Search results for: black aluminum oxide
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2832

Search results for: black aluminum oxide

2502 Optimum Design for Cathode Microstructure of Solid Oxide Fuel Cell

Authors: M. Riazat, H. Abdolvand, M. Baniassadi

Abstract:

In this present work, 3D reconstruction of cathode of SOFC is developed with various volume fractions and porosity. Three Phase Boundary (TPB) of construction of such derived micro structures is calculated. The neural network is used to optimize the porosity and volume fraction of each phase to reach a structure with maximum TPB.

Keywords: fuel cell, solid oxide, TPB, 3D reconstruction

Procedia PDF Downloads 317
2501 An Investigation of the Weak Localization, Electron-Electron Interaction and the Superconducting Fluctuations in a Weakly Disordered Granular Aluminum Film

Authors: Rukshana Pervin

Abstract:

We report a detailed study on the transport properties of a 40 nm thick granular aluminum film. As measured by temperature-dependent resistance R(T), a resistance peak is observed before the transition to superconductivity, which indicates that the diffusion channel is subjected to weak localization and electron-electron interaction, and the superconductor channel is subjected to SC fluctuations (SCFs). The zero-magnetic field transport measurement demonstrated that Electron-Electron Interaction (EEI), weak localization, and SCFs are closely related in this granular aluminum film. The characteristic temperature at which SCFs emerge on the sample is determined by measuring the R(T) during cooling. The SCF of the film is studied in terms of the direct contribution of the Aslamazov-Larkin's fluctuation Cooper pair density and the indirect contribution of the Maki-Thomson's quasiparticle pair density. In this sample, the rise in R(T) above the SCF characteristic temperature indicates the WL and/or EEI. Comparative analyses are conducted on how the EEI and WL contribute to the upturn in R(T).

Keywords: fluctuation superconductivity, weak localization, thermal deposition, electron-electron interaction

Procedia PDF Downloads 51
2500 Performance Improvement of SOI-Tri Gate FinFET Transistor Using High-K Dielectric with Metal Gate

Authors: Fatima Zohra Rahou, A.Guen Bouazza, B. Bouazza

Abstract:

SOI TRI GATE FinFET transistors have emerged as novel devices due to its simple architecture and better performance: better control over short channel effects (SCEs) and reduced power dissipation due to reduced gate leakage currents. As the oxide thickness scales below 2 nm, leakage currents due to tunneling increase drastically, leading to high power consumption and reduced device reliability. Replacing the SiO2 gate oxide with a high-κ material allows increased gate capacitance without the associated leakage effects. In this paper, SOI TRI-GATE FinFET structure with use of high K dielectric materials (HfO2) and SiO2 dielectric are simulated using the 3-D device simulator Devedit and Atlas of TCAD Silvaco. The simulated results exhibits significant improvements in the performances of SOI TRI GATE FinFET with gate oxide HfO2 compared with conventional gate oxide SiO2 for the same structure. SOI TRI-GATE FinFET structure with the use of high K materials (HfO2) in gate oxide results into the increase in saturation current, threshold voltage, on-state current and Ion/Ioff ratio while off-state current, subthreshold slope and DIBL effect are decreased.

Keywords: technology SOI, short-channel effects (SCEs), multi-gate SOI MOSFET, SOI-TRI Gate FinFET, high-K dielectric, Silvaco software

Procedia PDF Downloads 340
2499 Food Package Design To Preserve The Food Temperature

Authors: Sugiono, Wuwus Ardiatna, Himma Firdaus, Nanang Kusnandar, Bayu Utomo, Jimmy Abdel Kadar

Abstract:

This study was aimed to explore the best design of single-used hot food packaging through various package designs. It examined how designed packages keep some local hot food reasonably longer than standard packages. The food packages were realized to consist of the outer and the inner layers of food-grade materials. The packages were evaluated to keep the hot food decreased to the minimum temperature of safe food. This study revealed a significant finding that the transparent plastic box with thin film aluminum foil is the best package.

Keywords: hot food, local food, one used, packaging, aluminum foil

Procedia PDF Downloads 143
2498 Fingerprint on Ballistic after Shooting

Authors: Narong Kulnides

Abstract:

This research involved fingerprints on ballistics after shooting. Two objectives of research were as follows; (1) to study the duration of the existence of latent fingerprints on .38, .45, 9 mm and .223 cartridge case after shooting, and (2) to compare the effectiveness of the detection of latent fingerprints by Black Powder, Super Glue, Perma Blue and Gun Bluing. The latent fingerprint appearance were studied on .38, .45, 9 mm. and .223 cartridge cases before and after shooting with Black Powder, Super Glue, Perma Blue and Gun Bluing. The detection times were 3 minute, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78 and 84 hours respectively. As a result of the study, it can be conclude that: (1) Before shooting, the detection of latent fingerprints on 38, .45, and 9 mm. and .223 cartridge cases with Black Powder, Super Glue, Perma Blue and Gun Bluing can detect the fingerprints at all detection times. (2) After shooting, the detection of latent fingerprints on .38, .45, 9 mm. and .223 cartridge cases with Black Powder, Super Glue did not appear. The detection of latent fingerprints on .38, .45, 9 mm. cartridge cases with Perma Blue and Gun Bluing were found 100% of the time and the detection of latent fingerprints on .223 cartridge cases with Perma Blue and Gun Bluing were found 40% and 46.67% of the time, respectively.

Keywords: ballistic, fingerprint, shooting, detection times

Procedia PDF Downloads 414
2497 Black-Legged Tick (Ixodes Scapularis) Impacts on Hematology and Ectoparasite Communities of Peromyscus Mice

Authors: Erica Fellin, Albrecht Schulte-Hostedde

Abstract:

As the climate warms, the black-legged tick’s (Ixodes scapularis) range expands further north in Ontario, Canada, reaching new host populations that have not previously interacted with this blood-feeding parasite. Peromyscus mice in these northern areas are unfamiliar and inexperienced to the effects of these ticks compared to their southern counterparts that have adapted to living with these organisms. The purpose of this study was to see if there is a difference in physiology between these two groups – deer mice living in areas where tick populations have established and deer mice living in black-legged tick-free environments – looking specifically to see if there is significant variation in hemoglobin levels, which can negatively impact how these mice function in their environment. Along with this, a comparison of the parasite community structure on these mice hosts was analyzed to see if ticks change the composition of these micro-environments. Blood samples were collected from individual mice from populations where black-legged ticks were either present or absent to assess haemoglobin levels. At the same time, ectoparasites were collected from these same mice to determine parasite loads and species diversity. Haemoglobin levels were found to be lower when tick loads were high, and parasite diversity appeared to be higher when ticks were absent. Since black-legged ticks are carriers of many pathogens that can be passed on to humans, including Lyme’s disease, it is important to understand their movement and distribution across Ontario as well as their interactions with their hosts (and co-occurring parasites) in their environments.

Keywords: community ecology, hematology, hosts, parasites

Procedia PDF Downloads 130
2496 Synthesis and Characterization of Polypyrrole-Coated Non-Conducting Cellulosic Substrate and Modified by Copper Oxide

Authors: A. Hamam, D. Oukil, A. Dib, L. Makhloufi

Abstract:

The aim of this work is to synthesize modified Polypyrrole films (PPy) containing nanoparticles of copper oxides onto a non conducting cellulosic substrate. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is carried out using FeCl3 as an oxidant and Pyrrole as monomer. Different parameters were optimized (monomer concentration, duration of the experiment, nature of supporting electrolyte, temperature, etc.) in order to obtain films with different thickness and different morphologies. Thickness and topography of different PPy deposits were estimated by a profilometer apparatus. The electrochemical reactivity of the obtained electrodes were tested by cyclic voltammetry technique (CV) and electrochemical impedance spectroscopy (EIS). Secondly, the modification of the PPy film surface by incorporation of copper oxide nanonoparticles is conducted by applying a galvanostatic procedure from CuCl2 solution. Surface characterization has been carried out using scanning microscope (SEM) coupled with energy dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis showed the presence of the copper oxide nanoparticles (CuO) in the polymer films with dimensions less than 50 nm.

Keywords: polypyrrole, modified electrode, cellulosic substrate, copper oxide

Procedia PDF Downloads 447
2495 Synthesis and Characterization of the Carbon Spheres Built Up from Reduced Graphene Oxide

Authors: Takahiro Saida, Takahiro Kogiso, Takahiro Maruyama

Abstract:

The ordered structural carbon (OSC) material is expected to apply to the electrode of secondary batteries, the catalyst supports, and the biomaterials because it shows the low substance-diffusion resistance by its uniform pore size. In general, the OSC material is synthesized using the template material. Changing size and shape of this template provides the pore size of OSC material according to the purpose. Depositing the oxide nanosheets on the polymer sphere template by the layer by layer (LbL) method was reported as one of the preparation methods of OSC material. The LbL method can provide the controlling thickness of structural wall without the surface modification. When the preparation of the uniform carbon sphere prepared by the LbL method which composed of the graphene oxide wall and the polymethyl-methacrylate (PMMA) core, the reduction treatment will be the important object. Since the graphene oxide has poor electron conductivity due to forming a lot of functional groups on the surface, it could be hard to apply to the electrode of secondary batteries and the catalyst support of fuel cells. In this study, the graphene oxide wall of carbon sphere was reduced by the thermal treatment under the vacuum conditions, and its crystalline structure and electronic state were characterized. Scanning electron microscope images of the carbon sphere after the heat treatment at 300ºC showed maintaining sphere shape, but its shape was collapsed with increasing the heating temperature. In this time, the dissolution rate of PMMA core and the reduction rate of graphene oxide were proportionate to heating temperature. In contrast, extending the heating time was conducive to the conservation of the sphere shape. From results of X-ray photoelectron spectroscopy analysis, its electronic state of the surface was indicated mainly sp² carbon. From the above results, we succeeded in the synthesis of the sphere structure composed by the reduction graphene oxide.

