Search results for: bacterial pathogens
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1459

Search results for: bacterial pathogens

1129 Microbial Pathogens Associated with Banded Sugar Ants (Camponotus consobrinus) in Calabar, Nigeria

Authors: Ofonime Ogba, Augustine Akpan

Abstract:

Objectives and Goals: The study was aimed at determining pathogenic microbial carriage on the external body parts of Camponotus consobrinus which is also known as the banded sugar ant because of its liking for sugar and sweet food. The level of pathogenic microbial carriage of Camponotus consobrinus in association to the environment in which they have been collected is not known. Methods: The ants were purposively collected from four locations including the kitchens, bedroom of various homes, food shops, and bakeries. The sample collection took place within the hours of 6:30 pm to 11:00 pm. The ants were trapped in transparent plastic containers of which sugar, pineapple peels, sugar cane and soft drinks were used as bait. The ants were removed with a sterile spatula and put in 10mls of peptone water in sterile universal bottles. The containers were vigorously shaken to wash the external surface of the ant. It was left overnight and transported to the Microbiology Laboratory, University of Calabar Teaching Hospital for analysis. The overnight peptone broths were inoculated on Chocolate agar, Blood agar, Cystine Lactose Electrolyte-Deficient agar (CLED) and Sabouraud dextrose agar. Incubation was done aerobically and in a carbon dioxide jar for 24 to 48 hours at 37°C. Isolates were identified based on colonial characteristics, Gram staining, and biochemical tests. Results: Out of the 250 Camponotus consobrinus caught for the study, 90(36.0%) were caught in the kitchen, 75(30.0%) in the bedrooms 40(16.0%) in the bakery while 45(18.0%) were caught in the shops. A total of 82.0% prevalence of different microbial isolates was associated with the ants. The kitchen had the highest number of isolates 75(36.6%) followed by the bedroom 55(26.8%) while the bakery recorded the lowest number of isolates 35(17.1%). The profile of micro-organisms associated with Camponotus consobrinus was Escherichia coli 73(30.0%), Morganella morganii 45(18.0%), Candida species 25(10.0%), Serratia marcescens 10(4.0%) and Citrobacter freundii 10(4.0%). Conclusion: Most of the Camponotus consobrinus examined in the four locations harboured potential pathogens. The presence of ants in homes and shops can facilitate the propagation and spread of pathogenic microorganisms. Therefore, the development of basic preventive measures and the control of ants must be taken seriously.

Keywords: Camponotus consobrinus, potential pathogens, microbial isolates, spread

Procedia PDF Downloads 141
1128 Immobilizing Quorum Sensing Inhibitors on Biomaterial Surfaces

Authors: Aditi Taunk, George Iskander, Kitty Ka Kit Ho, Mark Willcox, Naresh Kumar

Abstract:

Bacterial infections on biomaterial implants and medical devices accounts for 60-70% of all hospital acquired infections (HAIs). Treatment or removal of these infected devices results in high patient mortality and morbidity along with increased hospital expenses. In addition, with no effective strategies currently available and rapid development of antibacterial resistance has made device-related infections extremely difficult to treat. Therefore, in this project we have developed biomaterial surfaces using antibacterial compounds that inhibit biofilm formation by interfering with the bacterial communication mechanism known as quorum sensing (QS). This study focuses on covalent attachment of potent quorum sensing (QS) inhibiting compounds, halogenated furanones (FUs) and dihydropyrrol-2-ones (DHPs), onto glass surfaces. The FUs were attached by photoactivating the azide groups on the surface, and the acid functionalized DHPs were immobilized on amine surface via EDC/NHS coupling. The modified surfaces were tested in vitro against pathogenic organisms such as Staphylococcus aureus and Pseudomonas aeruginosa using confocal laser scanning microscopy (CLSM). Successful attachment of compounds on the substrates was confirmed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antibacterial efficacy was assessed, and significant reduction in bacterial adhesion and biofilm formation was observed on the FU and DHP coated surfaces. The activity of the coating was dependent upon the type of substituent present on the phenyl group of the DHP compound. For example, the ortho-fluorophenyl DHP (DHP-2) exhibited 79% reduction in bacterial adhesion against S. aureus and para-fluorophenyl DHP (DHP-3) exhibited 70% reduction against P. aeruginosa. The results were found to be comparable to DHP coated surfaces prepared in earlier study via Michael addition reaction. FUs and DHPs were able to retain their in vitro antibacterial efficacy after covalent attachment via azide chemistry. This approach is a promising strategy to develop efficient antibacterial biomaterials to reduce device related infections.

