Search results for: carbon nanotubes network
7444 Zinc Adsorption Determination of H2SO4 Activated Pomegranate Peel
Authors: S. N. Turkmen Koc, A. S. Kipcak, M. B. Piskin, E. Moroydor Derun, N. Tugrul
Abstract:
Active carbon can be obtained from agricultural sources. Due to the high surface area, the production of activated carbon from cheap resources is very important. Since the surface area of 1 g activated carbon is approximately between 300 and 2000 m2, it can be used to remove both organic and inorganic impurities. In this study, the adsorption of Zn metal was studied with the product of activated carbon, which is obtained from pomegranate peel by microwave and chemical activation methods. The microwave process of pomegranate peel was carried out under constant microwave power of 800 W and 1 to 4 minutes. After the microwave process, samples were treated with H2SO4 for 3 h. Then prepared product was used in synthetic waste water including 40 ppm Zn metal. As a result, removal of waste Zn in waste water ranged from 91% to 93%.Keywords: activated carbon, chemical activation, H₂SO₄, microwave, pomegranate peel
Procedia PDF Downloads 1727443 Enhanced Oxygen Reduction Reaction by N-Doped Mesoporous Carbon Nanospheres
Authors: Bita Bayatsarmadi, Shi-Zhang Qiao
Abstract:
The development of ordered mesoporous carbon materials with controllable structures and improved physicochemical properties by doping heteroatoms such as nitrogen into the carbon framework has attracted a lot of attention, especially in relation to energy storage and conversion. Herein, a series of Nitrogen-doped mesoporous carbon spheres (NMC) was synthesized via a facile dual soft-templating procedure by tuning the nitrogen content and carbonization temperature. Various physical and (electro) chemical properties of the NMCs have been comprehensively investigated to pave the way for feasible design of nitrogen-containing porous carbon materials. The optimized sample showed a favorable electrocatalytic activity as evidenced by high kinetic current and positive onset potential for oxygen reduction reaction (ORR) due to its large surface area, high pore volume, good conductivity and high nitrogen content, which make it as a highly efficient ORR metal-free catalyst in alkaline solutions.Keywords: porous carbon, N-doping, oxygen reduction reaction, soft-template
Procedia PDF Downloads 2537442 Bimetallic Cu/Au Nanostructures and Bio-Application
Authors: Si Yin Tee
Abstract:
Bimetallic nanostructures have received tremendous interests as a new class of nanomaterials which may have better technological usefulness with distinct properties from those of individual atoms and molecules or bulk matter. They excelled over the monometallic counterparts because of their improved electronic, optical and catalytic performances. The properties and the applicability of these bimetallic nanostructures not only depend on their size and shape, but also on the composition and their fine structure. These bimetallic nanostructures are potential candidates for bio-applications such as biosensing, bioimaging, biodiagnostics, drug delivery, targeted therapeutics, and tissue engineering. Herein, gold-incorporated copper (Cu/Au) nanostructures were synthesized through the controlled disproportionation of Cu⁺-oleylamine complex at 220 ºC to form copper nanowires and the subsequent reaction with Au³⁺ at different temperatures of 140, 220 and 300 ºC. This is to achieve their synergistic effect through the combined use of the merits of low-cost transition and high-stability noble metals. Of these Cu/Au nanostructures, Cu/Au nanotubes display the best performance towards electrochemical non-enzymatic glucose sensing, originating from the high conductivity of gold and the high aspect ratio copper nanotubes with high surface area so as to optimise the electroactive sites and facilitate mass transport. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose.Keywords: bimetallic, electrochemical sensing, glucose oxidation, gold-incorporated copper nanostructures
Procedia PDF Downloads 5217441 Experimental and Numerical Analysis on Enhancing Mechanical Properties of CFRP Adhesive Joints Using Hybrid Nanofillers
Authors: Qiong Rao, Xiongqi Peng
Abstract:
In this work, multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs) were dispersed into epoxy adhesive to investigate their synergy effects on the shear properties, mode I and mode II fracture toughness of unidirectional composite bonded joints. Testing results showed that the incorporation of MWCNTs and GNPs significantly improved the shear strength, the mode I and mode II fracture toughness by 36.6%, 45% and 286%, respectively. In addition, the fracture surfaces of the bonding area as well as the toughening mechanism of nanofillers were analyzed. Finally, a nonlinear cohesive/friction coupled model for delamination analysis of adhesive layer under shear and normal compression loadings was proposed and implemented in ABAQUS/Explicit via user subroutine VUMAT.Keywords: nanofillers, adhesive joints, fracture toughness, cohesive zone model