Keywords: carbon sphere, graphene oxide, reduction, layer by layer

Procedia PDF Downloads 137
2494 Recreational Nitrous Oxide Use: Increasing Risks and Harms

Authors: Julaine Allan, Jacqui Cameron, Helen Simpson, Kenny Kor

Abstract:

The pleasurable and intoxicating effects of psychoactive substances result in widespread use. However, deaths and injuries from psychoactive substance use, particularly among young people, are a global public health problem. Understanding the benefits and problems associated with different drugs is an important part of creating contextually and physiologically relevant harm reduction strategies. Nitrous oxide use is increasing. A systematic review sought information for harm reduction strategies. The aim of this study was to systematically collate and synthesize the disparate body of research on recreational nitrous oxide use to inform harm reduction approaches tailored for young people. A mixed-methods systematic review combined quantitative data such as prevalence and incidence statistics as well as interpretive data on the experience of N₂O use. Thirty-four studies were included in the final analysis. There was minimal information available to inform policy, health care, or individuals using N₂O. The cultural, contextual, and personal reasons for N₂O use are largely unexplored.

Keywords: substance misuse, nitrous oxide, harms, harm reduction, systematic review

Procedia PDF Downloads 89
2493 In-situ Observations Using SEM-EBSD for Bending Deformation in Single-Crystal Materials

Authors: Yuko Matayoshi, Takashi Sakai, Yin-Gjum Jin, Jun-ichi Koyama

Abstract:

To elucidate the material characteristics of single crystals of pure aluminum and copper, the respective relations between crystallographic orientations and micro structures were examined, along with bending and mechanical properties. The texture distribution was also analysed. Bending tests were performed in a SEM apparatus while its behaviors were observed. Some analytical results related to crystal direction maps, inverse pole figures, and textures were obtained from electron back scatter diffraction (EBSD) analyses.

Keywords: pure aluminum, pure copper, single crystal, bending, SEM-EBSD analysis, texture, microstructure

Procedia PDF Downloads 363
2492 Heat Forging Analysis Method on Blank Consist of Two Metals

Authors: Takashi Ueda, Shinichi Enoki

Abstract:

Forging parts is used to automobiles. Because they have high strength and it is possible to press them into complicated shape. When it is possible to manufacture hollow forging parts, it leads to reduce weight of the automobiles. But, hollow forging parts are confined to axisymmetrical shape. Hollow forging parts that were pressed to complicated shape are expected. Therefore, we forge a blank that aluminum alloy was inserted in stainless steel. After that, we can provide complex forging parts that are reduced weight, if it is possible to be melted the aluminum alloy away by using different of melting points. It is necessary to establish heat forging analysis method on blank consist of stainless steel and aluminum alloy. Because, this forging is different from conventional forging and this technology is not confirmed. In this study, we compared forging experiment with numerical analysis on the view point of forming load and shape after forming and establish how to set the material temperatures of two metals and material property of stainless steel on the analysis method. Consequently, temperature difference of stainless steel and aluminum alloy was obtained by experiment. We got material property of stainless steel on forging experimental by compression tests. We had compared numerical analysis that was used the temperature difference of two metals and the material property of stainless steel on forging experimental with forging experiment. Forging analysis method on blank consist of two metals was established by result of numerical analysis having agreed with result of forging experiment.

Keywords: forging, lightweight, analysis, hollow

Procedia PDF Downloads 410
2491 The Method for Synthesis of Chromium Oxide Nano Particles as Increasing Color Intensity on Industrial Ceramics

Authors: Bagher Aziz Kalantari, Javad Rafiei, Mohamad Reza Talei Bavil Olyai

Abstract:

Disclosed is a method of preparing a pigmentary chromium oxide nano particles having 50 percent particle size less than about 100nm. According to the disclosed method, a substantially dry solid composition of potassium dichromate and carbon active is heated in CO2 atmosphere to a temperature of about 600ºc for 1hr. Thereafter, the solid Cr2O3 product was washed twice with distilled water. The other aim of this study is to assess both the colouring performance and the potential of nano-pigments in the ceramic tile decoration. The rationable consists in nano-pigment application in several ceramics, including a comparison of colour performance with conventional micro-pigments.