Keywords: antibacterial biomaterials, biomedical device-related infections, quorum sensing, surface functionalization

Procedia PDF Downloads 247
1127 Biosynthesis of Silver Nanoparticles from Leaf Extract of Tithonia diversifolia and Its Antimicrobial Properties

Authors: Babatunde Oluwole Ogunsile, Omosola Monisola Fasoranti

Abstract:

High costs and toxicological hazards associated with the physicochemical methods of producing nanoparticles have limited their widespread use in clinical and biomedical applications. An ethically sound alternative is the utilization of plant bioresources as a low cost and eco–friendly biological approach. Silver nanoparticles (AgNPs) were synthesized from aqueous leaf extract of Tithonia diversifolia plant. The UV-Vis Spectrophotometer was used to monitor the formation of the AgNPs at different time intervals and different ratios of plant extract to the AgNO₃ solution. The biosynthesized AgNPs were characterized by FTIR, X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Antimicrobial activities of the AgNPs were investigated against ten human pathogens using agar well diffusion method. The AgNPs yields were modeled using a second-order factorial design. The result showed that the rate of formation of the AgNPs increased with respect to time while the optimum ratio of plant extract to the AgNO₃ solution was 1:1. The hydroxyl group was strongly involved in the bioreduction of the silver salt as indicated by the FTIR spectra. The synthesized AgNPs were crystalline in nature, with a uniformly distributed network of the web-like structure. The factorial model predicted the nanoparticles yields with minimal errors. The nanoparticles were active against all the tested pathogens and thus have great potentials as antimicrobial agents.

Keywords: antimicrobial activities, green synthesis, silver nanoparticles, Tithonia diversifolia

Procedia PDF Downloads 125
1126 Detection and Molecular Identification of Bacteria Forming Polyhydroxyalkanoate and Polyhydroxybutyrate Isolated from Soil in Saudi Arabia

Authors: Ali Bahkali, Rayan Yousef Booq, Mohammad Khiyami

Abstract:

Soil samples were collected from five different regions in the Kingdom of Saudi Arabia. Microbiological methods included dilution methods and pour plates to isolate and purify bacteria soil. The ability of isolates to develop biopolymer was investigated on petri dishes containing elements and substance concentrations stimulating developing biopolymer. Fluorescent stains, Nile red and Nile blue were used to stain the bacterial cells developing biopolymers. In addition, Sudan black was used to detect biopolymers in bacterial cells. The isolates which developed biopolymers were identified based on their gene sequence of 1 6sRNA and their ability to grow and synthesize PHAs on mineral medium supplemented with 1% dates molasses as the only carbon source under nitrogen limitation. During the study 293 bacterial isolates were isolated and detected. Through the initial survey on the petri dishes, 84 isolates showed the ability to develop biopolymers. These bacterial colonies developed a pink color due to accumulation of the biopolymers in the cells. Twenty-three isolates were able to grow on dates molasses, three strains of which showed the ability to accumulate biopolymers. These strains included Bacillus sp., Ralstonia sp. and Microbacterium sp. They were detected by Nile blue A stain with fluorescence microscopy (OLYMPUS IX 51). Among the isolated strains Ralstonia sp. was selected after its ability to grow on molasses dates in the presence of a limited nitrogen source was detected. The optimum conditions for formation of biopolymers by isolated strains were investigated. Conditions studied included, best incubation duration (2 days), temperature (30°C) and pH (7-8). The maximum PHB production was raised by 1% (v1v) when using concentrations of dates molasses 1, 2, 3, 4 and 5% in MSM. The best inoculated with 1% old inoculum (1= OD). The ideal extraction method of PHA and PHB proved to be 0.4% sodium hypochlorite solution, producing a quantity of polymer 98.79% of the cell's dry weight. The maximum PHB production was 1.79 g/L recorded by Ralstonia sp. after 48 h, while it was 1.40 g/L produced by R.eutropha ATCC 17697 after 48 h.

Keywords: bacteria forming polyhydroxyalkanoate, detection, molecular, Saudi Arabia

Procedia PDF Downloads 324
1125 Cytotoxic Effect of Neem Seed Extract (Azadirachta indica) in Comparison with Artificial Insecticide Novastar on Haemocytes (THC and DHC) of Musca domestica

Authors: Muhammad Zaheer Awan, Adnan Qadir, Zeeshan Anjum

Abstract:

Housefly, Musca domestica Linnaeus is ubiquitous and hazardous for Homo sapiens and livestock in sundry venerations. Musca domestica cart 100 different pathogens, such as typhoid, salmonella, bacillary dysentery, tuberculosis, anthrax and parasitic worms. The flies in rural areas usually carry more pathogens. Houseflies feed on liquid or semi-liquid substances besides solid materials which are softened by saliva. Neem botanically known as Azadirachta indica belongs to the family Meliaceae and is an indigenous tree to Pakistan. The neem tree is also one such tree which has been revered by the Pakistanis and Kashmiris for its medicinal properties. Present study showed neem seed extract has potentially toxic ability that affect Total Haemocyte Count (THC) and Differential Haemocytes Count (DHC) in insect’s blood cells, of the housefly. A significant variation in haemolymph density was observed just after application, 30 minutes and 60 minutes post treatment in term of THC and DHC in comparison with novastar. The study strappingly acclaim use of neem seed extract as insecticide as compare to artificial insecticides.