Procedia PDF Downloads 1337440 Using Mixed Methods in Studying Classroom Social Network Dynamics
Authors: Nashrawan Naser Taha, Andrew M. Cox
Abstract:
In a multi-cultural learning context, where ties are weak and dynamic, combining qualitative with quantitative research methods may be more effective. Such a combination may also allow us to answer different types of question, such as about people’s perception of the network. In this study the use of observation, interviews and photos were explored as ways of enhancing data from social network questionnaires. Integrating all of these methods was found to enhance the quality of data collected and its accuracy, also providing a richer story of the network dynamics and the factors that shaped these changes over time.Keywords: mixed methods, social network analysis, multi-cultural learning, social network dynamics
Procedia PDF Downloads 5127439 Increasing of Resiliency by Using Gas Storage in Iranian Gas Network
Authors: Mohsen Dourandish
Abstract:
Iran has a huge pipeline network in every state of country which is the longest and vastest pipeline network after Russia and USA (360,000 Km high pressure pipelines and 250,000 Km distribution networks). Furthermore in recent years National Iranian Gas Company is planning to develop natural gas network to cover all cities and villages above 20 families, in a way that 97 percent of Iran population will be gas consumer by 2020. In this condition, network resiliency will be the first priority of NIGC and due to that several planning for increasing resiliency of gas network is under construction. The most important strategy of NIGC is converting tree form pattern network to loop gas networks and developing underground gas storage near main gas consuming centers. In this regard NIGC is planning for construction of over 3500 km high-pressure pipeline and also 10 TCM gas storage capacities in UGSs.Keywords: Iranian gas network, peak shaving, resiliency, underground gas storage
Procedia PDF Downloads 3267438 Effect of Temperature Condition in Extracting Carbon Fibers on Mechanical Properties of Injection Molded Polypropylene Reinforced by Recycled Carbon Fibers
Authors: Shota Nagata, Kazuya Okubo, Toru Fujii
Abstract:
The purpose of this study is to investigate the proper condition in extracting carbon fibers as the reinforcement of composite molded by injection method. Recycled carbon fibers were extracted from wasted CFRP by pyrolyzing epoxy matrix of CFRP under air atmosphere at different temperature conditions 400, 600 and 800°C in this study. Recycled carbon fiber reinforced polypropylene (RCF/PP) pellets were prepared using twin screw extruder. The RCF/PP specimens were molded into dumbbell shaped specimens using injection molding machine. The tensile strength of recycled carbon fiber was decreased with rising pyrolysis temperature from 400 to 800°C. However, superior mechanical properties of tensile strength, tensile modulus and fracture strain of RCF/PP specimen were obtained when the extracting temperature was 600°C. Almost fibers in RCF/PP specimens were aligned in the mold filling direction in this study when the extracting temperature was 600°C. To discuss the results, the failure mechanisms of RCF/PP specimens was shown schematically. Finally, it was concluded that the temperature condition at 600°C should be selected in extracting carbon fibers as the reinforcement of RCF/PP composite molded by injection method.Keywords: CFRP, recycled carbon fiber, injection molding, mechanical properties, fiber orientation, failure mechanism
Procedia PDF Downloads 4467437 Assessing the Impact of Low Carbon Technology Integration on Electricity Distribution Networks: Advancing towards Local Area Energy Planning
Authors: Javier Sandoval Bustamante, Pardis Sheikhzadeh, Vijayanarasimha Hindupur Pakka
Abstract:
In the pursuit of achieving net-zero carbon emissions, the integration of low carbon technologies into electricity distribution networks is paramount. This paper delves into the critical assessment of how the integration of low carbon technologies, such as heat pumps, electric vehicle chargers, and photovoltaic systems, impacts the infrastructure and operation of electricity distribution networks. The study employs rigorous methodologies, including power flow analysis and headroom analysis, to evaluate the feasibility and implications of integrating these technologies into existing distribution systems. Furthermore, the research utilizes Local Area Energy Planning (LAEP) methodologies to guide local authorities and distribution network operators in formulating effective plans to meet regional and national decarbonization objectives. Geospatial analysis techniques, coupled with building physics and electric energy