Caucasus glaciers melting which during the last century have decreased to half their size. Glaciers are early indicators of ongoing global and regional climate change. Knowledge of the Caucasus glaciers fluctuation (melting) is an extremely necessary tool for planning hydro-electric stations and water reservoir, for development tourism and agriculture, for provision of population with drinking water and for prediction of water supplies in more arid regions of Georgia. Otherwise, the activity of anthropogenic factors has resulted in decreasing of the mowing, arable, unused lands, water resources, shrubs and forests, owing to increasing the production and building. Transformation of one type structural unit into another one has resulted in local climate change and its directly or indirectly impacts on different components of water resources on the territory of Georgia. In the present paper, some hydrological specifications of Georgian water resources and its potential pollutants on the background of regional climate change are presented. Some results of Georgian’s glaciers pollution and its melting process are given. The possibility of surface and subsurface water pollution owing to accidents at oil pipelines or railway routes are discussed. The specific properties of regional climate warming process in the eastern Georgia are studied by statistical methods. The effect of the eastern Georgian climate change upon water resources is investigated.

Keywords: climate, droughts, pollution, water resources

Procedia PDF Downloads 458
1332 Internal Cycles from Hydrometric Data and Variability Detected Through Hydrological Modelling Results, on the Niger River, over 1901-2020

Authors: Salif Koné

Abstract:

We analyze hydrometric data at the Koulikoro station on the Niger River; this basin drains 120600 km2 and covers three countries in West Africa, Guinea, Mali, and Ivory Coast. Two subsequent decadal cycles are highlighted (1925-1936 and 1929-1939) instead of the presumed single decadal one from literature. Moreover, the observed hydrometric data shows a multidecadal 40-year period that is confirmed when graphing a spatial coefficient of variation of runoff over decades (starting at 1901-1910). Spatial runoff data are produced on 48 grids (0.5 degree by 0.5 degree) and through semi-distributed versions of both SimulHyd model and GR2M model - variants of a French Hydrologic model – standing for Genie Rural of 2 parameters at monthly time step. Both extremal decades in terms of runoff coefficient of variation are confronted: 1951-1960 has minimal coefficient of variation, and 1981-1990 shows the maximal value of it during the three months of high-water level (August, September, and October). The mapping of the relative variation of these two decadal situations allows hypothesizing as following: the scale of variation between both extremal situations could serve to fix boundary conditions for further simulations using data from climate scenario.

Keywords: internal cycles, hydrometric data, niger river, gr2m and simulhyd framework, runoff coefficient of variation

Procedia PDF Downloads 72
1331 The Challenge of Characterising Drought Risk in Data Scarce Regions: The Case of the South of Angola

Authors: Natalia Limones, Javier Marzo, Marcus Wijnen, Aleix Serrat-Capdevila

Abstract:

In this research we developed a structured approach for the detection of areas under the highest levels of drought risk that is suitable for data-scarce environments. The methodology is based on recent scientific outcomes and methods and can be easily adapted to different contexts in successive exercises. The research reviews the history of drought in the south of Angola and characterizes the experienced hazard in the episode from 2012, focusing on the meteorological and the hydrological drought types. Only global open data information coming from modeling or remote sensing was used for the description of the hydroclimatological variables since there is almost no ground data in this part of the country. Also, the study intends to portray the socioeconomic vulnerabilities and the exposure to the phenomenon in the region to fully understand the risk. As a result, a map of the areas under the highest risk in the south of the country is produced, which is one of the main outputs of this work. It was also possible to confirm that the set of indicators used revealed different drought vulnerability profiles in the South of Angola and, as a result, several varieties of priority areas prone to distinctive impacts were recognized. The results demonstrated that most of the region experienced a severe multi-year meteorological drought that triggered an unprecedent exhaustion of the surface water resources, and that the majority of their socioeconomic impacts started soon after the identified onset of these processes.

Keywords: drought risk, exposure, hazard, vulnerability

Procedia PDF Downloads 174
1330 Parallel Asynchronous Multi-Splitting Methods for Differential Algebraic Systems

Authors: Malika Elkyal

Abstract:

We consider an iterative parallel multi-splitting method for differential algebraic equations. The main feature of the proposed idea is to use the asynchronous form. We prove that the multi-splitting technique can effectively accelerate the convergent performance of the iterative process. The main characteristic of an asynchronous mode is that the local algorithm does not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays to be substantial and unpredictable. Accordingly, we note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.