Keywords: green chromium oxide, nano particles, colour performances, particle size

Procedia PDF Downloads 329
2490 Adsorption of Bovine Serum Albumine on CeO2

Authors: Roman Marsalek

Abstract:

Preparation of nano-particles of cerium oxide and adsorption of bovine serum albumine on them were studied. Particle size distribution and influence of pH on zeta potential of prepared CeO2 were determined. Average size of prepared cerium oxide nano-particles was 9 nm. The simultaneous measurements of the bovine serum albumine adsorption and zeta potential determination of the (adsorption) suspensions were carried out. The adsorption isotherms were found to be of typical Langmuir type; values of the bovine serum albumin adsorption capacities were calculated. Increasing of pH led to decrease of zeta potential and decrease of adsorption capacity of cerium oxide nano-particles. The maximum adsorption capacity was found for strongly acid suspension (am=118 mg/g). The samples of nanoceria with positive zeta potential adsorbed more bovine serum albumine on the other hand, the samples with negative zeta potential showed little or no protein adsorption. Surface charge or better say zeta potential of CeO2 nano-particles plays the key role in adsorption of proteins on such type of materials.

Keywords: adsorption, BSA, cerium oxide nanoparticles, zeta potential, albumin

Procedia PDF Downloads 366
2489 Nitric Oxide: Role in Immunity and Therapeutics

Authors: Anusha Bhardwaj, Shekhar Shinde

Abstract:

Nitric oxide (NO•) has been documented in research papers as one of the most versatile player in the therapeutics. It is identified as a biological multifunctional messenger molecule which is synthesized by the action of nitric oxide synthase (NOS) enzyme from L-arginine. The protective and the toxic effect in conjunction form the complete picture of the biological function of nitric oxide in humans. The dual nature is because of various factors such as concentration of NO, the isoform of NOS involved, type of cells in which it is synthesized, reaction partners like proteins, reactive oxygen intermediates, prosthetic groups, thiols etc., availability of the substrate L-arginine, intracellular environment in which NO is produced and generation of guanosine 3, 5’- cyclic monophosphate (cGMP). Activation of NOS through infection or trauma leads to one or more systemic effects including enhanced immune activity against invading pathogens, vaso/bronchodilatation in the cardiovascular and respiratory systems and altered neurotransmission which can be protective or toxic. Hence, NO affects the balance between healthy signaling and neurodegeneration in the brain. In lungs, it has beneficial effects on the function of airways as a bronchodilator and acts as the neurotransmitter of bronchodilator nerves. Whereas, on the other hand, NO may have deleterious effects by amplifying the asthmatic inflammatory response and also act as a vasodilator in the airways by increasing plasma exudation. But NOS Inhibitors and NO donors hamper the signalling pathway and hence a therapeutic application of NO is compromised.

Keywords: nitric oxide, multifunctional, dual nature, therapeutic applications

Procedia PDF Downloads 490
2488 Radiation Effects in the PVDF/Graphene Oxide Nanocomposites

Authors: Juliana V. Pereira, Adriana S. M. Batista, Jefferson P. Nascimento, Clascídia A. Furtado, Luiz O. Faria

Abstract:

Exposure to ionizing radiation has been found to induce changes in poly(vinylidene fluoride) (PVDF) homopolymers. The high dose gamma irradiation process induces the formation of C=C and C=O bonds in its [CH2-CF2]n main chain. The irradiation also provokes crosslinking and chain scission. All these radio-induced defects lead to changes in the PVDF crystalline structure. As a consequence, it is common to observe a decrease in the melting temperature (TM) and melting latent heat (LM) and some changes in its ferroelectric features. We have investigated the possibility of preparing nanocomposites of PVDF with graphene oxide (GO) through the radio-induction of molecular bonds. In this work, we discuss how the gamma radiation interacts with the nanocomposite crystalline structure.