systems modeling, are employed to develop geographic datasets aimed at informing the deployment of low carbon technologies at the local level. Drawing upon insights from the Local Energy Net Zero Accelerator (LENZA) project, a comprehensive case study illustrates the practical application of these methodologies in assessing the rollout potential of LCTs. The findings not only shed light on the technical feasibility of integrating low carbon technologies but also provide valuable insights into the broader transition towards a sustainable and electrified energy future. This paper contributes to the advancement of knowledge in power electrical engineering by providing empirical evidence and methodologies to support the integration of low carbon technologies into electricity distribution networks. The insights gained are instrumental for policymakers, utility companies, and stakeholders involved in navigating the complex challenges of energy transition and achieving long-term sustainability goals.Keywords: energy planning, energy systems, digital twins, power flow analysis, headroom analysis
Procedia PDF Downloads 617436 Magnetic Cellulase/Halloysite Nanotubes as Biocatalytic System for Converting Agro-Waste into Value-Added Product
Authors: Devendra Sillu, Shekhar Agnihotri
Abstract:
The 'nano-biocatalyst' utilizes an ordered assembling of enzyme on to nanomaterial carriers to catalyze desirable biochemical kinetics and substrate selectivity. The current study describes an inter-disciplinary approach for converting agriculture waste, sugarcane bagasse into D-glucose exploiting halloysite nanotubes (HNTs) decorated cellulase enzyme as nano-biocatalytic system. Cellulase was successfully immobilized on HNTs employing polydopamine as an eco-friendly crosslinker while iron oxide nanoparticles were attached to facilitate magnetic recovery of material. The characterization studies (UV-Vis, TEM, SEM, and XRD) displayed the characteristic features of both cellulase and magnetic HNTs in the resulting nanocomposite. Various factors (i.e., working pH, temp., crosslinker conc., enzyme conc.) which may influence the activity of biocatalytic system were investigated. The experimental design was performed using Response Surface Methodology (RSM) for process optimization. Analyses data demonstrated that the nanobiocatalysts retained 80.30% activity even at elevated temperature (55°C) and excellent storage stabilities after 10 days. The repeated usage of system revealed a remarkable consistent relative activity over several cycles. The immobilized cellulase was employed to decompose agro-waste and the maximum decomposition rate of 67.2 % was achieved. Conclusively, magnetic HNTs can serve as a potential support for enzyme immobilization with long term usage, good efficacy, reusability and easy recovery from solution.Keywords: halloysite nanotubes, enzyme immobilization, cellulase, response surface methodology, magnetic recovery
Procedia PDF Downloads 1337435 Dual-Network Memory Model for Temporal Sequences
Authors: Motonobu Hattori
Abstract:
In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudo patterns. Because, temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.Keywords: catastrophic forgetting, dual-network, temporal sequences, hippocampal
Procedia PDF Downloads 2737434 Hydrogen Production Through Thermocatalytic Decomposition of Methane Over Biochar
Authors: Seyed Mohamad Rasool Mirkarimi, David Chiaramonti, Samir Bensaid
Abstract:
Catalytic methane decomposition (CMD, reaction 4) is a one-step process for hydrogen production where carbon in the methane molecule is sequestered in the form of stable and higher-value carbon materials. Metallic catalysts and carbon-based catalysts are two major types of catalysts utilized for the CDM process. Although carbon-based catalysts have lower activity compared to metallic ones, they are less expensive and offer high thermal stability and strong resistance to chemical impurities such as sulfur. Also, it would require less costly separation methods as some of the carbon-based catalysts may not have an active metal component in them. Since the regeneration of metallic catalysts requires burning of the C on their surfaces, which emits CO/CO2, in some cases, using carbon-based catalysts would be recommended because regeneration can be completely avoided, and the catalyst can be directly used in other processes. This work focuses on the effect of biochar as a carbon-based catalyst for the conversion of methane into hydrogen and carbon. Biochar produced from the pyrolysis of poplar wood and activated biochar are used as catalysts for this process. In order to observe the impact of carbon-based catalysts on methane conversion, methane cracking in the absence and presence of catalysts for a gas stream with different levels of methane concentration should be performed. The results of these experiments prove conversion of methane in the absence of catalysts at 900 °C is negligible, whereas in the presence of biochar and activated biochar, significant growth has been observed. Comparing the results of the tests related to using char and activated char shows the enhancement obtained in BET surface area of the catalyst through activation leads to more than 10 vol.% methane conversion.Keywords: hydrogen production, catalytic methane decomposition, biochar, activated biochar, carbon-based catalyts
