Search results for: fuel cell electric vehicles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6912

Search results for: fuel cell electric vehicles

6582 An Explorative Research on the Electric and Electronic Officers Employment: Turkish Flagged Ship's Perspective

Authors: Mehmet Yahsi, Ozkan Ugurlu, Ercan Yuksekyildiz

Abstract:

Assistant department among the electric and electronic officers on ships, has an important place for the maintenance of electric and electronic devices. From this perspective, ships must be employed with a sufficient number of assistant department. In this study, in order to research on the Turkish-flagged ships electric and electronic officers employment; Our national manning regulation compared with international regulations. The data used in this study were collected via visiting of the ships. 3000 gross tonnage and above engaged in international voyages 181 Turkish-flagged ship’s crew lists were compared with Minimum Safety Manning Certificates. According to the findings; employment rate, %54 electric and electronic officers. According to the results of the study; Turkish-flagged ships, although it is not obliged to electric and electronic officers, were employed on ships.

Keywords: manning, electric officer, electronic officer, minimum safety manning certificate

Procedia PDF Downloads 419
6581 An Autopilot System for Static Zone Detection

Authors: Yanchun Zuo, Yingao Liu, Wei Liu, Le Yu, Run Huang, Lixin Guo

Abstract:

Electric field detection is important in many application scenarios. The traditional strategy is measuring the electric field with a man walking around in the area under test. This strategy cannot provide a satisfactory measurement accuracy. To solve the mentioned problem, an autopilot measurement system is divided. A mini-car is produced, which can travel in the area under test according to respect to the program within the CPU. The electric field measurement platform (EFMP) carries a central computer, two horn antennas, and a vector network analyzer. The mini-car stop at the sampling points according to the preset. When the car stops, the EFMP probes the electric field and stores data on the hard disk. After all the sampling points are traversed, an electric field map can be plotted. The proposed system can give an accurate field distribution description of the chamber.

Keywords: autopilot mini-car measurement system, electric field detection, field map, static zone measurement

Procedia PDF Downloads 86
6580 Enhanced Modification Effect of CeO2 on Pt-Pd Binary Catalysts for Formic Acid Oxidation

Authors: Azeem Ur Rehman, Asma Tayyaba

Abstract:

This article deals with the promotional effects of CeO2 on PtPd/CeO2-OMC electro catalysts. The synthesized catalysts are characterized using different physico chemical techniques and evaluated in a formic acid oxidation fuel cell. N2 adsorption/desorption analysis shows that CeO2 modification increases the surface area of OMC from 1005 m2/g to 1119 m2/g. SEM, XRD and TEM analysis reveal that the presence of CeO2 enhances the active metal(s) dispersion on the CeO2-OMC surface. The average particle size of the dispersed metal decreases with the increase of Pt/Pd ratio on CeO2-OMC support. Cyclic voltametry measurement of Pd/CeO2-OMC gives 12 % higher anodic current activity with 83 mV negative shift of the peak potential as compared to unmodified Pd/OMC. In bimetallic catalysts, the addition of Pt improves the activity and stability of the catalysts significantly. Among the bimetallic samples, Pd3Pt1/CeO2-OMC displays superior current density (74.6 mA/cm2), which is 28.3 times higher than that of Pt/CeO2-OMC. It also shows higher stability in extended period of runs with least indication of CO poisoning effects.

Keywords: CeO2, ordered mesoporous carbon (OMC), electro catalyst, formic acid fuel cell

Procedia PDF Downloads 475
6579 Porosities Comparison between Production and Simulation in Motorcycle Fuel Caps of Aluminum High Pressure Die Casting

Authors: P. Meethum, C. Suvanjumrat

Abstract:

Many aluminum motorcycle parts produced by a high pressure die casting. Some parts such as fuel caps were a thin and complex shape. This part risked for porosities and blisters on surface if it only depended on an experience of mold makers for mold design. This research attempted to use CAST-DESIGNER software simulated the high pressure die casting process with the same process parameters of a motorcycle fuel cap production. The simulated results were compared with fuel cap products and expressed the same porosity and blister locations on cap surface. An average of absolute difference of simulated results was obtained 0.094 mm when compared the simulated porosity and blister defect sizes on the fuel cap surfaces with the experimental micro photography. This comparison confirmed an accuracy of software and will use the setting parameters to improve fuel cap molds in the further work.

Keywords: aluminum, die casting, fuel cap, motorcycle

Procedia PDF Downloads 351
6578 Effect of Electric Stimulation on Characteristic Changes in Hot-Boned Beef Brisket of Different Potential Tenderness

Authors: Orose Rugchati, Kanita Thanacharoenchanaphas, Sarawut Wattanawongpitak

Abstract:

In this study, the effect of electric stimulation on the quality of hot-boned beef brisket muscles was evaluated, including the tenderness, pH, temperature change, and colorant. Muscles were obtained from steers in the local slaughter house. (3 steers for each muscle), removed from the carcasses 4-hour postmortem and variable time to treated with direct current electric 1 and 5 minutes, respectively. Six different electric intensities (direct current voltage of 50, 70 and 90 Volt, pulse with 10, 20 and 40 ms) plus a control were applied to each muscle to determine the optimum treatment conditions. Hot-boned beef brisket was found to get tender with increasing treatment direct current voltage and reduction in the shear force with pulsed with electric treatment. But in a long time to treated with electric current get fading in red color and temperature increase whereas pH quite different compared to non-treated control samples.