Keywords: parallel methods, asynchronous mode, multisplitting, differential algebraic equations

Procedia PDF Downloads 533
1329 RBS Characteristic of Cd1−xZnxS Thin Film Fabricated by Vacuum Deposition Method

Authors: N. Dahbi, D. E. Arafah

Abstract:

Cd1−xZnxS thins films have been fabricated from ZnS/CdS/ZnS multilayer thin film systems, by using the vacuum deposition method; the Rutherford back-scattering (RBS) technique have been applied in order to determine the: structure, composition, depth profile, and stoichiometric of these films. The influence of the chemical and heat treatments on the produced films also have been investigated; the RBS spectra of the films showed that homogenous Cd1−xZnxS can be synthesized with x=0.45.

Keywords: Cd1−xZnxS, chemical treatment, depth profile, heat treatment, RBS, RUMP simulation, thin film, vacuum deposition, ZnS/CdS/ZnS

Procedia PDF Downloads 203
1328 An Investigation of Vegetable Oils as Potential Insulating Liquid

Authors: Celal Kocatepe, Eyup Taslak, Celal Fadil Kumru, Oktay Arikan

Abstract:

While choosing insulating oil, characteristic features such as thermal cooling, endurance, efficiency and being environment-friendly should be considered. Mineral oils are referred as petroleum-based oil. In this study, vegetable oils investigated as an alternative insulating liquid to mineral oil. Dissipation factor, breakdown voltage, relative dielectric constant and resistivity changes with the frequency and voltage of mineral, rapeseed and nut oils were measured. Experimental studies were performed according to ASTM D924 and IEC 60156 standards.

Keywords: breakdown voltage, dielectric dissipation factor, mineral oil, vegetable oils

Procedia PDF Downloads 671
1327 Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence

Authors: H. Mazouz, A. Belghachi, F. Hadjaj

Abstract:

Solar cells used in orbit are exposed to radiation environment mainly protons and high energy electrons. These particles degrade the output parameters of the solar cell. The aim of this work is to characterize the effects of electron irradiation fluence on the J (V) characteristic and output parameters of gaAs solar cell by numerical simulation. The results obtained demonstrate that the electron irradiation-induced degradation of performances of the cells concerns mainly the short circuit current.

Keywords: gaAs solar cell, MeV electron irradiation, irradiation fluence, short circuit

Procedia PDF Downloads 439
1326 Understanding Regional Circulations That Modulate Heavy Precipitations in the Kulfo Watershed

Authors: Tesfay Mekonnen Weldegerima

Abstract:

Analysis of precipitation time series is a fundamental undertaking in meteorology and hydrology. The extreme precipitation scenario of the Kulfo River watershed is studied using wavelet analysis and atmospheric transport, a lagrangian trajectory model. Daily rainfall data for the 1991-2020 study periods are collected from the office of the Ethiopian Meteorology Institute. Meteorological fields on a three-dimensional grid at 0.5o x 0.5o spatial resolution and daily temporal resolution are also obtained from the Global Data Assimilation System (GDAS). Wavelet analysis of the daily precipitation processed with the lag-1 coefficient reveals some high power recurred once every 38 to 60 days with greater than 95% confidence for red noise. The analysis also identified inter-annual periodicity in the periods 2002 - 2005 and 2017 - 2019. Back trajectory analysis for 3-day periods up to May 19/2011, indicates the Indian Ocean source; trajectories crossed the eastern African escarpment to arrive at the Kulfo watershed. Atmospheric flows associated with the Western Indian monsoon redirected by the low-level Somali winds and Arabian ridge are responsible for the moisture supply. The time-localization of the wavelet power spectrum yields valuable hydrological information, and the back trajectory approaches provide useful characterization of air mass source.

Keywords: extreme precipitation events, power spectrum, back trajectory, kulfo watershed

Procedia PDF Downloads 49
1325 Assessing the Impact of Human Behaviour on Water Resource Systems Performance: A Conceptual Framework

Authors: N. J. Shanono, J. G. Ndiritu

Abstract:

The poor performance of water resource systems (WRS) has been reportedly linked to not only climate variability and the water demand dynamics but also human behaviour-driven unlawful activities. Some of these unlawful activities that have been adversely affecting water sector include unauthorized water abstractions, water wastage behaviour, refusal of water re‐use measures, excessive operational losses, discharging untreated or improperly treated wastewater, over‐application of chemicals by agricultural users and fraudulent WRS operation. Despite advances in WRS planning, operation, and analysis incorporating such undesirable human activities to quantitatively assess their impact on WRS performance remain elusive. This study was then inspired by the need to develop a methodological framework for WRS performance assessment that integrates the impact of human behaviour with WRS performance assessment analysis. We, therefore, proposed a conceptual framework for assessing the impact of human behaviour on WRS performance using the concept of socio-hydrology. The framework identifies and couples four major sources of WRS-related values (water values, water systems, water managers, and water users) using three missing links between human and water in the management of WRS (interactions, outcomes, and feedbacks). The framework is to serve as a database for choosing relevant social and hydrological variables and to understand the intrinsic relations between the selected variables to study a specific human-water problem in the context of WRS management.