Procedia PDF Downloads 827433 Hard Carbon Derived From Dextrose as High-Performance Anode Material for Sodium-Ion Batteries
Authors: Rupan Das Chakraborty, Surendra K. Martha
Abstract:
Hard carbons (HCs) are extensively used as anode materials for sodium-ion batteries due to their availability, low cost, and ease of synthesis. It possesses the ability to store Na ion between stacked sp2 carbon layers and micropores. In this work, hard carbons are synthesized from different concentrations (0.5M to 5M) of dextrose solutions by hydrothermal synthesis followed by high-temperature calcination at 1100 ⁰C in an inert atmosphere. Dextrose has been chosen as a precursor material as it is a eco-friendly and renewable source. Among all hard carbon derived from different concentrations of dextrose solutions, hard carbon derived from 3M dextrose solution delivers superior electrochemical performance compared to other hard carbons. Hard carbon derived from 3M dextrose solution (Dextrose derived Hard Carbon-3M) provides an initial reversible capacity of 257 mAh g-1 with a capacity retention of 83 % at the end of 100 cycles at 30 mA g-1). The carbons obtained from different dextrose concentration show very similar Cyclic Voltammetry and chargedischarging behavior at a scan rate of 0.05 mV s-1 the Cyclic Voltammetry curve indicate that solvent reduction and the solid electrolyte interface (SEI) formation start at E < 1.2 V (vs Na/Na+). Among all 3M dextrose derived electrode indicate as a promising anode material for Sodium-ion batteries (SIBs).Keywords: dextrose derived hard carbon, anode, sodium-ion battery, electrochemical performance
Procedia PDF Downloads 1187432 Integrating Knowledge Distillation of Multiple Strategies
Authors: Min Jindong, Wang Mingxia
Abstract:
With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.Keywords: object detection, knowledge distillation, convolutional network, model compression
Procedia PDF Downloads 2787431 Network Coding with Buffer Scheme in Multicast for Broadband Wireless Network
Authors: Gunasekaran Raja, Ramkumar Jayaraman, Rajakumar Arul, Kottilingam Kottursamy
Abstract:
Broadband Wireless Network (BWN) is the promising technology nowadays due to the increased number of smartphones. Buffering scheme using network coding considers the reliability and proper degree distribution in Worldwide interoperability for Microwave Access (WiMAX) multi-hop network. Using network coding, a secure way of transmission is performed which helps in improving throughput and reduces the packet loss in the multicast network. At the outset, improved network coding is proposed in multicast wireless mesh network. Considering the problem of performance overhead, degree distribution makes a decision while performing buffer in the encoding / decoding process. Consequently, BuS (Buffer Scheme) based on network coding is proposed in the multi-hop network. Here the encoding process introduces buffer for temporary storage to transmit packets with proper degree distribution. The simulation results depend on the number of packets received in the encoding/decoding with proper degree distribution using buffering scheme.Keywords: encoding and decoding, buffer, network coding, degree distribution, broadband wireless networks, multicast
Procedia PDF Downloads 4117430 Carbon Footprint of Blowmoulded Plastic Parts-Case Study on Automotive Industry
Authors: Mădălina Elena Mavrodin, Gabriela Andreea Despescu, Gheorghe Lăzăroiu
Abstract:
Long term trend of global warming has brought a very deep interest in climate change, which is due most likely to increasing concentrations of anthropogenic greenhouse gases. 0f these, particular attention is paid to carbon dioxide, which has led in desire for obtaining carbon footprint products. Automotive industry is one of the world’s most important economic sectors with a great impact over the environment through all range of activities. Its impact over the environment has been studied, researcher trying as much as possible to reduce it and to offer environmental friendly solution for the using, but also manufacturing cars. In the global endeavour to meet the international commitments in order to reduce the greenhouse gas emissions, many companies integrate environmental issues into their management systems, with potential effects in their entire production chains. Several tools and calculators have been developed to measure the environmental impact of a product in the life cycle perspective of the whole product chain. There were a lot of ways to obtain the carbon footprint of driving a car, but the total carbon footprint of a car includes also the carbon footprint of all the components and accessories. In the automotive industry, one of the challenges is to calculate the carbon footprint of a car from ‘cradle to grave’; this meaning not only for driving the car, but also manufacturing it, so there can be an overview over the entire process of production.Keywords: carbon footprint, global warming potential, greenhouse gases, manufacture, plastic air ducts