Keywords: neem, Azadirachta indica, Musca domestica, differential haemocyte count (DHC), total haemocytes count (DHC), novastar

Procedia PDF Downloads 181
1124 Modulation of the Innate Immune Response in Bovine Udder Tissue by Epigenetic Modifiers

Authors: Holm Zerbe, Laura Macias, Hans-Joachim Schuberth, Wolfram Petzl

Abstract:

Mastitis is among the most important production diseases in cows. It accounts for large parts of antimicrobial drug use in the dairy industry worldwide. Due to the imminent normative to reduce the use of antimicrobial drugs in livestock, new ways for therapy and prophylaxis of mastitis are needed. Recently epigenetic regulation of inflammation by chromatin modifications has increasingly drawn attention. Currently, some epigenetic modifiers have already been approved for the use in humans, however little is known about their actions in the bovine system. The aim of our study was to investigate whether three selected epigenetic modifiers (Vitamin D3, SAHA and S2101) influence the initial immune response towards mastitis pathogens in bovine udder tissue in vitro. Tissue explants of the teat cistern and udder parenchyma were collected from 21 cows and were incubated for 36 hours in the absence and presence of epigenetic modifiers. Additionally, the tissue was stimulated with heat-inactivated particles of Escherichia coli and Staphylococcus aureus, which are regarded as two of the most important mastitis pathogens. After incubation, the explants were tested by RT-qPCR for transcript abundances of immune-related candidate genes. Gene expression was validated in culture supernatants by an AlphaLISA assay. Furthermore, the culture supernatants were analyzed for their chemotactic capacity through a chemotaxis assay. Statistical analysis of data was performed with the program ‘R’ version 3.2.3. Vitamin D3 had no effect on the immune response of udder tissue in vitro after stimulation with mastitis pathogens. The epigenetic modifiers SAHA and S2101 however significantly blocked the pathogen-induced upregulation of CXCL8, TNFα, S100A9 and LAP (P < 0.05). The regulation of IL10 was not affected by treatment with SAHA and S2101. Transcript abundances for CXCL8 were reflected by IL8 contents and chemotactic activity in culture supernatants. In conclusion, these data show the potential of epigenetic modifiers (SAHA and S2101) to block overshooting inflammation in the udder. Thus epigenetic modifiers may serve in future as immune modulators for the treatment and/or prophylaxis of clinical mastitis. (Funded by Deutsche Forschungsgemeinschaft PE 1495/2-1).

Keywords: mastitis, cattle, epigenetics, immunomodulation

Procedia PDF Downloads 209
1123 Removal of Polycyclic Aromatic Hydrocarbons (PAHS) and the Response of Indigenous Bacteria in Highly Contaminated Aged Soil after Persulfate Oxidation

Authors: Yaling Gou, Sucai Yang, Pengwei Qiao

Abstract:

Integrated chemical-biological treatment is an attractive alternative to remove polycyclic aromatic hydrocarbons (PAHs) from contaminated soil; wherein indigenous bacteria is the key factor for the biodegradation of residual PAHs concentrations after the application of chemical oxidation. However, the systematical study on the impact of persulfate (PS) oxidation on indigenous bacteria as well as PAHs removal is still scarce. In this study, the influences of different PS dosages (1%, 3%, 6%, and 10% [w/w]), as well as various activation methods (native iron, H2O2, alkaline, ferrous iron, and heat) on PAHs removal and indigenous bacteria in highly contaminated aged soil were investigated. Apparent degradation of PAHs in the soil treated with PS oxidation was observed, and the removal efficiency of total PAHs in the soil ranged from 38.28% to 79.97%. The removal efficiency of total PAHs in the soil increased with increasing consumption of PS. However, the bacterial abundance in soil was negatively affected following oxidation for all of the treatments added with PS, with bacterial abundance in the soil decreased by 0.89~2.88 orders of magnitude compared to the untreated soil. Moreover, the number of total bacteria in the soil decreased as PS consumption increased. Different PS activation methods and PS dosages exhibited different influences on the bacterial community composition. Bacteria capable of degrading PAHs under anoxic conditions were composed predominantly by Proteobacteria and Firmicutes. The total amount of Proteobacteria and Firmicutes also decreased with increasing consumption of PS. The results of this study provide important insight into the design of PAHs contaminated soil remediation projects.

Keywords: activation method, chemical oxidation, indigenous bacteria, polycyclic aromatic hydrocarbon

Procedia PDF Downloads 101
1122 Levansucrase from Zymomonas Mobilis KIBGE-IB14: Production Optimization and Characterization for High Enzyme Yield

Authors: Sidra Shaheen, Nadir Naveed Siddiqui, Shah Ali Ul Qader

Abstract:

In recent years, significant progress has been made in discovering and developing new bacterial polysaccharides producing organisms possessing extremely functional properties. Levan is a natural biopolymer of fructose which is produced by transfructosylation reaction in the presence of levansucrase. It is one of the industrially promising enzymes that offer a variety of industrial applications in the field of cosmetics, foods and pharmaceuticals. Although levan has significant applications but the yield of levan produced is not equal to other biopolymers due to the inefficiency of producer microorganism. Among wide range of levansucrase producing microorganisms, Zymomonas mobilis is considered as a potential candidate for large scale production of this natural polysaccharide. The present investigation is concerned with the isolation of levansucrase producing natural isolate having maximum enzyme production. Furthermore, production parameters were optimized to get higher enzyme yield. Levansucrase was partially purified and characterized to study its applicability on industrial scale. The results of this study revealed that the bacterial strain Z. mobilis KIBGE-IB14 was the best producer of levansucrase. Bacterial growth and enzyme production was greatly influenced by physical and chemical parameters. Maximum levansucrase production was achieved after 24 hours of fermentation at 30°C using modified medium of pH-6.5. Contrary to other levansucrases, the one presented in the current study is able to produce high amount of products in relatively short period of time with optimum temperature at 35°C. Due to these advantages, this enzyme can be used on large scale for commercial production of levan and other important metabolites.