Keywords: electric stimulation, characteristic changes, hot-boned beef brisket, potential tenderness

Procedia PDF Downloads 323
6577 Impact Analysis of Transportation Modal Shift on Regional Energy Consumption and Environmental Level: Focused on Electric Automobiles

Authors: Hong Bae Kim, Chang Ho Hur

Abstract:

Many governments have tried to reduce CO2 emissions which are believed to be the main cause for global warming. The deployment of electric automobiles is regarded as an effective way to reduce CO2 emissions. The Korean government has planned to deploy about 200,000 electric automobiles. The policy for the deployment of electric automobiles aims at not only decreasing gasoline consumption but also increasing electricity production. However, if an electricity consuming regions is not consistent with an electricity producing region, the policy generates environmental problems between regions. Hence, this paper has established the energy multi-region input-output model to specifically analyze the impacts of the deployment of electric automobiles on regional energy consumption and CO2 emissions. Finally, the paper suggests policy directions regarding the deployment of electric automobiles.

Keywords: electric automobiles, CO2 emissions, regional imbalances in electricity production and consumption, energy multi-region input-output model

Procedia PDF Downloads 284
6576 Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes

Authors: Barun Chakrabarti, Dan Nir, Vladimir Yufit, P. V. Aravind, Nigel Brandon

Abstract:

Fuel cell grade gas-diffusion layer carbon paper (CP) electrodes are subjected to electrophoresis in N,N’-dimethylformamide (DMF) consisting of reduced graphene oxide (rGO). The rGO modified electrodes are compared with CP in a single asymmetric all-vanadium redox battery system (employing a double serpentine flow channel for each half-cell). Peak power densities improved by 4% when the rGO deposits were facing the ion-exchange membrane (cell performance was poorer when the rGO was facing the flow field). Cycling of the cells showed least degradation of the CP electrodes that were coated with rGO in comparison to pristine samples.

Keywords: all-vanadium redox flow batteries, carbon paper electrodes, electrophoretic deposition, reduced graphene oxide

Procedia PDF Downloads 211
6575 Electrical Properties of Roystonea regia Fruit Extract as Dye Sensitized Solar Cells

Authors: Adenike Boyo Olasunkanmi Kesinro, Henry Boyo, Surukite Oluwole

Abstract:

Utilizing solar energy in producing electricity can minimize environmental pollution generated by fossil fuel in producing electricity. Our research was base on the extraction of dye from Roystonea regia fruit by using methanol as solvent. The dye extracts were used as sensitizers in Dye-sensitized solar cell (DSSCs). Study was done on the electrical properties from the extracts of Roystonea regia fruit as Dye-sensitized solar cell (DSSCs). The absorptions of the extracts and extracts with dye were determined at different wavelengths (350-1000nm). Absorption peak was observed at 1.339 at wavelength 400nm. The obtained values for methanol extract Roystonea regia extract are, Imp = 0.015mA, Vmp = 12.0mV, fill factor = 0.763, Isc= 0.018 mA and Voc = 13.1 mV and efficiency of 0.32%. .The phytochemical screening was taken and it was observed that Roystonea regia extract contained less of anthocyanin compared to flavonoids. The nanostructured dye sensitized solar cell (DSSC) will provide economically credible alternative to present day silicon p–n junction photovoltaic.

Keywords: methanol, ethanol, titanium dioxide, roystonea regia fruit, dye-sensitized solar cell

Procedia PDF Downloads 389
6574 Study of Dual Fuel Engine as Environmentally Friendly Engine

Authors: Nilam S. Octaviani, Semin

Abstract:

The diesel engine is an internal combustion engine that uses compressed air to combust. The diesel engines are widely used in the world because it has the most excellent combustion efficiency than other types of internal combustion engine.  However, the exhaust emissions of it produce pollutants that are harmful to human health and the environment. Therefore, natural gas used as an alternative fuel using on compression ignition engine to respond those environment issues. This paper aims to discuss the comparison of the technical characteristics and exhaust gases emission from conventional diesel engine and dual fuel diesel engine. According to the study, the dual fuel engine applications have a lower compression pressure and has longer ignition delay compared with normal diesel mode. The engine power is decreased at dual fuel mode. However, the exhaust gases emission on dual fuel engine significantly reduce the nitrogen oxide (NOx), carbon dioxide (CO2) and particular metter (PM) emissions.

Keywords: diesel engine, dual fuel diesel engine, emission reduction, technical characteristics

Procedia PDF Downloads 287
6573 An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models

Authors: C. F. Kumru, C. Kocatepe, O. Arikan

Abstract:

In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained.