Procedia PDF Downloads 3227429 An intelligent Troubleshooting System and Performance Evaluator for Computer Network
Authors: Iliya Musa Adamu
Abstract:
This paper seeks to develop an expert system that would troubleshoot computer network and evaluate the network system performance so as to reduce the workload on technicians and increase the efficiency and effectiveness of solutions proffered to computer network problems. The platform of the system was developed using ASP.NET, whereas the codes are implemented in Visual Basic and integrated with SQL Server 2005. The knowledge base was represented using production rule, whereas the searching method that was used in developing the network troubleshooting expert system is the forward-chaining-rule-based-system. This software tool offers the advantage of providing an immediate solution to most computer network problems encountered by computer users.Keywords: expert system, forward chaining rule based system, network, troubleshooting
Procedia PDF Downloads 6477428 Synthesis, Characterization, Photocatalytic and Photovoltaic Performance of Ag-Doped ZnO2 Loaded on the Pt-Carbon Spheres
Authors: M. Mujahid, Omar A. Al-Hartomy
Abstract:
Ag-doped ZnO2 loaded on the Pt-carbon spheres have been synthesized and characterized by standard analytical techniques. i.e., UV-Vis spectroscopy, X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). In order to find the effect of loading of Ag doping on ZnO2, the concentration of Ag was varied from 0-3.5%. The XRD analysis showed that the obtained particles are anatase phase. The SEM images showed Ag-doped ZnO2 are loaded on the surface of the Pt-carbon spheres. The photocatalytic activity of the synthesized particles was tested by studying the degradation of methyl orange dye and 4-chlorophenol as a function of time on irradiation in aqueous suspension. Ag-doped ZnO2@Pt-carbon sphere particle with platinum concentration of 3.0 % showed the highest photocatalytic activity as compared to the other Ag concentrations for the degradation of methyl orange and 4-chlorophenol.Keywords: Ag-ZnO2, Pt-carbon spheres, degradation, methyl orange, 4-chlorophenol
Procedia PDF Downloads 3707427 Supply Chain Coordination under Carbon Trading Mechanism in Case of Conflict
Authors: Fuqiang Wang, Jun Liu, Liyan Cai
Abstract:
This paper investigates the coordination of the conflicting two-stage low carbon supply chain consisting of upstream and downstream manufacturers. The conflict means that the upstream manufacturer takes action for carbon emissions reduction under carbon trading mechanism while the downstream manufacturer’s production cost rises. It assumes for the Stackelberg game that the upstream manufacturer plays as a leader and the downstream manufacturer does as a follower. Four kinds of the situation of decentralized decision making, centralized decision-making, the production cost sharing contract and the carbon emissions reduction revenue sharing contract under decentralized decision making are considered. The backward induction approach is adopted to solve the game. The results show that the more intense the conflict is, the lower the efficiency of carbon emissions reduction and the higher the retail price is. The optimal investment of the decentralized supply chain under the two contracts is unchanged and still lower than that of the centralized supply chain. Both the production cost sharing contract and the carbon emissions reduction revenue sharing contract cannot coordinate the supply chain, because that the sharing cost or carbon emissions reduction sharing revenue will transfer through the wholesale price mechanism. As a result, it requires more complicated contract forms to coordinate such a supply chain.Keywords: cap-and-trade mechanism, carbon emissions reduction, conflict, supply chain coordination
Procedia PDF Downloads 3407426 Network Governance and Renewable Energy Transition in Sub-Saharan Africa: Contextual Evidence from Ghana
Authors: Kyere Francis, Sun Dongying, Asante Dennis, Nkrumah Nana Kwame Edmund, Naana Yaa Gyamea Kumah
Abstract:
With a focus on renewable energy to achieve low-carbon transition objectives, there is a greater demand for effective collaborative strategies for planning, strategic decision mechanisms, and long-term policy designs to steer the transitions. Government agencies, NGOs, the private sector, and individual citizens play an important role in sustainable energy production. In Ghana, however, such collaboration is fragile in the fight against climate change. This current study seeks to re-examine the position or potential of network governance in Ghana's renewable energy transition. The study adopted a qualitative approach and employed semi-structured interviews for data gathering. To explore network governance and low carbon transitions in Ghana, we examine key themes such as political environment and impact, actor cooperation and stakeholder interactions, financing and the transition, market design and renewable energy integration, existing regulation and policy gaps for renewable energy transition, clean cooking accessibility, and affordability. The findings reveal the following; Lack of comprehensive consultations with relevant stakeholders leads to lower acceptance of the policy model and sometimes lack of policy awareness. Again, the unavailability and affordability of renewable energy technologies and access to credit facilities is a significant hurdle to long-term renewable transition. Ghana's renewable energy transitions require strong networking and interaction among the public, private, and non-governmental organizations. The study participants believe that the involvement of relevant energy experts and stakeholders devoid of any political biases is instrumental in accelerating renewable energy transitions, as emphasized in the proposed framework. The study recommends that the national renewable energy transition plan be evident to all stakeholders and political administrators. Such policy may encourage renewable energy investment through stable and fixed lending rates by the financial institutions and build a network with international organizations and corporations. These findings could serve as valuable information for the transition-based energy process, primarily aiming to govern sustainability changes through network governance.Keywords: actors, development, sustainable energy, network governance, renewable energy transition
Procedia PDF Downloads 907425 Key Technologies and Evolution Strategies for Computing Force Bearer Network
Authors: Zhaojunfeng
Abstract:
Driven by the national policy of "East Data and Western Calculation", the computing first network will attract a new wave of development. As the foundation of the development of the computing first network, the computing force bearer network has become the key direction of technology research and development in the industry. This article will analyze typical computing force application scenarios and bearing requirements and sort out the SLA indicators of computing force applications. On this basis, this article carries out research and discussion on the key technologies of computing force bearer network in a slice packet network, and finally, gives evolution policy for SPN computing force bearer network to support the development of SPN computing force bearer network technology and network deployment.Keywords: component-computing force bearing, bearing requirements of computing force application, dual-SLA indicators for computing force applications, SRv6, evolution strategies
Procedia PDF Downloads 1337424 Estimation of Energy Efficiency of Blue Hydrogen Production Onboard of Ships
Authors: Li Chin Law, Epaminondas Mastorakos, Mohd Roslee Othman, Antonis Trakakis
Abstract:
The paper introduces an alternative concept of carbon capture for shipping by using pre-combustion carbon capture technology (Pre-CCS), which was proven to be less energy intensive than post-combustion carbon capture from the engine exhaust. Energy assessment on amine-based post-combustion CCS on LNG-fuelled ships showed that the energy efficiency of CCS ships reduced from 48% to 36.6%. Then, an energy assessment was carried out to compare the power and heat requirements of the most used hydrogen production methods and carbon capture technologies. Steam methane reformer (SMR) was found to be 20% more energy efficient and achieved a higher methane conversion than auto thermal reaction and methane decomposition. Next, pressure swing adsorber (PSA) has shown a lower energy requirement than membrane separation, cryogenic separation, and amine absorption in pre-combustion carbon capture. Hence, an integrated system combining SMR and PSA (SMR-PSA) with waste heat integration (WHR) was proposed. This optimized SMR-based integrated system has achieved 65% of CO₂ reduction with less than 7-percentage point of energy penalty (41.7% of energy efficiency). Further integration of post-combustion CCS with the SMR-PSA integrated system improved carbon capture rate to 86.3% with 9-percentage points of energy penalty (39% energy efficiency). The proposed system was shown to be able to meet the carbon reduction targets set by International Maritime Organization (IMO) with certain energy penalties.Keywords: shipping, decarbonisation, alternative fuels, low carbon, hydrogen, carbon capture