Keywords: levansucrase, metabolites, polysaccharides, transfructosylation

Procedia PDF Downloads 481
1121 [Keynote Talk]: The Challenges and Solutions for Developing Mobile Apps in a Small University

Authors: Greg Turner, Bin Lu, Cheer-Sun Yang

Abstract:

As computing technology advances, smartphone applications can assist in student learning in a pervasive way. For example, the idea of using a mobile apps for the PA Common Trees, Pests, Pathogens, in the field as a reference tool allows middle school students to learn about trees and associated pests/pathogens without bringing a textbook. In the past, some researches study the mobile software Mobile Application Software Development Life Cycle (MADLC) including traditional models such as the waterfall model, or more recent Agile Methods. Others study the issues related to the software development process. Very little research is on the development of three heterogenous mobile systems simultaneously in a small university where the availability of developers is an issue. In this paper, we propose to use a hybride model of Waterfall Model and the Agile Model, known as the Relay Race Methodology (RRM) in practice, to reflect the concept of racing and relaying for scheduling. Based on the development project, we observe that the modeling of the transition between any two phases is manifested naturally. Thus, we claim that the RRM model can provide a de fecto rather than a de jure basis for the core concept in the MADLC. In this paper, the background of the project is introduced first. Then, the challenges are pointed out followed by our solutions. Finally, the experiences learned and the future work are presented.

Keywords: agile methods, mobile apps, software process model, waterfall model

Procedia PDF Downloads 385
1120 Proniosomes as a Carrier for Ocular Drug Delivery

Authors: Rawia M. Khalil, Ghada Abd-Elbary, Mona Basha, Ghada E. A. Awad, Hadeer A. Elhashemy

Abstract:

Background: Bacterial infections of the eye are the clinical conditions responsible for ocular morbidity and blindness. Conjunctivitis is an inflammation of the conjunctiva, due to Staphylococcus aureus. Lomefloxacin HCl (LXN) is a third generation flouroquinolone antibiotic with a broad spectrum against wide range of bacteria and very effective against Staph infections especially in conjunctiva (conjunctivitis). The present study aims to develop and evaluate novel ocular proniosomal gels of Lomefloxacin Hcl (LXN); in order to improve its ocular bioavailability for the management of bacterial conjunctivitis. Materials and methods: Proniosomes were prepared by coacervation phase separation method using different types of nonionic surfactants (Span 60,40,20,Tween 20,40,60,80,Brij 35,98,72) solely and as mixtures with Span® 60. The formed gels were characterized for entrapment efficiency, vesicle size and in vitro drug release. The optimum proniosomal gel; P-LXN 7 were characterized for pH measurement, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) as well as Stability study and microbiological evaluation .The results revealed that only Span 60 was able to form stable LXN proniosomal gel when used individually while the other nonionic surfactants formed gels only in combination with Span 60 at different ratios. The optimum proniosomal gel; P-LXN 7 (Span60:Tween60, 9:1) appeared as spherical shaped vesicles having high entrapment efficiency (>80 %), appropriate vesicle size (187 nm) as well as controlled drug release over 12h. DSC confirmed the amorphous nature and the uniformity of LXN inclusion within the vesicles. Physical stability study did not show any significant changes in appearance or entrapment efficiency or vesicle size after storage for 3 months at 4°C. Ocular irritancy test revealed that P-LXN 7 was safe, well tolerable and suitable for ocular delivery. In vivo antibacterial activity of P-LXN 7 evaluated using the susceptibility test and topical therapy of induced ocular conjunctivitis confirmed the enhanced antibacterial therapeutic efficacy of the LXN-proniosomal gel compared to the commercially available LXN eye drops; Orchacin®. Conclusions: Our results suggest that proniosomal gels could provide a promising carrier of LXN for efficient ocular treatment of bacterial conjunctivitis.

Keywords: bacterial conjunctivitis, lomefloxacin HCl, ocular drug delivery, proniosomes

Procedia PDF Downloads 205
1119 Bacterial Decontamination of Nurses' White Coats by Application of Antimicrobial Finish

Authors: Priyanka Gupta, Nilanjana Bairagi, Deepti Gupta

Abstract:

New pathogenic strains of microbes are continually emerging and resistance of bacteria to antibiotics is growing. Hospitals in India have a high burden of infections in their intensive care units and general wards. Rising incidence of hospital infections is a matter of great concern in India. This growth is often attributed to the absence of effective infection control strategies in healthcare facilities. Government, therefore, is looking for cost effective strategies that are effective against HAIs. One possible method is by application of an antimicrobial finish on the uniform. But there are limited studies to show the effect of antimicrobial activity of antimicrobial finish treated nurses’ uniforms in a real hospital set up. This paper proposes a prospective non-destructive sampling technique, based on the use of a detachable fabric patch, to assess the effectiveness of silver based antimicrobial agent across five wards in a tertiary care government hospital in Delhi, India. Fabrics like polyester and polyester cotton blend fabric which are more prevalent for making coats were selected for the study. Polyester and polyester cotton blend fabric was treated with silver based antimicrobial (AM) finish. At the beginning of shift, a composite patch of untreated and treated fabric respectively was stitched on the abdominal region on the left and right side of the washed white coat of participating nurse. At the end of the shift, the patch was removed and taken for bacterial sampling on Brain Heart Infusion (BHI) plates. Microbial contamination on polyester and blend fabrics after 6 hours shift was compared in Brain Heart Infusion broth (BHI). All patches treated with silver based antimicrobial agent showed decreased bacterial counts. Percent reduction in the bacterial colonies after the antimicrobial treatment in both fabrics was 81.0 %. Antimicrobial finish was equally effective in reducing microbial adhesion on both fabric types. White coats of nurses become progressively contaminated during clinical care. Type of fabric used to make the coat can affect the extent of contamination which is higher on polyester cotton blend as compared to 100% polyester. The study highlights the importance of silver based antimicrobial finish in the area of uniform hygiene. Bacterial load can be reduced by using antimicrobial finish on hospital uniforms. Hospital staff uniforms endowed with antimicrobial properties may be of great help in reducing the occurrence and spread of infections.