Keywords: electric field, energy transmission line, finite element method, pylon

Procedia PDF Downloads 712
6572 Hydrogel Hybridizing Temperature-Cured Dissolvable Gelatin Microspheres as Non-Anchorage Dependent Cell Carriers for Tissue Engineering Applications

Authors: Dong-An Wang

Abstract:

All kinds of microspheres have been extensively employed as carriers for drug, gene and therapeutic cell delivery. Most therapeutic cell delivery microspheres rely on a two-step methodology: fabrication of microspheres and subsequent seeding of cells onto them. In this study, we have developed a novel one-step cell encapsulation technique using a convenient and instant water-in-oil single emulsion approach to form cell-encapsulated gelatin microspheres. This technology is adopted for hyaline cartilage tissue engineering, in which autologous chondrocytes are used as therapeutic cells. Cell viability was maintained throughout and after the microsphere formation (75-100 µm diameters) process that avoids involvement of any covalent bonding reactions or exposure to any further chemicals. Further encapsulation of cell-laden microspheres in alginate gels were performed under 4°C via a prompt process. Upon the formation of alginate constructs, they were immediately relocated into CO2 incubator where the temperature was maintained at 37°C; under this temperature, the cell-laden gelatin microspheres dissolved within hours to yield similarly sized cavities and the chondrocytes were therefore suspended within the cavities inside the alginate gel bulk. Hence, the gelatin cell-laden microspheres served two roles: as cell delivery vehicles which can be removable through temperature curing, and as porogens within an alginate hydrogel construct to provide living space for cell growth and tissue development as well as better permeability for mutual diffusions. These cell-laden microspheres, namely “temperature-cured dissolvable gelatin microsphere based cell carriers” (tDGMCs), were further encapsulated in a chondrocyte-laden alginate scaffold system and analyzed by WST-1, gene expression analyses, biochemical assays, histology and immunochemistry stains. The positive results consistently demonstrated the promise of tDGMC technology in delivering these non-anchorage dependent cells (chondrocytes). It can be further conveniently translated into delivery of other non-anchorage dependent cell species, including stem cells, progenitors or iPS cells, for regeneration of tissues in internal organs, such as engineered hepatogenesis or pancreatic regeneration.

Keywords: biomaterials, tissue engineering, microsphere, hydrogel, porogen, anchorage dependence

Procedia PDF Downloads 373
6571 Long Term Evolution Multiple-Input Multiple-Output Network in Unmanned Air Vehicles Platform

Authors: Ashagrie Getnet Flattie

Abstract:

Line-of-sight (LOS) information, data rates, good quality, and flexible network service are limited by the fact that, for the duration of any given connection, they experience severe variation in signal strength due to fading and path loss. Wireless system faces major challenges in achieving wide coverage and capacity without affecting the system performance and to access data everywhere, all the time. In this paper, the cell coverage and edge rate of different Multiple-input multiple-output (MIMO) schemes in 20 MHz Long Term Evolution (LTE) system under Unmanned Air Vehicles (UAV) platform are investigated. After some background on the enormous potential of UAV, MIMO, and LTE in wireless links, the paper highlights the presented system model which attempts to realize the various benefits of MIMO being incorporated into UAV platform. The performances of the three MIMO LTE schemes are compared with the performance of 4x4 MIMO LTE in UAV scheme carried out to evaluate the improvement in cell radius, BER, and data throughput of the system in different morphology. The results show that significant performance gains such as bit error rate (BER), data rate, and coverage can be achieved by using the presented scenario.

Keywords: LTE, MIMO, path loss, UAV

Procedia PDF Downloads 259
6570 A Green Process for Drop-In Liquid Fuels from Carbon Dioxide, Water, and Solar Energy

Authors: Jian Yu

Abstract:

Carbo dioxide (CO2) from fossil fuel combustion is a prime green-house gas emission. It can be mitigated by microalgae through conventional photosynthesis. The algal oil is a feedstock of biodiesel, a carbon neutral liquid fuel for transportation. The conventional CO2 fixation, however, is quite slow and affected by the intermittent solar irradiation. It is also a technical challenge to reform the bio-oil into a drop-in liquid fuel that can be directly used in the modern combustion engines with expected performance. Here, an artificial photosynthesis system is presented to produce a biopolyester and liquid fuels from CO2, water, and solar power. In this green process, solar energy is captured using photovoltaic modules and converted into hydrogen as a stable energy source via water electrolysis. The solar hydrogen is then used to fix CO2 by Cupriavidus necator, a hydrogen-oxidizing bacterium. Under the autotrophic conditions, CO2 was reduced to glyceraldehyde-3-phosphate (G3P) that is further utilized for cell growth and biosynthesis of polyhydroxybutyrate (PHB). The maximum cell growth rate reached 10.1 g L-1 day-1, about 25 times faster than that of a typical bio-oil-producing microalga (Neochloris Oleoabundans) under stable indoor conditions. With nitrogen nutrient limitation, a large portion of the reduced carbon is stored in PHB (C4H6O2)n, accounting for 50-60% of dry cell mass. PHB is a biodegradable thermoplastic that can find a variety of environmentally friendly applications. It is also a platform material from which small chemicals can be derived. At a high temperature (240 - 290 oC), the biopolyester is degraded into crotonic acid (C4H6O2). On a solid phosphoric acid catalyst, PHB is deoxygenated via decarboxylation into a hydrocarbon oil (C6-C18) at 240 oC or so. Aromatics and alkenes are the major compounds, depending on the reaction conditions. A gasoline-grade liquid fuel (77 wt% oil) and a biodiesel-grade fuel (23 wt% oil) were obtained from the hydrocarbon oil via distillation. The formation routes of hydrocarbon oil from crotonic acid, the major PHB degradation intermediate, are revealed and discussed. This work shows a novel green process from which biodegradable plastics and high-grade liquid fuels can be directly produced from carbon dioxide, water and solar power. The productivity of the green polyester (5.3 g L-1 d-1) is much higher than that of microalgal oil (0.13 g L-1 d-1). Other technical merits of the new green process may include continuous operation under intermittent solar irradiation and convenient scale up in outdoor.