Keywords: conceptual framework, human behaviour; socio-hydrology; water resource systems

Procedia PDF Downloads 110
1324 The Used of Ceramic Stove Cover and It’s Gap to the Efficiency of Water Boiling System

Authors: Agung Sugeng Widodo

Abstract:

Water boiling system (WBS) using conventional gas stove (CGS) is relatively inefficient unless its mechanism being considered. In this study, an addition of ceramic stove cover (CSC) to a CGS and the gap between CSC and pan have been assessed. Parameters as energy produced by fuel, CSC temperature and water temperature were used to analyze the performance of a CGS. The gaps were varied by 1 – 7 mm in a step of 1 mm. The results showed that a CSC able to increase the performance of a CGS significantly. In certain fuel rate of 0.75 l/m, the efficiency of a CGS obtained in a gap of 4 mm. The best efficiency obtained in this study was 46.4 % due to the optimum condition that achieved simultaneously in convection and radiation heat transfer processes of the heating system. CSC also indicated a good characteristic for covering heat release at the initially of WBS.

Keywords: WBS, CSC, CGS, efficiency, gap

Procedia PDF Downloads 246
1323 An Improvement of a Dynamic Model of the Secondary Sedimentation Tank and Field Validation

Authors: Zahir Bakiri, Saci Nacefa

Abstract:

In this paper a comparison in made between two models, with and without dispersion term, and focused on the characterization of the movement of the sludge blanket in the secondary sedimentation tank using the solid flux theory and the velocity settling. This allowed us develop a one-dimensional models, with and without dispersion based on a thorough experimental study carried out in situ and the application of online data which are the mass load flow, transfer concentration, and influent characteristic. On the other hand, in the proposed model, the new settling velocity law (double-exponential function) used is based on the Vesilind function.

Keywords: wastewater, activated sludge, sedimentation, settling velocity, settling models

Procedia PDF Downloads 365
1322 Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India

Authors: Ajai Singh

Abstract:

Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models.

Keywords: SWAT, RBNN, SUFI 2, bootstrap technique, stream flow, simulation

Procedia PDF Downloads 333
1321 Three-Dimensional Fluid-Structure-Thermal Coupling Dynamics Simulation Model of a Gas-Filled Fluid-Resistance Damper and Experimental Verification

Authors: Wenxue Xu

Abstract:

Fluid resistance damper is an important damping element to attenuate vehicle vibration. It converts vibration energy into thermal energy dissipation through oil throttling. It is a typical fluid-solid-heat coupling problem. A complete three-dimensional flow-structure-thermal coupling dynamics simulation model of a gas-filled fluid-resistance damper was established. The flow-condition-based interpolation (FCBI) method and direct coupling calculation method, the unit's FCBI-C fluid numerical analysis method and iterative coupling calculation method are used to achieve the damper dynamic response of the piston rod under sinusoidal excitation; the air chamber inflation pressure, spring compression characteristics, constant flow passage cross-sectional area and oil parameters, etc. The system parameters, excitation frequency, and amplitude and other excitation parameters are analyzed and compared in detail for the effects of differential pressure characteristics, velocity characteristics, flow characteristics and dynamic response of valve opening, floating piston response and piston rod output force characteristics. Experiments were carried out on some simulation analysis conditions. The results show that the node-based FCBI (flow-condition-based interpolation) fluid numerical analysis method and direct coupling calculation method can better guarantee the conservation of flow field calculation, and the calculation step is larger, but the memory is also larger; if the chamber inflation pressure is too low, the damper will become cavitation. The inflation pressure will cause the speed characteristic hysteresis to increase, and the sealing requirements are too strict. The spring compression characteristics have a great influence on the damping characteristics of the damper, and reasonable damping characteristic needs to properly design the spring compression characteristics; the larger the cross-sectional area of the constant flow channel, the smaller the maximum output force, but the more stable when the valve plate is opening.