Keywords: antimicrobial finish, bacteria, infection control, silver, white coat

Procedia PDF Downloads 191
1118 Development of 4-Allylpyrocatechol Loaded Self-Nanoemulsifying Drug Delivery System for Enhancing Water Solubility and Antibacterial Activity against Oral Pathogenic Bacteria

Authors: Pimpak Phumat, Sakornrat Khongkhunthian, Thomas Rades, Anette Müllertz, Siriporn Okonogi

Abstract:

Self-nanoemulsifying drug delivery systems (SNEDDS) containing 4-allylpyrocatechol (AP) extracted from Piper betle were developed to enhance water solubility of AP by using modeling and design (MODDE) program. The amount of AP in each SNEDDS formulation was determined by using high-performance liquid chromatography. The formulation consisted of 20% Miglyol®812N, 40 % Kolliphor®RH40, 30 % Maisine®35-1 and 10 % ethanol was found to be the best SNEDDS that provided the highest loading capacity of AP. (141.48±15.64 mg/g SNEDDS). The system also showed miscibility with water. The particle shape and size of the AP-SNEDDS after dispersing in water was investigated by using a transmission electron microscope and photon correlation spectrophotometer, respectively. The results showed that they were a spherical shape, having a particle size of 34.27 ± 1.14 nm with a narrow size distribution of 0.17 ± 0.04. The particles showed negative zeta potential with a value of -21.66 ± 2.09 mV. Antibacterial activity of AP-SNEDDS containing 1.5 mg/mL of AP was investigated against Streptococcus intermedius. The effect of this system on S. intermedius cells was observed by a scanning electron microscope (SEM). The results from SEM revealed that the bacterial cells were obviously destroyed. Killing kinetic study of AP-SNEDDS was carried out. It was found that the killing rate of AP-SNEDDS against S. intermedius was dose-dependent and the bacterial reduction was 79.86 ± 0.45 % within 30 min. In comparison with chlorhexidine (CHX), AP-SNEDDS showed similar antibacterial effects against S. intermedius. It is concluded that SNEDDS is a potential system for enhancing water solubility of AP. The antibacterial study reveals that AP-SNEDDS can be a promising system to treat bacterial infection caused by S. intermedius.

Keywords: SNEDDS, 4-allylpyrocathecol, solubility, antibacterial activity, Streptococcus intermedius

Procedia PDF Downloads 98
1117 In silico Subtractive Genomics Approach for Identification of Strain-Specific Putative Drug Targets among Hypothetical Proteins of Drug-Resistant Klebsiella pneumoniae Strain 825795-1

Authors: Umairah Natasya Binti Mohd Omeershffudin, Suresh Kumar

Abstract:

Klebsiella pneumoniae, a Gram-negative enteric bacterium that causes nosocomial and urinary tract infections. Particular concern is the global emergence of multidrug-resistant (MDR) strains of Klebsiella pneumoniae. Characterization of antibiotic resistance determinants at the genomic level plays a critical role in understanding, and potentially controlling, the spread of multidrug-resistant (MDR) pathogens. In this study, drug-resistant Klebsiella pneumoniae strain 825795-1 was investigated with extensive computational approaches aimed at identifying novel drug targets among hypothetical proteins. We have analyzed 1099 hypothetical proteins available in genome. We have used in-silico genome subtraction methodology to design potential and pathogen-specific drug targets against Klebsiella pneumoniae. We employed bioinformatics tools to subtract the strain-specific paralogous and host-specific homologous sequences from the bacterial proteome. The sorted 645 proteins were further refined to identify the essential genes in the pathogenic bacterium using the database of essential genes (DEG). We found 135 unique essential proteins in the target proteome that could be utilized as novel targets to design newer drugs. Further, we identified 49 cytoplasmic protein as potential drug targets through sub-cellular localization prediction. Further, we investigated these proteins in the DrugBank databases, and 11 of the unique essential proteins showed druggability according to the FDA approved drug bank databases with diverse broad-spectrum property. The results of this study will facilitate discovery of new drugs against Klebsiella pneumoniae.