Keywords: gamma irradiation, graphene oxide, nanocomposites, PVDF

Procedia PDF Downloads 277
2487 Nano-Filled Matrix Reinforced by Woven Carbon Fibers Used as a Sensor

Authors: K. Hamdi, Z. Aboura, W. Harizi, K. Khellil

Abstract:

Improving the electrical properties of organic matrix composites has been investigated in several studies. Thus, to extend the use of composites in more varied application, one of the actual barrier is their poor electrical conductivities. In the case of carbon fiber composites, organic matrix are in charge of the insulating properties of the resulting composite. However, studying the properties of continuous carbon fiber nano-filled composites is less investigated. This work tends to characterize the effect of carbon black nano-fillers on the properties of the woven carbon fiber composites. First of all, SEM observations were performed to localize the nano-particles. It showed that particles penetrated on the fiber zone (figure1). In fact, by reaching the fiber zone, the carbon black nano-fillers created network connectivity between fibers which means an easy pathway for the current. It explains the noticed improvement of the electrical conductivity of the composites by adding carbon black. This test was performed with the four points electrical circuit. It shows that electrical conductivity of 'neat' matrix composite passed from 80S/cm to 150S/cm by adding 9wt% of carbon black and to 250S/cm by adding 17wt% of the same nano-filler. Thanks to these results, the use of this composite as a strain gauge might be possible. By the way, the study of the influence of a mechanical excitation (flexion, tensile) on the electrical properties of the composite by recording the variance of an electrical current passing through the material during the mechanical testing is possible. Three different configuration were performed depending on the rate of carbon black used as nano-filler. These investigation could lead to develop an auto-instrumented material.

Keywords: carbon fibers composites, nano-fillers, strain-sensors, auto-instrumented

Procedia PDF Downloads 404
2486 Breast Cancer Risk Factors: A Big Data Analysis of Black and White Women in the USA

Authors: Tejasvi Parupudi, Mochen Li, Lakshya Mittal, Ignacio G. Camarillo, Raji Sundararajan

Abstract:

With breast cancer becoming a global pandemic, it is very important to assess a woman’s risk profile accurately in a timely manner. Providing an estimate of the risk of developing breast cancer to a woman gives her an opportunity to consider options to decrease this risk. Women at low risk may be suggested yearly screenings whereas women with a high risk of developing breast cancer would be candidates for aggressive surveillance. Fortunately, there is a set of risk factors that are used to predict the probability of a woman being diagnosed with breast cancer in the future. Studying risk factors and understanding how they correlate to cancer is important for early diagnosis, prevention and reducing mortality rates. The effect of crucial risk factors among black and white women was compared in this study. The various risk factors analyzed include breast density, age, cancer in a first-degree relative, menopausal status, body mass index (BMI) and prior breast cancer diagnosis, etc. Breast density, age at first full-term birth and BMI were utilized in this study as important risk factors for the comparison of incidence rates between women of black and white races in the USA. Understanding the differences could lead to the development of solutions to reduce disparity in mortality rates among black women by improving overall access to care.

Keywords: big data, breast cancer, risk factors, incidence rates, mortality, race

Procedia PDF Downloads 271
2485 Mechanical and Physical Properties of Aluminum Composite Reinforced with Carbon Nano Tube Dispersion via Ultrasonic and Ball Mill Attrition after Sever Plastic Deformation

Authors: Hassan Zare, Mohammad Jahedi, Mohammad Reza Toroghinejad, Mahmoud Meratian, Marko Knezevic

Abstract:

In this study, the carbon nanotube (CNT) reinforced Al matrix nanocomposites were fabricated by ECAP. Equal Channel Angular Pressing (ECAP) process is one of the most important methods for powder densification due to the presence of shear strain. This method samples with variety passes (one, two, four and eight passes) in C route were prepared at room temperature. A few study about metal matrix nanocomposite reinforced carbon nanotube done, the reaction intersection of interface and carbon nanotube cause to reduce the efficiency of nanocomposite. In this paper, we checked mechanical and physical properties of aluminum-CNT composite that manufactured by ECAP when the composite is deformed. The non-agglomerated CNTs were distributed homogeneously with 2% consolidation in the Aluminum matrix. The ECAP process was performed on the both monolithic and composite with distributed CNT samples for 8 passes.

Keywords: powder metallurgy, ball mill attrition, ultrasonic, consolidation

Procedia PDF Downloads 490
2484 Collective Actions of the Women in Black of the Gaza Strip

Authors: Lina Fernanda González

Abstract:

Through this essay, an attempt will be made to make visible the work of the international network of the Women in Black (henceforth WB), on the one hand. On the other hand, the work of Women International Courts as a political practice will be showed as well, focusing their work into generating a collective identity - becoming thusly a peace building space, rescuing in this way the symbolic value of their practices consisting in peaceful resistance as political scenarios, that serve, too, a pedagogical and healing purposes.