Keywords: damper, fluid-structure-thermal coupling, heat generation, heat transfer

Procedia PDF Downloads 125
1320 Synthesis of the Robust Regulators on the Basis of the Criterion of the Maximum Stability Degree

Authors: S. A. Gayvoronsky, T. A. Ezangina

Abstract:

The robust control system objects with interval-undermined parameters is considers in this paper. Initial information about the system is its characteristic polynomial with interval coefficients. On the basis of coefficient estimations of quality indices and criterion of the maximum stability degree, the methods of synthesis of a robust regulator parametric is developed. The example of the robust stabilization system synthesis of the rope tension is given in this article.

Keywords: interval polynomial, controller synthesis, analysis of quality factors, maximum degree of stability, robust degree of stability, robust oscillation, system accuracy

Procedia PDF Downloads 278
1319 A Spatio-Temporal Analysis and Change Detection of Wetlands in Diamond Harbour, West Bengal, India Using Normalized Difference Water Index

Authors: Lopita Pal, Suresh V. Madha

Abstract:

Wetlands are areas of marsh, fen, peat land or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres. The rapidly expanding human population, large scale changes in land use/land cover, burgeoning development projects and improper use of watersheds all has caused a substantial decline of wetland resources in the world. Major degradations have been impacted from agricultural, industrial and urban developments leading to various types of pollutions and hydrological perturbations. Regular fishing activities and unsustainable grazing of animals are degrading the wetlands in a slow pace. The paper focuses on the spatio-temporal change detection of the area of the water body and the main cause of this depletion. The total area under study (22°19’87’’ N, 88°20’23’’ E) is a wetland region in West Bengal of 213 sq.km. The procedure used is the Normalized Difference Water Index (NDWI) from multi-spectral imagery and Landsat to detect the presence of surface water, and the datasets have been compared of the years 2016, 2006 and 1996. The result shows a sharp decline in the area of water body due to a rapid increase in the agricultural practices and the growing urbanization.

Keywords: spatio-temporal change, NDWI, urbanization, wetland

Procedia PDF Downloads 262
1318 Dielectrophoretic Characterization of Tin Oxide Nanowires for Biotechnology Application

Authors: Ahmad Sabry Mohamad, Kai F. Hoettges, Michael Pycraft Hughes

Abstract:

This study investigates nanowires using Dielectrophoresis (DEP) in non-aqueous suspension of Tin (IV) Oxide (SnO2) nanoparticles dispersed in N,N-dimenthylformamide (DMF). The self assembly of nanowires in DEP impedance spectroscopy can be determined. In this work, dielectrophoretic method was used to measure non-organic molecules for estimating the permittivity and conductivity characteristic of the nanowires. As in aqueous such as salt solution has been dominating the transport of SnO2, which are the wire growth threshold, depend on applied voltage. While DEP assembly of nanowires depend on applied frequency, the applications of dielectrophoretic collection are measured using impedance spectroscopy.

Keywords: dielectrophoresis, impedance spectroscopy, nanowires, N, N-dimenthylformamide, SnO2

Procedia PDF Downloads 631
1317 River Offtake Management Using Mathematical Modelling Tool: A Case Study of the Gorai River, Bangladesh

Authors: Sarwat Jahan, Asker Rajin Rahman

Abstract:

Management of offtake of any fluvial river is very sensitive in terms of long-term sustainability where the variation of water flow and sediment transport range are wide enough throughout a hydrological year. The Gorai River is a major distributary of the Ganges River in Bangladesh and is termed as a primary source of fresh water for the South-West part of the country. Every year, significant siltation of the Gorai offtake disconnects it from the Ganges during the dry season. As a result, the socio-economic and environmental condition of the downstream areas has been deteriorating for a few decades. To improve the overall situation of the Gorai offtake and its dependent areas, a study has been conducted by the Institute of Water Modelling, Bangladesh, in 2022. Using the mathematical morphological modeling tool MIKE 21C of DHI Water & Environment, Denmark, simulated results revealed the need for dredging/river training structures for offtake management at the Gorai offtake to ensure significant dry season flow towards the downstream. The dry season flow is found to increase significantly with the proposed river interventions, which also improves the environmental conditions in terms of salinity of the South-West zone of the country. This paper summarizes the primary findings of the analyzed results of the developed mathematical model for improving the existing condition of the Gorai River.