Keywords: pneumonia, drug target, hypothetical protein, subtractive genomics

Procedia PDF Downloads 159
1116 Synthesis, Antibacterial Activities, and Synergistic Effects of Novel Juglone and Naphthazarin Derivatives Against Clinical Methicillin-Resistant Staphylococcus aureus Strains

Authors: Zohra Benfodda, Valentin Duvauchelle, Chaimae Majdi, David Bénimélis, Catherine Dunyach-Remy, Patrick Meffre

Abstract:

New antibiotics are necessary to treat microbial pathogens, especially ESKAPE pathogens that are becoming increasingly resistant to available treatment. Despite the medical need, the number of newly approved drugs continues to decline. The majority of antibiotics under clinical development are natural products or derivatives thereof. 43 juglone/naphthazarin derivatives were synthesized using Minisci-type direct C–H alkylation and evaluated for their antibacterial properties against various clinical and reference Gram-positive MSSA, clinical Gram-positive MRSA. Different compounds of the synthesized series showed promising activity against clinical and reference MSSA (MIC: 1–8 μg/ml) and good efficacy against clinical MRSA (MIC: 2–8 μg/ml) strains. The synergistic effects of active compounds were evaluated with reference antibiotics (vancomycin and cloxacillin), and it was found that the antibiotic combination with those active compounds efficiently enhanced the antimicrobial activity and consequently the MIC values of reference antibiotics were lowered up to 1/16th of the original MIC. These synthesized compounds did not present hemolytic activity on sheep red blood cells. In addition to the in silico prediction of ADME profile parameter which is promising and encouraging for further development.

Keywords: juglone, naphthazarin, antibacterial, clinical MRSA, synergistic studies, MIC determination

Procedia PDF Downloads 98
1115 Synthesis of Chitosan/Silver Nanocomposites: Antibacterial Properties and Tissue Regeneration for Thermal Burn Injury

Authors: B.L. España-Sánchez, E. Luna-Hernández, R.A. Mauricio-Sánchez, M.E. Cruz-Soto, F. Padilla-Vaca, R. Muñoz, L. Granados-López, L.R. Ovalle-Flores, J.L. Menchaca-Arredondo, G. Luna-Bárcenas

Abstract:

Treatment of burn injured has been considered an important clinical problem due to the fluid control and the presence of microorganisms during the healing process. Conventional treatment includes antiseptic techniques, topical medication and surgical removal of damaged skin, to avoid bacterial growth. In order to accelerate this process, different alternatives for tissue regeneration have been explored, including artificial skin, polymers, hydrogels and hybrid materials. Some requirements consider a nonreactive organic polymer with high biocompatibility and skin adherence, avoiding bacterial infections. Chitin-derivative biopolymer such as chitosan (CS) has been used in skin regeneration following third-degree burns. The biological interest of CS is associated with the improvement of tissue cell stimulation, biocompatibility and antibacterial properties. In particular, antimicrobial properties of CS can be significantly increased when is blended with nanostructured materials. Silver-based nanocomposites have gained attention in medicine due to their high antibacterial properties against pathogens, related to their high surface area/volume ratio at nanomolar concentrations. Silver nanocomposites can be blended or synthesized with chitin-derivative biopolymers in order to obtain a biodegradable/antimicrobial hybrid with improved physic-mechanical properties. In this study, nanocomposites based on chitosan/silver nanoparticles (CS/nAg) were synthesized by the in situ chemical reduction method, improving their antibacterial properties against pathogenic bacteria and enhancing the healing process in thermal burn injuries produced in an animal model. CS/nAg was prepared in solution by the chemical reduction method, using AgNO₃ as precursor. CS was dissolved in acetic acid and mixed with different molar concentrations of AgNO₃: 0.01, 0.025, 0.05 and 0.1 M. Solutions were stirred at 95°C during 20 hours, in order to promote the nAg formation. CS/nAg solutions were placed in Petri dishes and dried, to obtain films. Structural analyses confirm the synthesis of silver nanoparticles (nAg) by means of UV-Vis and TEM, with an average size of 7.5 nm and spherical morphology. FTIR analyses showed the complex formation by the interaction of hydroxyl and amine groups with metallic nanoparticles, and surface chemical analysis (XPS) shows low concentration of Ag⁰/Ag⁺ species. Topography surface analyses by means of AFM shown that hydrated CS form a mesh with an average diameter of 10 µm. Antibacterial activity against S. aureus and P. aeruginosa was improved in all evaluated conditions, such as nAg loading and interaction time. CS/nAg nanocomposites films did not show Ag⁰/Ag⁺ release in saline buffer and rat serum after exposition during 7 days. Healing process was significantly enhanced by the presence of CS/nAg nanocomposites, inducing the production of myofibloblasts, collagen remodelation, blood vessels neoformation and epidermis regeneration after 7 days of injury treatment, by means of histological and immunohistochemistry assays. The present work suggests that hydrated CS/nAg nanocomposites can be formed a mesh, improving the bacterial penetration and the contact with embedded nAg, producing complete growth inhibition after 1.5 hours. Furthermore, CS/nAg nanocomposites improve the cell tissue regeneration in thermal burn injuries induced in rats. Synthesis of antibacterial, non-toxic, and biocompatible nanocomposites can be an important issue in tissue engineering and health care applications.