Keywords: collective actions, women, peace, human rights and humanitarian international law

Procedia PDF Downloads 393
2483 Effect of Substrate Type on Pollutant Removal and Greenhouse Gases Emissions in Constructed Wetlands with Ornamental Plants

Authors: Maria E. Hernnadez, Elizabeth Ramos, Claudia Ortiz

Abstract:

Pollutant removal (N-NH4, COD, S-SO4, N-NO3 and P-PO4) and greenhouse gases (methane and nitrous oxide) emissions were investigated in constructed wetlands CW mesocosms with four types of substrate (gravel (G) zeolite (Z), Gravel+Plastic (GP) and zeolite+plastic), all planted with the ornamental plant lily (Lilium sp). Significantly higher N-NH4 removal was found in the CW-Z (97%) and CW-ZP (85%) compared with CW-G (61%) and CW-GP (17%), also significantly lower emissions of nitrous oxide were found in CW-Z (2.2 µgm-2min-1) and CW-ZP (2.5 µgm-2min-1) compared with CW-G(7.4 µgm-2min-1 ) and CW-GP (6.30 µgm-2min-1).

Keywords: methane, nitrous oxide, lily, zeolite

Procedia PDF Downloads 391
2482 Leaching of Flotation Concentrate of Oxide Copper Ore from Sepon Mine, Lao PDR

Authors: C. Rattanakawin, S. Vasailor

Abstract:

Acid leaching of flotation concentrate of oxide copper ore containing mainly of malachite was performed in a standard agitation tank with various parameters. The effects of solid to liquid ratio, sulfuric acid concentration, agitation speed, leaching temperature and time were examined to get proper conditions. The best conditions are 1:8 solid to liquid ratio, 10% concentration by weight, 250 rev/min, 30 oC and 5-min leaching time in respect. About 20% Cu grade assayed by atomic absorption technique with 98% copper recovery was obtained from these combined optimum conditions. Dissolution kinetics of the concentrate was approximated as a logarithmic function. As a result, the first-order reaction rate is suggested from this leaching study.

Keywords: agitation leaching, dissolution kinetics, flotation concentrate, oxide copper ore, sulfuric acid

Procedia PDF Downloads 114
2481 Techno-Economic Assessment of Aluminum Waste Management

Authors: Hamad Almohamadi, Abdulrahman AlKassem, Majed Alamoudi

Abstract:

Dumping Aluminum (Al) waste into landfills causes several health and environmental problems. The pyrolysis process could treat Al waste to produce AlCl₃ and H₂. Using the Aspen Plus software, a techno-economic and feasibility assessment has been performed for Al waste pyrolysis. The Aspen Plus simulation was employed to estimate the plant's mass and energy balance, which was assumed to process 100 dry metric tons of Al waste per day. This study looked at two cases of Al waste treatment. The first case produces 355 tons of AlCl₃ per day and 9 tons of H₂ per day without recycling. The conversion rate must be greater than 50% in case 1 to make a profit. In this case, the MSP for AlCl₃ is $768/ton. The plant would generate $25 million annually if the AlCl₃ were sold at $1000 per ton. In case 2 with recycling, the conversion has less impact on the plant's profitability than in case 1. Moreover, compared to case 1, the MSP of AlCl₃ has no significant influence on process profitability. In this scenario, if AlCl₃ were sold at $1000/ton, the process profit would be $58 million annually. Case 2 is better than case 1 because recycling Al generates a higher yield than converting it to AlCl₃ and H₂.

Keywords: aluminum waste, aspen plus, process modelling, fast pyrolysis, techno-economic assessment

Procedia PDF Downloads 82
2480 The Using of Hybrid Superparamagnetic Magnetite Nanoparticles (Fe₃O₄)- Graphene Oxide Functionalized Surface with Collagen, to Target the Cancer Stem Cell

Authors: Ahmed Khalaf Reyad Raslan

Abstract:

Cancer stem cells (CSCs) describe a class of pluripotent cancer cells that behave analogously to normal stem cells in their ability to differentiate into the spectrum of cell types observed in tumors. The de-differentiation processes, such as an epithelial-mesenchymal transition (EMT), are known to enhance cellular plasticity. Here, we demonstrate a new hypothesis to use hybrid superparamagnetic magnetite nanoparticles (Fe₃O₄)- graphene oxide functionalized surface with Collagen to target the cancer stem cell as an early detection tool for cancer. We think that with the use of magnetic resonance imaging (MRI) and the new hybrid system would be possible to track the cancer stem cells.