Keywords: bioplastics, carbon dioxide fixation, drop-in liquid fuels, green process

Procedia PDF Downloads 170
6569 Preparation and Characterization of CO-Tolerant Electrocatalyst for PEM Fuel Cell

Authors: Ádám Vass, István Bakos, Irina Borbáth, Zoltán Pászti, István Sajó, András Tompos

Abstract:

Important requirements for the anode side electrocatalysts of polymer electrolyte membrane (PEM) fuel cells are CO-tolerance, stability and corrosion resistance. Carbon is still the most common material for electrocatalyst supports due to its low cost, high electrical conductivity and high surface area, which can ensure good dispersion of the Pt. However, carbon becomes degraded at higher potentials and it causes problem during application. Therefore it is important to explore alternative materials with improved stability. Molybdenum-oxide can improve the CO-tolerance of the Pt/C catalysts, but it is prone to leach in acidic electrolyte. The Mo was stabilized by isovalent substitution of molybdenum into the rutile phase titanium-dioxide lattice, achieved by a modified multistep sol-gel synthesis method optimized for preparation of Ti0.7Mo.3O2-C composite. High degree of Mo incorporation into the rutile lattice was developed. The conductivity and corrosion resistance across the anticipated potential/pH window was ensured by mixed oxide – activated carbon composite. Platinum loading was carried out using NaBH4 and ethylene glycol; platinum content was 40 wt%. The electrocatalyst was characterized by both material investigating methods (i.e. XRD, TEM, EDS, XPS techniques) and electrochemical methods (cyclic-voltammetry, COads stripping voltammetry, hydrogen oxidation reaction on rotating disc electrode). The electrochemical activity of the sample was compared to commercial 40 wt% Pt/C (Quintech) and PtRu/C (Quintech, Pt= 20 wt%, Ru= 10 wt%) references. Enhanced CO tolerance of the electrocatalyst prepared using the Ti0.7Mo.3O2-C composite material was evidenced by the appearance of a CO-oxidation related 'pre-peak' and by the pronounced shift of the maximum of the main CO oxidation peak towards less positive potential compared to Pt/C. Fuel cell polarization measurements were also carried out using Bio-Logic and Paxitech FCT-150S test device. All details on the design, preparation, characterization and testing by both electrochemical measurements and fuel cell test device of electrocatalyst supported on Ti0.7Mo.3O2-C composite material will be presented and discussed.

Keywords: anode electrocatalyst, composite material, CO-tolerance, TiMoOx

Procedia PDF Downloads 282
6568 Single-Cell Visualization with Minimum Volume Embedding

Authors: Zhenqiu Liu

Abstract:

Visualizing the heterogeneity within cell-populations for single-cell RNA-seq data is crucial for studying the functional diversity of a cell. However, because of the high level of noises, outlier, and dropouts, it is very challenging to measure the cell-to-cell similarity (distance), visualize and cluster the data in a low-dimension. Minimum volume embedding (MVE) projects the data into a lower-dimensional space and is a promising tool for data visualization. However, it is computationally inefficient to solve a semi-definite programming (SDP) when the sample size is large. Therefore, it is not applicable to single-cell RNA-seq data with thousands of samples. In this paper, we develop an efficient algorithm with an accelerated proximal gradient method and visualize the single-cell RNA-seq data efficiently. We demonstrate that the proposed approach separates known subpopulations more accurately in single-cell data sets than other existing dimension reduction methods.

Keywords: single-cell RNA-seq, minimum volume embedding, visualization, accelerated proximal gradient method

Procedia PDF Downloads 214
6567 The Impact of the Composite Expanded Graphite PCM on the PV Panel Whole Year Electric Output: Case Study Milan

Authors: Hasan A Al-Asadi, Ali Samir, Afrah Turki Awad, Ali Basem

Abstract:

Integrating the phase change material (PCM) with photovoltaic (PV) panels is one of the effective techniques to minimize the PV panel temperature and increase their electric output. In order to investigate the impact of the PCM on the electric output of the PV panels for a whole year, a lumped-distributed parameter model for the PV-PCM module has been developed. This development has considered the impact of the PCM density variation between the solid phase and liquid phase. This contribution will increase the assessment accuracy of the electric output of the PV-PCM module. The second contribution is to assess the impact of the expanded composite graphite-PCM on the PV electric output in Milan for a whole year. The novel one-dimensional model has been solved using MATLAB software. The results of this model have been validated against literature experiment work. The weather and the solar radiation data have been collected. The impact of expanded graphite-PCM on the electric output of the PV panel for a whole year has been investigated. The results indicate this impact has an enhancement rate of 2.39% for the electric output of the PV panel in Milan for a whole year.