Procedia PDF Downloads 787423 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification
Authors: Abdelhadi Lotfi, Abdelkader Benyettou
Abstract:
In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.Keywords: classification, probabilistic neural networks, network optimization, pattern recognition
Procedia PDF Downloads 2657422 The Role of Natural Gas in Reducing Carbon Emissions
Authors: Abdulrahman Nami Almutairi
Abstract:
In the face of escalating climate change concerns, the concept of smart cities emerges as a promising approach to mitigate carbon emissions and move towards carbon neutrality. This paper provides a comprehensive review of the role of Natural Gas in achieving carbon neutrality. Natural gas has often been seen as a transitional fuel in the context of reducing carbon emissions. Its main role stems from being cleaner than coal and oil when burned for electricity generation and industrial processes. The urgent need to address this global issue has prompted a global shift towards cleaner energy sources and sustainable practices. In this endeavor, natural gas has emerged as a pivotal player, hailed for its potential to mitigate carbon emissions, and facilitate the transition to a low-carbon economy. With its lower carbon intensity compared to conventional fossil fuels, natural gas presents itself as a promising alternative for meeting energy demands while reducing environmental impact. As the world stands at a critical juncture in the fight against climate change, exploring the potential of natural gas as a transitional fuel offers insights into pathways towards a more sustainable and resilient future. By critically evaluating its opportunities and challenges, we can harness the potential of natural gas as a transitional fuel while advancing towards a cleaner, more resilient energy system. Through collaborative efforts and informed decision-making, we can pave the way for a future where energy is not only abundant but also environmentally sustainable and socially equitable.Keywords: natural gas, clean fuel, carbon emissions, global warming, environmental protection
Procedia PDF Downloads 467421 Universality and Synchronization in Complex Quadratic Networks
Authors: Anca Radulescu, Danae Evans
Abstract:
The relationship between a network’s hardwiring and its emergent dynamics are central to neuroscience. We study the principles of this correspondence in a canonical setup (in which network nodes exhibit well-studied complex quadratic dynamics), then test their universality in biological networks. By extending methods from discrete dynamics, we study the effects of network connectivity on temporal patterns, encapsulating long-term behavior into the rich topology of network Mandelbrot sets. Then elements of fractal geometry can be used to predict and classify network behavior.Keywords: canonical model, complex dynamics, dynamic networks, fractals, Mandelbrot set, network connectivity
Procedia PDF Downloads 3097420 Electrical Investigations of Polyaniline/Graphitic Carbon Nitride Composites Using Broadband Dielectric Spectroscopy
Authors: M. A. Moussa, M. H. Abdel Rehim, G.M. Turky
Abstract:
Polyaniline composites with carbon nitride, to overcome compatibility restriction with graphene, were prepared with the solution method. FTIR and Uv-vis spectra were used for structural conformation. While XRD and XPS confirmed the structures in addition to estimation of nitrogen atom surroundings, the pore sizes and the active surface area were determined from BET adsorption isotherm. The electrical and dielectric parameters were measured and calculated with BDS .Keywords: carbon nitride, dynamic relaxation, electrical conductivity, polyaniline
Procedia PDF Downloads 1437419 Identification of Bayesian Network with Convolutional Neural Network
Authors: Mohamed Raouf Benmakrelouf, Wafa Karouche, Joseph Rynkiewicz
Abstract:
In this paper, we propose an alternative method to construct a Bayesian Network (BN). This method relies on a convolutional neural network (CNN classifier), which determinates the edges of the network skeleton. We train a CNN on a normalized empirical probability density distribution (NEPDF) for predicting causal interactions and relationships. We have to find the optimal Bayesian network structure for causal inference. Indeed, we are undertaking a search for pair-wise causality, depending on considered causal assumptions. In order to avoid unreasonable causal structure, we consider a blacklist and a whitelist of causality senses. We tested the method on real data to assess the influence of education on the voting intention for the extreme right-wing party. We show that, with this method, we get a safer causal structure of variables (Bayesian Network) and make to identify a variable that satisfies the backdoor criterion.Keywords: Bayesian network, structure learning, optimal search, convolutional neural network, causal inference