Keywords: hydrogel, alginate, reduced graphene oxide, collagen

Procedia PDF Downloads 140
2479 Layer by Layer Coating of Zinc Oxide/Metal Organic Framework Nanocomposite on Ceramic Support for Solvent/Solvent Separation Using Pervaporation Method

Authors: S. A. A. Nabeela Nasreen, S. Sundarrajan, S. A. Syed Nizar, Seeram Ramakrishna

Abstract:

Metal-organic frameworks (MOFs) have attracted considerable interest due to its diverse pore size tunability, fascinating topologies and extensive uses in fields such as catalysis, membrane separation, chemical sensing, etc. Zeolitic imidazolate frameworks (ZIFs) are a class of MOF with porous crystals containing extended three-dimensional structures of tetrahedral metal ions (e.g., Zn) bridged by Imidazolate (Im). Selected ZIFs are used to separate solvent/solvent mixtures. A layer by layer formation of the nanocomposite of Zinc oxide (ZnO) and ZIF on a ceramic support using a solvothermal method was engaged and tested for target solvent/solvent separation. Metal oxide layer was characterized by XRD, SEM, and TEM to confirm the smooth and continuous coating for the separation process. The chemical composition of ZIF films was studied by using X-Ray absorption near-edge structure (XANES) spectroscopy. The obtained ceramic tube with metal oxide and ZIF layer coating were tested for its packing density, thickness, distribution of seed layers and variation of permeation rate of solvent mixture (isopropyl alcohol (IPA)/methyl isobutyl ketone (MIBK). Pervaporation technique was used for the separation to achieve a high permeation rate with separation ratio of > 99.5% of the solvent mixture.

Keywords: metal oxide, membrane, pervaporation, solvothermal, ZIF

Procedia PDF Downloads 192
2478 Effects of Intracerebroventricular Injection of Spexin and Its Interaction with Nitric Oxide, Serotonin, and Corticotropin Receptors on Central Food Intake Regulation in Chicken

Authors: Mohaya Farzin, Shahin Hassanpour, Morteza Zendehdel, Bita Vazir, Ahmad Asghari

Abstract:

Aim: There are several differences between birds and mammals in terms of food intake regulation. Therefore, this study aimed to investigate the effects of the intracerebroventricular (ICV) injection of spexin and its interaction with nitric oxide, serotonin, and corticotropin receptors on central food intake regulation in broiler chickens. Materials and Methods: In experiment 1, chickens received ICV injection of saline, PCPA (p-chlorophenyl alanine,1.25 µg), spexin, and PCPA+spexin. In experiments 2-7, 8-OH-DPAT (5-HT1A agonist, 15.25 nmol), SB-242084 (5-HT2C receptor antagonist, 1.5µg), L-arginine (Precursor of nitric oxide, 200 nmol), L-NAME (nitric oxide synthetase inhibitor, 100 nmol), Astressin-B (CRF1/CRF2 receptor antagonist, 30 µg) and Astressin2-B (CRF2 receptor antagonist, 30 µg) were injected to chickens instead of the PCPA. Then, food intake was measured until 120 minutes after the injection. Results: Spexin significantly decreased food consumption (P<0.05). Concomitant injection of SB-242084+spexin attenuated spexin-induced hypophagia (P<0.05). Co-injection of L-arginine+spexin enhanced spexin-induced hypophagia, and this effect was reversed by L-NAME (P<0.05). Also, concomitant injection of Astressin-B + spexin or Astressin2-B + spexin enhanced spexin-induced hypophagia (P<0.05). Conclusions: Based on these observations, spexin-induced hypophagia may be mediated by nitric oxide and 5-HT2C, CRF1, and CRF2 receptors in neonatal broiler chickens.

Keywords: spexin, serotonin, corticotropin, nitric oxide, food intake, chicken

Procedia PDF Downloads 70
2477 The Flexural Improvement of RC Beams Using an Inserted Plate between Concrete and FRP Bonding Surface

Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju

Abstract:

The primary objective of this research is to improve the flexural capacity of FRP strengthened RC Beam structures with Aluminum and Titanium laminates. FRP rupture of flexural strengthened RC beams using FRP plates generally occurs at the interface between FRP plate and the beam. Therefore, in order to prevent brittle rupture and improve the ductility of the system, this research was performed by using Aluminum and Titanium materials between the two different structural systems. The research also aims to provide various strengthening/retrofitting methods for RC beam structures and to conduct a preliminary analysis of the demands on the structural systems. This was achieved by estimation using the experimental data from this research to identify a flexural capacity for the systems. Ultimately, the preliminary analysis of current study showed that the flexural capacity and system demand ductility was significantly improved by the systems inserted with Aluminum and Titanium anchor plates. Further verification of the experimental research is currently on its way to develop a new or reliable design guideline to retrofit/strengthen the concrete-FRP structural system can be evaluated.