Keywords: PV panel efficiency, PCM, numerical model, solar energy

Procedia PDF Downloads 155
6566 Phase Equilibria in the Ln-Sr-Co-O Systems

Authors: Anastasiia Maklakova

Abstract:

The perovskite type oxides formed in the Ln-Me-Me/-O systems (where Ln – rare-earth, Me – alkaline earth metal, Me/ - 3-d metal) have potential applications as gas sensors, catalysts or cathode materials for IT-SOFCs due to the high values of mixed electronic -ionic conductivity and high oxygen diffusivity. Complex oxides in the Sr-(Pr,Gd)-Co-O systems were prepared via the glycerol-nitrate technique The phase composition was determined using a Shimadzu XRD-7000 diffractometer at room temperature in air. Phase identification was performed using the ICDD database. The structure was refined by the full-profile Rietveld method using Fullprof 2008 software. Gradual substitution of strontium by Pr or Gd leads to the decrease of unit cell parameters and unit cell volume that can be explained by the size factor. An introduction of Pr or Gd into the strontium cobaltite increases the oxygen content in samples.

Keywords: phase equilibria, crystal structure, oxygen nonstoichiometry, solid oxide fuel cell

Procedia PDF Downloads 101
6565 Analysis of Road Accidents in India 2016 to 2021

Authors: Ajin Frank J., Shridevi Jeevan Kamble

Abstract:

The primary objective of this research paper is to identify significant patterns and insights in road accident data in India spanning from 2016 to 2021. The study reveals that the frequency of accidents, injuries, and fatalities varies depending on numerous factors such as the type of vehicle, time of accidents, age of the vehicle, age and gender of the driver, among others. Notably, the COVID-19 pandemic and subsequent lockdown measures have significantly impacted these figures. One of the key findings of the analysis is the rise in the number of accidents and deaths involving two-wheeler vehicles, particularly among younger individuals, in major states across India. This trend is of concern, and there is a need for increased awareness and precautions to prevent these types of accidents. Additionally, with the imminent rise of electric vehicles in the coming years, ensuring their safety on the road is a critical matter. Another significant factor contributing to road accidents is the age of vehicles. As vehicles age, their handling becomes more challenging compared to new ones, increasing the risk of accidents. Thus, it is imperative for the government to impose stringent regulations and laws to reduce these accident-causing factors and raise awareness among individuals about taking necessary precautions to avoid accidents. This study highlights the importance of understanding the underlying patterns and factors contributing to road accidents in India. Through this knowledge, policymakers and stakeholders can develop effective strategies to address these challenges and promote road safety, ultimately reducing the number of accidents, injuries, and fatalities on Indian roads.

Keywords: road accidents, India, road safety, accident deaths

Procedia PDF Downloads 70
6564 Biogas as a Renewable Energy Fuel: A Review of Biogas Upgrading, Utilization and Storage

Authors: Imran Ullah Khana, Mohd Hafiz Dzarfan Othmanb, Haslenda Hashima, Takeshi Matsuurad, A.F. Ismailb, M. Rezaei-DashtArzhandib, I. Wan Azelee

Abstract:

Biogas upgrading is a widely studied and discussed topic, and its utilization as a natural gas substitute has gained significant attention in recent years. The production of biomethane provides a versatile application in both heat and power generation and as a vehicular fuel. This paper systematically reviews the state of the art of biogas upgrading technologies with upgrading efficiency, methane (CH4) loss, environmental effect, development and commercialization, and challenges in terms of energy consumption and economic assessment. The market situation for biogas upgrading has changed rapidly in recent years, giving membrane separation a significant market share with traditional biogas upgrading technologies. In addition, the potential utilization of biogas, efficient conversion into bio-compressed natural gas (bio-CNG), and storage systems are investigated in depth. Two storing systems for bio-CNG at filling stations, namely buffer and cascade storage systems are used. The best storage system should be selected on the basis of the advantages of both systems. Also, the fuel economy and mass emissions for bio-CNG and CNG-filled vehicles are studied. There is the same fuel economy and less carbon dioxide (CO2) emission for bio-CNG. Based on the results of comparisons between the technical features of upgrading technologies, various specific requirements for biogas utilization and the relevant investment, and operating and maintenance costs, future recommendations are made for biogas upgrading.