Keywords: Gorai river, mathematical modelling, offtake, siltation, salinity

Procedia PDF Downloads 69
1316 Flood Risk Management in the Semi-Arid Regions of Lebanon - Case Study “Semi Arid Catchments, Ras Baalbeck and Fekha”

Authors: Essam Gooda, Chadi Abdallah, Hamdi Seif, Safaa Baydoun, Rouya Hdeib, Hilal Obeid

Abstract:

Floods are common natural disaster occurring in semi-arid regions in Lebanon. This results in damage to human life and deterioration of environment. Despite their destructive nature and their immense impact on the socio-economy of the region, flash floods have not received adequate attention from policy and decision makers. This is mainly because of poor understanding of the processes involved and measures needed to manage the problem. The current understanding of flash floods remains at the level of general concepts; most policy makers have yet to recognize that flash floods are distinctly different from normal riverine floods in term of causes, propagation, intensity, impacts, predictability, and management. Flash floods are generally not investigated as a separate class of event but are rather reported as part of the overall seasonal flood situation. As a result, Lebanon generally lacks policies, strategies, and plans relating specifically to flash floods. Main objective of this research is to improve flash flood prediction by providing new knowledge and better understanding of the hydrological processes governing flash floods in the East Catchments of El Assi River. This includes developing rainstorm time distribution curves that are unique for this type of study region; analyzing, investigating, and developing a relationship between arid watershed characteristics (including urbanization) and nearby villages flow flood frequency in Ras Baalbeck and Fekha. This paper discusses different levels of integration approach¬es between GIS and hydrological models (HEC-HMS & HEC-RAS) and presents a case study, in which all the tasks of creating model input, editing data, running the model, and displaying output results. The study area corresponds to the East Basin (Ras Baalbeck & Fakeha), comprising nearly 350 km2 and situated in the Bekaa Valley of Lebanon. The case study presented in this paper has a database which is derived from Lebanese Army topographic maps for this region. Using ArcMap to digitizing the contour lines, streams & other features from the topographic maps. The digital elevation model grid (DEM) is derived for the study area. The next steps in this research are to incorporate rainfall time series data from Arseal, Fekha and Deir El Ahmar stations to build a hydrologic data model within a GIS environment and to combine ArcGIS/ArcMap, HEC-HMS & HEC-RAS models, in order to produce a spatial-temporal model for floodplain analysis at a regional scale. In this study, HEC-HMS and SCS methods were chosen to build the hydrologic model of the watershed. The model then calibrated using flood event that occurred between 7th & 9th of May 2014 which considered exceptionally extreme because of the length of time the flows lasted (15 hours) and the fact that it covered both the watershed of Aarsal and Ras Baalbeck. The strongest reported flood in recent times lasted for only 7 hours covering only one watershed. The calibrated hydrologic model is then used to build the hydraulic model & assessing of flood hazards maps for the region. HEC-RAS Model is used in this issue & field trips were done for the catchments in order to calibrated both Hydrologic and Hydraulic models. The presented models are a kind of flexible procedures for an ungaged watershed. For some storm events it delivers good results, while for others, no parameter vectors can be found. In order to have a general methodology based on these ideas, further calibration and compromising of results on the dependence of many flood events parameters and catchment properties is required.

Keywords: flood risk management, flash flood, semi arid region, El Assi River, hazard maps

Procedia PDF Downloads 463
1315 Optimal Allocation of Battery Energy Storage Considering Stiffness Constraints

Authors: Felipe Riveros, Ricardo Alvarez, Claudia Rahmann, Rodrigo Moreno

Abstract:

Around the world, many countries have committed to a decarbonization of their electricity system. Under this global drive, converter-interfaced generators (CIG) such as wind and photovoltaic generation appear as cornerstones to achieve these energy targets. Despite its benefits, an increasing use of CIG brings several technical challenges in power systems, especially from a stability viewpoint. Among the key differences are limited short circuit current capacity, inertia-less characteristic of CIG, and response times within the electromagnetic timescale. Along with the integration of CIG into the power system, one enabling technology for the energy transition towards low-carbon power systems is battery energy storage systems (BESS). Because of the flexibility that BESS provides in power system operation, its integration allows for mitigating the variability and uncertainty of renewable energies, thus optimizing the use of existing assets and reducing operational costs. Another characteristic of BESS is that they can also support power system stability by injecting reactive power during the fault, providing short circuit currents, and delivering fast frequency response. However, most methodologies for sizing and allocating BESS in power systems are based on economic aspects and do not exploit the benefits that BESSs can offer to system stability. In this context, this paper presents a methodology for determining the optimal allocation of battery energy storage systems (BESS) in weak power systems with high levels of CIG. Unlike traditional economic approaches, this methodology incorporates stability constraints to allocate BESS, aiming to mitigate instability issues arising from weak grid conditions with low short-circuit levels. The proposed methodology offers valuable insights for power system engineers and planners seeking to maintain grid stability while harnessing the benefits of renewable energy integration. The methodology is validated in the reduced Chilean electrical system. The results show that integrating BESS into a power system with high levels of CIG with stability criteria contributes to decarbonizing and strengthening the network in a cost-effective way while sustaining system stability. This paper potentially lays the foundation for understanding the benefits of integrating BESS in electrical power systems and coordinating their placements in future converter-dominated power systems.