Keywords: antibacterial, chitosan, healing process, nanocomposites, silver

Procedia PDF Downloads 265
1114 The Determination of Total Microbial Count and Prevalence of Salmonella in the Shrimp Supply in Khuzestan Province

Authors: Sana Mohammad Jafar

Abstract:

Salmonella is one of the major causes of foodborne diseases throughout the world. Shrimp are an important commodity in world fishery trade. The microbiological quality of shrimp must be evaluated for assurance of shrimp. The aim of this study was to evaluate the microbiological quality and to determine the prevalence of Salmonella in shrimp sold in Khuzestan province. In this study, a total of 245 samples of shrimp sold in Khuzestan province were tested for Salmonella prevalence and total microbial population. The mean aerobic bacterial count in 50.2% of samples was 2200, in 29.8% of samples was 13,600, in 20% of samples was 36,700, and the mean aerobic bacterial count in the total samples was 20,000. (20,000 cfu/cc). Of the total samples, 33 samples were positive for Salmonella and the prevalence of Salmonella was determined 13.4%. These results indicate the possibility that shrimp contribute to foodborne infections. The improvement of shrimp quality is an important issue, and shrimp before consuming should be washed with water containing chlorine, with the aim of increasing safety. In addition, it should be avoided to eat shrimp as raw or not cooked properly.

Keywords: determination, total microbial, Salmonella, shrimp

Procedia PDF Downloads 209
1113 Effect of Cellulase Pretreatment for n-Hexane Extraction of Oil from Garden Cress Seeds

Authors: Boutemak Khalida, Dahmani Siham

Abstract:

Garden cress (Lepidium Sativum L.) belonging to the family Brassicaceae, is edible growing annual herb. Its various parts (roots, leaves and seeds) have been used to treat various human ailments. Its seed extracts have been screened for various biological activities like hypotensive, antimicrobial, bronchodilator, hypoglycaemic and antianemic. The aim of the present study is to optimize the process parameters (cellulase concentration and incubation time) of enzymatic pre-treatment of the garden cress seeds and to evaluate the effect of cellulase pre-treatment of the crushed seeds on the oil yield, physico-chemical properties and antibacterial activity and comparing to non-enzymatic method. The optimum parameters of cellulase pre-treatment were as follows: cellulase of 0,1% w/w and incubation time of 2h. After enzymatic pre-treatment, the oil was extracted by n-hexane for 1.5 h, the oil yield was 4,01% for cellulase pre-treatment as against 10,99% in the control sample. The decrease in yield might be caused a result of mucilage. Garden cress seeds are covered with a layer of mucilage which gels on contact with water. At the same time, the antibacterial activity was carried out using agar diffusion method against 4 food-borne pathogens (Escherichia coli, Salmonella typhi,Staphylococcus aureus, Bacillus subtilis). The results showed that bacterial strains are very sensitive to the oil with cellulase pre-treatment. Staphylococcus aureus is extremely sensitive with the largest zone of inhibition (40 mm), Escherichia coli and salmonella typhi had a very sensitive to the oil with a zone of inhibition (26 mm). Bacillus subtilizes is averagely sensitive which gave an inhibition of 16 mm. But it does not exhibit sensivity to the oil without enzymatic pre-treatment with a zone inhibition (< 8 mm). Enzymatic pre-treatment could be useful for antimicrobial activity of the oil, and hold a good potential for use in food and pharmaceutical industries.

Keywords: Lepidium sativum L., cellulase, enzymatic pretreatment, antibacterial activity.

Procedia PDF Downloads 437
1112 Adhesion of Staphylococcus epidermidis and Staphylococcus aureus to Intravascular cannulae

Authors: Ghadah Abusalim, Suliman Alharbi, Hesham Khalil, Milton Wainwright, Mohammad A. Khiyami

Abstract:

The use of implantable foreign devices in medicine has recently increased dramatically. Intravascular cannulae and catheters are used to administer fluids, medications, parenteral nutrition, and blood products in order to monitor hemodynamic status and also to provide hemodialysis. The early and late failure of inserted or implanted devices is largely the result of bacterial infection and may lead to the disruption of integration between the device and the tissues which surround it. Staphylococcus aureus and Staphylococcus epidermidis are widely considered to be the most common organisms causing device-related infection. Our study showed that S. aureus and S. epidermidis adhered to intravascular cannulae made up of PTFE, SPTFE and vialon. Adhesion of S. epidermidis and S. aureus to intravascular cannulae varied significantly depending upon the type of material used and the presence of coating materials. Both bacteria adhered less to PTFE followed by Vialon and SPTFE and the adhesion capacity of S. aureus and S. epidermidis increased over time. Coating intravascular cannulae with human serum albumin inhibited the adhesion of S. aureus and S. epidermidis to these cannulae, and pretreatment of cannulae with fibronectin inhibited the adhesion of S. epidermidis but increased the adhesion of S. aureus to all types of cannulae. Pretreatment of cannulae surface with potassium chloride or calcium chloride increased the adhesion of S. aureus and S. epidermidis to cannulae, suggesting a role for electrostatic forces in the mechanism of such adhesion. This study will hopefully clarify the mechanism of adhesion and provide possible means of preventing such adhesion either by the use of better material coatings or by interfering with the process of adhesion by targeting bacterial structures responsible for it. Currently we recommend the use of PTFE cannulae as they exhibit a lower bacterial adhesion capacity compared to the other tested cannulae.