Keywords: biogas upgrading, cost, utilization, bio-CNG, storage, energy

Procedia PDF Downloads 32
6563 Air–Water Two-Phase Flow Patterns in PEMFC Microchannels

Authors: Ibrahim Rassoul, A. Serir, E-K. Si Ahmed, J. Legrand

Abstract:

The acronym PEM refers to Proton Exchange Membrane or alternatively Polymer Electrolyte Membrane. Due to its high efficiency, low operating temperature (30–80 °C), and rapid evolution over the past decade, PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause “flooding” (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The experimental transparent fuel cell used in this work was designed to represent actual full scale of fuel cell geometry. According to the operating conditions, a number of flow regimes may appear in the microchannel: droplet flow, blockage water liquid bridge /plug (concave and convex forms), slug/plug flow and film flow. Some of flow patterns are new, while others have been already observed in PEMFC microchannels. An algorithm in MATLAB was developed to automatically determine the flow structure (e.g. slug, droplet, plug, and film) of detected liquid water in the test microchannels and yield information pertaining to the distribution of water among the different flow structures. A video processing algorithm was developed to automatically detect dynamic and static liquid water present in the gas channels and generate relevant quantitative information. The potential benefit of this software allows the user to obtain a more precise and systematic way to obtain measurements from images of small objects. The void fractions are also determined based on images analysis. The aim of this work is to provide a comprehensive characterization of two-phase flow in an operating fuel cell which can be used towards the optimization of water management and informs design guidelines for gas delivery microchannels for fuel cells and its essential in the design and control of diverse applications. The approach will combine numerical modeling with experimental visualization and measurements.

Keywords: polymer electrolyte fuel cell, air-water two phase flow, gas diffusion layer, microchannels, advancing contact angle, receding contact angle, void fraction, surface tension, image processing

Procedia PDF Downloads 290
6562 Power Generation and Treatment potential of Microbial Fuel Cell (MFC) from Landfill Leachate

Authors: Beenish Saba, Ann D. Christy

Abstract:

Modern day municipal solid waste landfills are operated and controlled to protect the environment from contaminants during the biological stabilization and degradation of the solid waste. They are equipped with liners, caps, gas and leachate collection systems. Landfill gas is passively or actively collected and can be used as bio fuel after necessary purification, but leachate treatment is the more difficult challenge. Leachate, if not recirculated in a bioreactor landfill system, is typically transported to a local wastewater treatment plant for treatment. These plants are designed for sewage treatment, and often charge additional fees for higher strength wastewaters such as leachate if they accept them at all. Different biological, chemical, physical and integrated techniques can be used to treat the leachate. Treating that leachate with simultaneous power production using microbial fuel cells (MFC) technology has been a recent innovation, reported its application in its earliest starting phase. High chemical oxygen demand (COD), ionic strength and salt concentration are some of the characteristics which make leachate an excellent substrate for power production in MFCs. Different materials of electrodes, microbial communities, carbon co-substrates and temperature conditions are some factors that can be optimized to achieve simultaneous power production and treatment. The advantage of the MFC is its dual functionality but lower power production and high costs are the hurdles in its commercialization and more widespread application. The studies so far suggest that landfill leachate MFCs can produce 1.8 mW/m2 with 79% COD removal, while amendment with food leachate or domestic wastewater can increase performance up to 18W/m3 with 90% COD removal. The columbic efficiency is reported to vary between 2-60%. However efforts towards biofilm optimization, efficient electron transport system studies and use of genetic tools can increase the efficiency of the MFC and can determine its future potential in treating landfill leachate.

Keywords: microbial fuel cell, landfill leachate, power generation, MFC

Procedia PDF Downloads 300
6561 Guidance and Control of a Torpedo Autonomous Underwater Vehicle

Authors: Soheil Arash Moghadam, Abdol R. Kashani Nia, Ali Akrami Zade

Abstract:

Considering numerous applications of Autonomous Underwater Vehicles in various industries, there has been plenty of researches and studies on the motion control of such vehicles. One of the useful aspects for studying is the guidance of these vehicles. In this paper, while presenting motion equations with six degrees of freedom for Autonomous Underwater Vehicles, Proportional Navigation Guidance Law and the first order sliding mode control for TAIPAN AUV was used to address its guidance for the purpose of collision with a moving target.

Keywords: Autonomous Underwater Vehicle (AUV), degree of freedom (DOF), hydrodynamic, line of sight(LOS), proportional navigation guidance(PNG), sliding mode control(SMC)

Procedia PDF Downloads 452
6560 Analysis of Electric Mobility in the European Union: Forecasting 2035

Authors: Domenico Carmelo Mongelli

Abstract:

The context is that of great uncertainty in the 27 countries belonging to the European Union which has adopted an epochal measure: the elimination of internal combustion engines for the traction of road vehicles starting from 2035 with complete replacement with electric vehicles. If on the one hand there is great concern at various levels for the unpreparedness for this change, on the other the Scientific Community is not preparing accurate studies on the problem, as the scientific literature deals with single aspects of the issue, moreover addressing the issue at the level of individual countries, losing sight of the global implications of the issue for the entire EU. The aim of the research is to fill these gaps: the technological, plant engineering, environmental, economic and employment aspects of the energy transition in question are addressed and connected to each other, comparing the current situation with the different scenarios that could exist in 2035 and in the following years until total disposal of the internal combustion engine vehicle fleet for the entire EU. The methodologies adopted by the research consist in the analysis of the entire life cycle of electric vehicles and batteries, through the use of specific databases, and in the dynamic simulation, using specific calculation codes, of the application of the results of this analysis to the entire EU electric vehicle fleet from 2035 onwards. Energy balance sheets will be drawn up (to evaluate the net energy saved), plant balance sheets (to determine the surplus demand for power and electrical energy required and the sizing of new plants from renewable sources to cover electricity needs), economic balance sheets (to determine the investment costs for this transition, the savings during the operation phase and the payback times of the initial investments), the environmental balances (with the different energy mix scenarios in anticipation of 2035, the reductions in CO2eq and the environmental effects are determined resulting from the increase in the production of lithium for batteries), the employment balances (it is estimated how many jobs will be lost and recovered in the reconversion of the automotive industry, related industries and in the refining, distribution and sale of petroleum products and how many will be products for technological innovation, the increase in demand for electricity, the construction and management of street electric columns). New algorithms for forecast optimization are developed, tested and validated. Compared to other published material, the research adds an overall picture of the energy transition, capturing the advantages and disadvantages of the different aspects, evaluating the entities and improvement solutions in an organic overall picture of the topic. The results achieved allow us to identify the strengths and weaknesses of the energy transition, to determine the possible solutions to mitigate these weaknesses and to simulate and then evaluate their effects, establishing the most suitable solutions to make this transition feasible.

Keywords: engines, Europe, mobility, transition

Procedia PDF Downloads 50
6559 One-Way Electric Vehicle Carsharing in an Urban Area with Vehicle-To-Grid Option

Authors: Cem Isik Dogru, Salih Tekin, Kursad Derinkuyu

Abstract:

Electric vehicle (EV) carsharing is an alternative method to tackle urban transportation problems. This method can be applied by several options. One of the options is the one-way carsharing, which allow an EV to be taken at a designated location and leaving it on another specified location customer desires. Although it may increase users’ satisfaction, the issues, namely, demand dissatisfaction, relocation of EVs and charging schedules, must be dealt with. Also, excessive electricity has to be stored in batteries of EVs. To cope with aforementioned issues, two-step mixed integer programming (MIP) model is proposed. In first step, the integer programming model is used to determine amount of electricity to be sold to the grid in terms of time periods for extra profit. Determined amounts are provided from the batteries of EVs. Also, this step works in day-ahead electricity markets with forecast of periodical electricity prices. In second step, other MIP model optimizes daily operations of one-way carsharing: charging-discharging schedules, relocation of EVs to serve more demand and renting to maximize the profit of EV fleet owner. Due to complexity of the models, heuristic methods are introduced to attain a feasible solution and different price information scenarios are compared.

Keywords: electric vehicles, forecasting, mixed integer programming, one-way carsharing

Procedia PDF Downloads 117
6558 Regional Analysis of Freight Movement by Vehicle Classification

Authors: Katerina Koliou, Scott Parr, Evangelos Kaisar

Abstract:

The surface transportation of freight is particularly vulnerable to storm and hurricane disasters, while at the same time, it is the primary transportation mode for delivering medical supplies, fuel, water, and other essential goods. To better plan for commercial vehicles during an evacuation, it is necessary to understand how these vehicles travel during an evacuation and determine if this travel is different from the general public. The research investigation used Florida's statewide continuous-count station traffic volumes, where then compared between years, to identify locations where traffic was moving differently during the evacuation. The data was then used to identify days on which traffic was significantly different between years. While the literature on auto-based evacuations is extensive, the consideration of freight travel is lacking. To better plan for commercial vehicles during an evacuation, it is necessary to understand how these vehicles travel during an evacuation and determine if this travel is different from the general public. The goal of this research was to investigate the movement of vehicles by classification, with an emphasis on freight during two major evacuation events: hurricanes Irma (2017) and Michael (2018). The methodology of the research was divided into three phases: data collection and management, spatial analysis, and temporal comparisons. Data collection and management obtained continuous-co station data from the state of Florida for both 2017 and 2018 by vehicle classification. The data was then processed into a manageable format. The second phase used geographic information systems (GIS) to display where and when traffic varied across the state. The third and final phase was a quantitative investigation into which vehicle classifications were statistically different and on which dates statewide. This phase used a two-sample, two-tailed t-test to compare sensor volume by classification on similar days between years. Overall, increases in freight movement between years prevented a more precise paired analysis. This research sought to identify where and when different classes of vehicles were traveling leading up to hurricane landfall and post-storm reentry. Of the more significant findings, the research results showed that commercial-use vehicles may have underutilized rest areas during the evacuation, or perhaps these rest areas were closed. This may suggest that truckers are driving longer distances and possibly longer hours before hurricanes. Another significant finding of this research was that changes in traffic patterns for commercial-use vehicles occurred earlier and lasted longer than changes for personal-use vehicles. This finding suggests that commercial vehicles are perhaps evacuating in a fashion different from personal use vehicles. This paper may serve as the foundation for future research into commercial travel during evacuations and explore additional factors that may influence freight movements during evacuations.