Keywords: battery energy storage, power system stability, system strength, weak power system

Procedia PDF Downloads 39
1314 Simulation of Uniaxial Ratcheting Behaviors of SA508-3 Steel at Elevated Temperature

Authors: Jun Tian, Yu Yang, Liping Zhang, Qianhua Kan

Abstract:

Experimental results show that SA 508-3 steel exhibits temperature dependent cyclic softening characteristic and obvious ratcheting behaviors, and dynamic strain age was observed at temperature range of 200 ºC to 350 ºC. Based on these observations, a temperature dependent cyclic plastic constitutive model was proposed by introducing the nonlinear cyclic softening and kinematic hardening rules, and the dynamic strain age was also considered into the constitutive model. Comparisons between experiments and simulations were carried out to validate the proposed model at elevated temperature.

Keywords: constitutive model, elevated temperature, ratcheting, SA 508-3

Procedia PDF Downloads 281
1313 Impact of Air Pollution and Climate on the Incidence of Emergency Interventions in Slavonski Brod

Authors: Renata Josipovic, Ante Cvitkovic

Abstract:

Particulate matter belongs to pollutants that can lead to respiratory problems or premature death due to exposure (long-term, short-term) to these substances, all depending on the severity of the effects. The importance of the study is to determine whether the existing climatic conditions in the period from January 1st to August 31st, 2018 increased the number of emergency interventions in Slavonski Brod with regard to pollutants hydrogen sulfide and particles less than 10 µm (PM10) and less than 2.5 µm (PM2.5). Analytical data of the concentration of pollutants are collected from the Croatian Meteorological and Hydrological Service, which monitors the operation of two meteorological stations in Slavonski Brod, as well as climatic conditions. Statistics data of emergency interventions were collected from the Emergency Medicine Department of Slavonski Brod. All data were compared (air pollution, emergency interventions) according to climatic conditions (air humidity and air temperature) and statistically processed. Statistical significance, although weak positive correlation PM2.5 (correlation coefficient 0.147; p = 0.036), determined PM10 (correlation coefficient 0.122; p = 0.048), hydrogen sulfide (correlation coefficient 0.141; p = 0.035) with max. temperature (correlation coefficient 0.202; p = 0.002) with number of interventions. The association between mean air humidity was significant but negative (correlation coefficient - 0.172; p = 0.007). The values of the influence of air pressure are not determined. As the problem of air pollution is very complex, coordinated action at many levels is needed to reduce air pollution in Slavonski Brod and consequences that can affect human health.

Keywords: emergency interventions, human health, hydrogen sulfide, particulate matter

Procedia PDF Downloads 139
1312 'When 2 + 2 = 5: Synergistic Effects of HRM Practices on the Organizational Performance'

Authors: Qura-tul-aain Khair, Mohtsham Saeed

Abstract:

Synergy is a main characteristic of human resource management (HRM) system. It highlights the hidden characteristics of HRM system. This research paper has empirically tested that internally consistent and complementary HR practices/components in the HR system are more able to predict and enhance the organizational performance than the sum of individual practice. The data was collected from the sample of 109 firm respondents of service industry through convenience sampling technique. The major finding of this research highlighted that configurational approach to synergy or the HRM system as a whole has an ability to enhance the organizational performance more than by the sum of individual HRM practices of HRM system. Hence, confirming that the whole is greater than the sum of individual parts.

Keywords: internally consistant HRM practices, synergistic effects, horizontal fit, vertical fit

Procedia PDF Downloads 331
1311 A Mathematical Model for Hepatitis B Virus Infection and the Impact of Vaccination on Its Dynamics

Authors: T. G. Kassem, A. K. Adunchezor, J. P. Chollom

Abstract:

This paper describes a mathematical model developed to predict the dynamics of Hepatitis B virus (HBV) infection and to evaluate the potential impact of vaccination and treatment on its dynamics. We used a compartmental model expressed by a set of differential equations based on the characteristic of HBV transmission. With these, we find the threshold quantity R0, then find the local asymptotic stability of disease free equilibrium and endemic equilibrium. Furthermore, we find the global stability of the disease free and endemic equilibrium.