Procedia PDF Downloads 1787418 An Adjusted Network Information Criterion for Model Selection in Statistical Neural Network Models
Authors: Christopher Godwin Udomboso, Angela Unna Chukwu, Isaac Kwame Dontwi
Abstract:
In selecting a Statistical Neural Network model, the Network Information Criterion (NIC) has been observed to be sample biased, because it does not account for sample sizes. The selection of a model from a set of fitted candidate models requires objective data-driven criteria. In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC), based on Kullback’s symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The analyses show that on a general note, the ANIC improves model selection in more sample sizes than does the NIC.Keywords: statistical neural network, network information criterion, adjusted network, information criterion, transfer function
Procedia PDF Downloads 5707417 Magnetic Activated Carbon: Preparation, Characterization, and Application for Vanadium Removal
Authors: Hakimeh Sharififard, Mansooreh Soleimani
Abstract:
In this work, the magnetic activated carbon nanocomposite (Fe-CAC) has been synthesized by anchorage iron hydr(oxide) nanoparticles onto commercial activated carbon (CAC) surface and characterized using BET, XRF, SEM techniques. The influence of various removal parameters such as pH, contact time and initial concentration of vanadium on vanadium removal was evaluated using CAC and Fe-CAC in batch method. The sorption isotherms were studied using Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. These equilibrium data were well described by the Freundlich model. Results showed that CAC had the vanadium adsorption capacity of 37.87 mg/g, while the Fe-AC was able to adsorb 119.01 mg/g of vanadium. Kinetic data was found to confirm pseudo-second-order kinetic model for both adsorbents.Keywords: magnetic activated carbon, remove, vanadium, nanocomposite, freundlich
Procedia PDF Downloads 4657416 Decoloriation of Rhodamine-B Dye by Pseudomonas putida on Activated Carbon
Authors: U. K. Ghosh, A. Ullhyan
Abstract:
Activated carbon prepared from mustard stalk was applied to decolorize Rhodamine-B dye bearing synthetic wastewater by simple adsorption and simultaneous adsorption and biodegradation (SAB) using Pseudomonas putida MTCC 1194. Results showed that percentage of Rhodamine-B dye removal was 82% for adsorption and 99.3% for SAB at pH 6.5, adsorbent dose 10 g/L and temperature 32ºC.Keywords: activated carbon, mustard stalk, Rhodamine-B, adsorption, SAB, Pseudomonas putida
Procedia PDF Downloads 3607415 Carbon Pool Assessment in Two Community Forest in Nepal
Authors: Khemnath Kharel
Abstract:
Forest itself is a factory as well as product. It supplies tangible and intangible goods and services. It supplies timber, fuel wood, fodder, grass leaf litter as well as non timber edible goods and medicinal and aromatic products additionally provides environmental services. These environmental services are of local, national, or even global importance. In Nepal more than 19 thousands community forests are providing environmental service in less economic benefit than actual efficiency. There is a risk of cost of management of those forest exceeds benefits and forests get converted to open access resources in future. Most of the environmental goods and services don’t have markets which mean no prices at which they are available to the consumers therefore the valuation of these services goods and services establishment of paying mechanism for such services and insure the benefit to community is more relevant in local as well as global scale. There are few examples of carbon trading in domestic level to meet the country wide emission goal. In this contest the study aims to explore the public attitude towards carbon offsetting and their responsibility over service providers. This study helps in promotion of environment service awareness among general people and service provider; community forest. The research helps to unveil the carbon pool scenario in community forest and willingness to pay for carbon offsetting of people who are consuming more energy than general people and emitting relatively more carbon in atmosphere. The study has assessed the carbon pool status in two community forest. In the study in two community forests carbon pools were assessed following the guideline “Forest Carbon Inventory Guideline 2010” prescribed by Ministry of Forest and soil Conservation, Nepal. Final out comes of analysis in intensively managed area of Hokse CF recorded as 103.58 tons C /ha with 6173.30 tons carbon stock. Similarly in Hariyali CF carbon density was recorded 251.72 mg C /ha. The total carbon stock of intensively managed blocks in Hariyali CF is 35839.62 tons carbon.Keywords: carbon, offsetting, sequestration, valuation
Procedia PDF Downloads 323