Keywords: evacuation, freight, travel time, evacuation

Procedia PDF Downloads 51
6557 Correlation between Fuel Consumption and Voyage Related Ship Operational Energy Efficiency Measures: An Analysis from Noon Data

Authors: E. Bal Beşikçi, O. Arslan

Abstract:

Fuel saving has become one of the most important issue for shipping in terms of fuel economy and environmental impact. Lowering fuel consumption is possible for both new ships and existing ships through enhanced energy efficiency measures, technical and operational respectively. The limitations of applying technical measures due to the long payback duration raise the potential of operational changes for energy efficient ship operations. This study identifies operational energy efficiency measures related voyage performance management. We use ‘noon’ data to examine the correlation between fuel consumption and operational parameters- revolutions per minute (RPM), draft, trim, (beaufort number) BN and relative wind direction, which are used as measures of ship energy efficiency. The results of this study reveal that speed optimization is the most efficient method as fuel consumption depends heavily on RPM. In conclusion, this study will provide ship operators with the strategic approach for evaluating the priority of the operational energy efficiency measures against high fuel prices and carbon emissions.

Keywords: ship, voyage related operational energy Efficiency measures, fuel consumption, pearson's correlation coefficient

Procedia PDF Downloads 600
6556 Simulation Research of City Bus Fuel Consumption during the CUEDC Australian Driving Cycle

Authors: P. Kacejko, M. Wendeker

Abstract:

The fuel consumption of city buses depends on a number of factors that characterize the technical properties of the bus and driver, as well as traffic conditions. This parameter related to greenhouse gas emissions is regulated by law in many countries. This applies to both fuel consumption and exhaust emissions. Simulation studies are a way to reduce the costs of optimization studies. The paper describes simulation research of fuel consumption city bus driving. Parameters of the developed model are based on experimental results obtained on chassis dynamometer test stand and road tests. The object of the study was a city bus equipped with a compression-ignition engine. The verified model was applied to simulate the behavior of a bus during the CUEDC Australian Driving Cycle. The results of the calculations showed a direct influence of driving dynamics on fuel consumption.

Keywords: Australian Driving Cycle, city bus, diesel engine, fuel consumption

Procedia PDF Downloads 103
6555 Model Evaluation of Thermal Effects Created by Cell Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of very high electric fields (~ 100kV/cm or higher) with pulse durations in the nanosecond range has been a recent development. The electric pulses have been used as tools to generate electroporation which has many biomedical applications. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal gradients that drives for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. Different temperatures are assigned to various regions to simulate the appropriate temperature gradients. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. MD simulation shows no pore is formed in a 10-ns snapshot for a DPPC membrane set at a uniform temperature of 295 K after a 0.4 V/nm electric field is applied. A nano-sized pore is clearly seen in a 10-ns snapshot on the same geometry but with the top and bottom membrane surfaces kept at temperatures of 300 and 295 K, respectively. For the same applied electric field, the formation of nanopores is clearly demonstrated, but only in the presence of a temperature gradient. MD simulation results show enhanced electroporative effects arising from thermal gradients. The study suggests the temperature gradient is a secondary driver, with the electric field being the primary cause for electroporation.

Keywords: nanosecond, electroporation, thermal effects, molecular dynamics

Procedia PDF Downloads 63
6554 Production of Alcohol from Sweet Potato

Authors: Abhishek S. Shete

Abstract:

There is nothing new in the use of alcohol made from root crops as a motor fuel. Alcohol is an excellent alternative motor fuel for petrol engines. The reason alcohol fuel has not been fully exploited is that, up until now; gasoline has been cheap, available, and easy to produce. However, nowadays, crude oil is getting scarce, and the historic price difference between alcohol and gasoline is getting narrower. Alcohol fuel can be an important part of the solution for Rwanda because there is tremendous scope to use bulk production of sweet potato into alcohol. The total sweet potato production in both seasons is found to be 1.607.296 tones/year. The average productivity of sweet potato in the country irrespective of seasons is found to be 8.9 tones/ha. If all of the available agricultural surplus were converted to ethanol, alcohol would supply less than 5% of motor fuel needs.

Keywords: root crops, sweet potato, surplus, alcohol

Procedia PDF Downloads 409
6553 Measurement of Coal Fineness, Air Fuel Ratio, and Fuel Weight Distribution in a Vertical Spindle Mill’s Pulverized Fuel Pipes at Classifier Vane 40%

Authors: Jayasiler Kunasagaram

Abstract:

In power generation, coal fineness is crucial to maintain flame stability, ensure combustion efficiency, and lower emissions to the environment. In order for the pulverized coal to react effectively in the boiler furnace, the size of coal particles needs to be at least 70% finer than 74 μm. This paper presents the experiment results of coal fineness, air fuel ratio and fuel weight distribution in pulverized fuel pipes at classifier vane 40%. The aim of this experiment is to extract the pulverized coal is kinetically and investigate the data accordingly. Dirty air velocity, coal sample extraction, and coal sieving experiments were performed to measure coal fineness. The experiment results show that required coal fineness can be achieved at 40 % classifier vane. However, this does not surpass the desired value by a great margin.

Keywords: coal power, emissions, isokinetic sampling, power generation

Procedia PDF Downloads 592