Keywords: hepatitis B virus, epidemiology, vaccination, mathematical model

Procedia PDF Downloads 302
1310 Soil-Vegetation Relationship in the Watersheds of the Tonga and OubeïRa Lakes, Algeria

Authors: Nafaa Zaafour

Abstract:

Located at the north eastern of Algeria, the National Park of El-Kala (PNEK) is a set of landscapes whose bioclimatic stages of vegetation extend from sub-humid to humid. In order to know the soil occupation in this complex, an initiated ecological soil cartography using a stratified sampling plan of vegetation had made, the study area occupies two-thirds of the northern National Park of El Kala, it has been divided into 380 plots of 1km2 of which, 76 were the subject of a detailed floristic inventory and sampling of soils. The inventory of vegetation carried out on different sites has allowed identifying several plant groups that share the soil cover with the following distribution: The group of cork oak, this formation occupies the biggest part of the area, it develops mainly on Incepttisols, Alfisols and Mollisols; The group of kermes oak, occupies a large area, it grows on Mollisols and Alfisols; The group of maritime pine, it occupies the same soils as the Kermes Oak; The group of Mirbeck oak, installed on Regosols, it is located in the Eastern part, on the Algerian-Tunisian border; The group of eucalyptus, it grows mainly on Inceptisols, Mollisols of, and Vertisols; The group of wetland, it grows along the banks of lakes and rivers, which primarily develops on Histosols soil Mollisols and Vertisols; The cultures, distributed mainly around the lakes occupy several soil types on Histosols, the Inceptisols, Mollisols of, and Vertisols. This great diversity of vegetation is linked not only to the soil variability but also to climate, hydrological and geological variability.

Keywords: Algeria, cartography, soil, vegetation

Procedia PDF Downloads 355
1309 Review of Theories and Applications of Genetic Programing in Sediment Yield Modeling

Authors: Adesoji Tunbosun Jaiyeola, Josiah Adeyemo

Abstract:

Sediment yield can be considered to be the total sediment load that leaves a drainage basin. The knowledge of the quantity of sediments present in a river at a particular time can lead to better flood capacity in reservoirs and consequently help to control over-bane flooding. Furthermore, as sediment accumulates in the reservoir, it gradually loses its ability to store water for the purposes for which it was built. The development of hydrological models to forecast the quantity of sediment present in a reservoir helps planners and managers of water resources systems, to understand the system better in terms of its problems and alternative ways to address them. The application of artificial intelligence models and technique to such real-life situations have proven to be an effective approach of solving complex problems. This paper makes an extensive review of literature relevant to the theories and applications of evolutionary algorithms, and most especially genetic programming. The successful applications of genetic programming as a soft computing technique were reviewed in sediment modelling and other branches of knowledge. Some fundamental issues such as benchmark, generalization ability, bloat and over-fitting and other open issues relating to the working principles of GP, which needs to be addressed by the GP community were also highlighted. This review aim to give GP theoreticians, researchers and the general community of GP enough research direction, valuable guide and also keep all stakeholders abreast of the issues which need attention during the next decade for the advancement of GP.

Keywords: benchmark, bloat, generalization, genetic programming, over-fitting, sediment yield

Procedia PDF Downloads 421
1308 Condensation of Vapor in the Presence of Non-Condensable Gas on a Vertical Tube

Authors: Shengjun Zhang, Xu Cheng, Feng Shen

Abstract:

The passive containment cooling system (PCCS) is widely used in the advanced nuclear reactor in case of the loss of coolant accident (LOCA) and the main steam line break accident (MSLB). The internal heat exchanger is one of the most important equipment in the PCCS and its heat transfer characteristic determines the performance of the system. In this investigation, a theoretical model is presented for predicting the heat and mass transfer which accompanies condensation. The conduction through the liquid condensate is considered and the interface temperature is defined by iteration. The parameter in the correlation to describe the suction effect should be further determined through experimental data.