Keywords: reinforced concrete, FRP laminate, flexural capacity, ductility

Procedia PDF Downloads 286
2476 Black Masculinity, Media Stereotyping And Its Influence on Policing in the United States: A Functionalist Perspective

Authors: Jack Santiago Monell

Abstract:

In America, misrepresentations of black males have been perpetuated throughout the history of popular culture. Because of these narratives, varying communities have developed biases and stereotypes about what black male masculinity represents and more importantly, how they respond to them. The researcher explored the perspectives of police officers in the following states, Maryland, Pennsylvania, and North Carolina. Because of the nature of police and community relations, and national attention to high profile cases, having officers provide context into how black males are viewed from their lens, was critical while expanding on the theoretical explanations to describe attitudes towards police confrontations. As one of the objectives was to identify specific themes relevant to why police officers may view African American males differently, hence, responding more aggressively, this proved to be the most beneficial method of initial analysis to identify themes. The following nodes (appearance, acting suspicious/ troublesome behavior, upbringing about black males, excessive force) were identified to analyze the transcripts to discern associations. The data was analyzed through NVivo 11, and several themes resulted to elaborate on the data received. In analyzing the data, four themes were identified: appearance, acting suspicious/ troublesome behavior, upbringing about black males, and excessive force. The data conveyed that continuous stereotypes about African American men will ultimately result in excessive use of force or pervasive shootings, albeit the men are armed or unarmed. African American males are consistently targeted because of their racial makeup and appearance over any other probable circumstances. As long as racial bias and stereotypical practices continue in policing, African American males will endlessly be unjustly targeted and at times, the victims of violent encounters with police officers in the United States.

Keywords: African American males, police perceptions, masculinity, popular culture

Procedia PDF Downloads 107
2475 Structural and Optical Properties of Silver Sulfide/Reduced Graphene Oxide Nanocomposite

Authors: Oyugi Ngure Robert, Kallen Mulilo Nalyanya, Tabitha A. Amollo

Abstract:

Nanomaterials have attracted significant attention in research because of their exemplary properties, making them suitable for diverse applications. This paper reports the successful synthesis as well as the structural properties of silver sulfide/reduced graphene oxide (Ag_2 S-rGO) nanocomposite. The nanocomposite was synthesized by the chemical reduction method. Scanning electron microscopy (SEM) showed that the reduced graphene oxide (rGO) sheets were intercalated within the Ag_2 S nanoparticles during the chemical reduction process. The SEM images also showed that Ag_2 S had the shape of nanowires. Further, SEM energy dispersive X-ray (SEM EDX) showed that Ag_2 S-rGO is mainly composed of C, Ag, O, and S. X-ray diffraction analysis manifested a high crystallinity for the nanowire-shaped Ag2S nanoparticles with a d-spacing ranging between 1.0 Å and 5.2 Å. Thermal gravimetric analysis (TGA) showed that rGO enhances the thermal stability of the nanocomposite. Ag_2 S-rGO nanocomposite exhibited strong optical absorption in the UV region. The formed nanocomposite is dispersible in polar and non-polar solvents, qualifying it for solution-based device processing.

Keywords: silver sulfide, reduced graphene oxide, nanocomposite, structural properties, optical properties

Procedia PDF Downloads 76
2474 Regulating Hydrogen Energy Evaluation During Aluminium Hydrolysis in Alkaline Solutions Containing Different Surfactants

Authors: Mohamed A. Deyab, Omnia A. A. El-Shamy

Abstract:

The purpose of this study is to reveal on the systematic evaluation of hydrogen production by aluminum hydrolysis in alkaline solutions containing different surfactants using hydrogen evolution measurements and supplemented by scan electron microscope (SEM) and energy dispersive X-ray analysis (EDX). It has been demonstrated that when alkaline concentration and solution temperature rise, the rate of H2 generation and, consequently, aluminum hydrolysis also rises. The addition of nonionic and cationic surfactants solution retards the rate of H2 production. The work is a promising option for carbon-free hydrogen production from renewable resources.

Keywords: energy, hydrogen, hydrolysis, surfactants

Procedia PDF Downloads 78
2473 Thermal Stability and Insulation of a Cement Mixture Using Graphene Oxide Nanosheets

Authors: Nasser A. M. Habib

Abstract:

The impressive physical properties of graphene derivatives, including thermal properties, have made them an attractive addition to advanced construction nanomaterial. In this study, we investigated the impact of incorporating low amounts of graphene oxide (GO) into cement mixture nanocomposites on their heat storage and thermal stability. The composites were analyzed using Fourier transmission infrared, thermo-gravimetric analysis, and field emission scanning electron microscopy. Results showed that GO significantly improved specific heat by 32%, reduced thermal conductivity by 16%, and reduced thermal decomposition to only 3% at a concentration of 1.2 wt%. These findings suggest that the cement mixture can withstand high temperatures and may suit specific applications requiring thermal stability and insulation properties.

Keywords: cement mixture composite, graphene oxide, thermal decomposition, thermal conductivity

Procedia PDF Downloads 58