Keywords: non-condensable gas, condensation, heat transfer coefficient, heat and mass transfer analogy

Procedia PDF Downloads 326
1307 Variability of the Snowline Altitude at Different Region in the Eastern Tibetan Plateau in Recent 20 Years

Authors: Zhen Li, Chang Liu, Ping Zhang

Abstract:

These Glaciers are thought of as natural water reservoirs and are of vital importance to hydrological models and industrial production, and glacial changes act as significant indicators of climate change. The glacier snowline can be used as an indicator of the equilibrium line, which may be a key parameter to study the effect of climate change on glaciers. Using Google Earth Engine, we select optical satellite imageries and implement the Otsu thresholding method on a near-infrared band to detect snowline altitudes (SLAs) of 26 glaciers in three regions of the eastern Tibetan Plateau. Three different study regions in the eastern Tibetan Plateau have different climate regimes, which are Sepu Kangri (SK, maritime glacier), Bu’Gyai Kangri (BK, continental glacier) and west of Qiajajima (WQ, continental glacier), along a latitudinal transect from south to north. We analyzed the effects of climatic factors on the SLA changes from 1995 to 2016. SLAs are fluctuating upward, and the rising values are 100 m, 60 m, and 34 m from south to north during the 22 years. We also observed that the climatic factor that affects the variability of SLA gradually changes from precipitation to temperature from south to north. The northern continental glaciers are mainly affected by temperature, and the southern maritime glaciers affected by precipitation. Owing to the influence of primary climatic factors, continental glaciers are found to have higher SLAs on the south slope, while maritime glaciers have higher SLAs on the north slope.

Keywords: climate change, glacier, snowline altitude, tibetan plateau

Procedia PDF Downloads 134
1306 Projections of Climate Change in the Rain Regime of the Ibicui River Basin

Authors: Claudineia Brazil, Elison Eduardo Bierhals, Francisco Pereira, José Leandro Néris, Matheus Rippel, Luciane Salvi

Abstract:

The global concern about climate change has been increasing, since the emission of gases from human activities contributes to the greenhouse effect in the atmosphere, indicating significant impacts to the planet in the coming years. The study of precipitation regime is fundamental for the development of research in several areas. Among them are hydrology, agriculture, and electric sector. Using the climatic projections of the models belonging to the CMIP5, the main objective of the paper was to present an analysis of the impacts of climate change without rainfall in the Uruguay River basin. After an analysis of the results, it can be observed that for the future climate, there is a tendency, in relation to the present climate, for larger numbers of dry events, mainly in the winter months, changing the pluviometric regime for wet summers and drier winters. Given this projected framework, it is important to note the importance of adequate management of the existing water sources in the river basin, since the value of rainfall is reduced for the next years, it may compromise the dynamics of the ecosystems in the region. Facing climate change is fundamental issue for regions and cities all around the world. Society must improve its resilience to phenomenon impacts, and spreading the knowledge among decision makers and citizens is also essential. So, these research results can be subsidies for the decision-making in planning and management of mitigation measures and/or adaptation in south Brazil.

Keywords: climate change, hydrological potential, precipitation, mitigation

Procedia PDF Downloads 322
1305 Thermal Effect in Power Electrical for HEMTs Devices with InAlN/GaN

Authors: Zakarya Kourdi, Mohammed Khaouani, Benyounes Bouazza, Ahlam Guen-Bouazza, Amine Boursali

Abstract:

In this paper, we have evaluated the thermal effect for high electron mobility transistors (HEMTs) heterostructure InAlN/GaN with a gate length 30nm high-performance. It also shows the analysis and simulated these devices, and how can be used in different application. The simulator Tcad-Silvaco software has used for predictive results good for the DC, AC and RF characteristic, Devices offered max drain current 0.67A; transconductance is 720 mS/mm the unilateral power gain of 180 dB. A cutoff frequency of 385 GHz, and max frequency 810 GHz These results confirm the feasibility of using HEMTs with InAlN/GaN in high power amplifiers, as well as thermal places.

Keywords: HEMT, Thermal Effect, Silvaco, InAlN/GaN

Procedia PDF Downloads 442
1304 Marine Propeller Cavitation Analysis Using BEM

Authors: Ehsan Yari

Abstract:

In this paper, a numerical study of sheet cavitation has been performed on DTMB4119 and E779A marine propellers with the boundary element method. In propeller design, various parameters of geometry and fluid are incorporated. So a program is needed to solve the flow taking the whole parameters changing into account. The capability of analyzing the wetted and cavitation flow around propellers in steady, unsteady, uniform, and non-uniform conditions while decreasing computational time compared to numerical finite volume methods with acceptable precision are the characteristic features of the present method. Moreover, modifying the position of the detachment point and its corresponding potential value has been considered. Numerical results have been validated with experimental data, showing a good conformation.

Keywords: cavitation, BEM, DTMB4119, E779A

Procedia PDF Downloads 43