Keywords: Staphylococcus epidermidis, Staphylococcus aureus, adhesion, cannulae, PTFE, Vialon

Procedia PDF Downloads 324
1111 Mechanical Properties of Organic Polymer and Exfoliated Graphite Reinforced Bacteria Cellulose Paper

Authors: T. Thompson, E. F. Zegeye

Abstract:

Bacterial Cellulose (BC) is a structural organic compound produced in the anaerobic process. This material can be a useful eco-friendly substitute for commercial textiles that are used in industries today. BC is easily and sustainably produced and has the capabilities to be used as a replacement in textiles. However, BC is extremely fragile when it completely dries. This research was conducted to improve the mechanical properties of the BC by reinforcing with an organic polymer and exfoliated graphite (EG). The BC films were grown over a period of weeks in a green tea and kombucha solution at 30 °C, then cleaned and added to an enhancing solution. The enhancing solutions were a mixture of 2.5 wt% polymer and 2.5 wt% latex solution, a 5 wt% polymer solution, a 0.20 wt% graphite solution and were each allowed to sit in a furnace for 48 h at 50 °C. Tensile test samples were prepared and tested until fracture at a strain rate of 8 mm/min. From the research with the addition of a 5 wt% polymer solution, the flexibility of the BC has significantly improved with the maximum strain significantly larger than that of the base sample. The addition of EG has also increased the modulus of elasticity of the BC by about 25%.

Keywords: bacterial cellulose, exfoliated graphite, kombucha scoby, tensile test

Procedia PDF Downloads 98
1110 An Emergence of Pinus taeda Needle Defoliation and Tree Mortality in Alabama, USA

Authors: Debit Datta, Jeffrey J. Coleman, Scott A. Enebak, Lori G. Eckhardt

Abstract:

Pinus taeda, commonly known as loblolly pine, is a crucial timber species native to the southeastern USA. An emerging problem has been encountered for the past few years, which is better to be known as loblolly pine needle defoliation (LPND), which is threatening the ecological health of southeastern forests and economic vitality of the region’s timber industry. Currently, more than 1000 hectares of loblolly plantations in Alabama are affected with similar symptoms and have created concern among southeast landowners and forest managers. However, it is still uncertain whether LPND results from one or the combination of several fungal pathogens. Therefore, the objectives of the study were to identify and characterize the fungi associated with LPND in the southeastern USA and document the damage being done to loblolly pine as a result of repeated defoliation. Identification of fungi was confirmed using classical morphological methods (microscopic examination of the infected needles), conventional and species-specific priming (SSPP) PCR, and ITS sequencing. To date, 17 species of fungi, either cultured from pine needles or formed fruiting bodies on pine needles, were identified based on morphology and genetic sequence data. Among them, brown-spot pathogen Lecanostica acicola has been frequently recovered from pine needles in both spring and summer. Moreover, Ophistomatoid fungi such as Leptographium procerum, L. terebrantis are associated with pine decline have also been recovered from root samples of the infected stands. Trees have been increasingly and repeatedly chlorotic and defoliated from 2019 to 2020. Based on morphological observations and molecular data, emerging loblolly pine needle defoliation is due in larger part to the brown-spot pathogen L. acoicola followed by pine decline pathogens L. procerum and L. terebrantis. Root pathogens were suspected to emerge later, and their cumulative effects contribute to the widespread mortality of the trees. It is more likely that longer wet spring and warmer temperatures are favorable to disease development and may be important in the disease ecology of LPND. Therefore, the outbreak of the disease is assumed to be expanded over a large geographical area in a changing climatic condition.

Keywords: brown-spot fungi, emerging disease, defoliation, loblolly pine

Procedia PDF Downloads 118
1109 Biocellulose as Platform for the Development of Multifunctional Materials

Authors: Junkal Gutierrez, Hernane S. Barud, Sidney J. L. Ribeiro, Agnieszka Tercjak

Abstract:

Nowadays the interest on green nanocomposites and on the development of more environmental friendly products has been increased. Bacterial cellulose has been recently investigated as an attractive environmentally friendly material for the preparation of low-cost nanocomposites. The formation of cellulose by laboratory bacterial cultures is an interesting and attractive biomimetic access to obtain pure cellulose with excellent properties. Additionally, properties as molar mass, molar mass distribution, and the supramolecular structure could be control using different bacterial strain, culture mediums and conditions, including the incorporation of different additives. This kind of cellulose is a natural nanomaterial, and therefore, it has a high surface-to-volume ratio which is highly advantageous in composites production. Such property combined with good biocompatibility, high tensile strength, and high crystallinity makes bacterial cellulose a potential material for applications in different fields. The aim of this investigation work was the fabrication of novel hybrid inorganic-organic composites based on bacterial cellulose, cultivated in our laboratory, as a template. This kind of biohybrid nanocomposites gathers together excellent properties of bacterial cellulose with the ones displayed by typical inorganic nanoparticles like optical, magnetic and electrical properties, luminescence, ionic conductivity and selectivity, as well as chemical or biochemical activity. In addition, the functionalization of cellulose with inorganic materials opens new pathways for the fabrication of novel multifunctional hybrid materials with promising properties for a wide range of applications namely electronic paper, flexible displays, solar cells, sensors, among others. In this work, different pathways for fabrication of multifunctional biohybrid nanopapers with tunable properties based on BC modified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (EPE) block copolymer, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and functionalized iron oxide nanoparticles will be presented. In situ (biosynthesized) and ex situ (at post-production level) approaches were successfully used to modify BC membranes. Bacterial cellulose based biocomposites modified with different EPE block copolymer contents were developed by in situ technique. Thus, BC growth conditions were manipulated to fabricate EPE/BC nanocomposite during the biosynthesis. Additionally, hybrid inorganic/organic nanocomposites based on BC membranes and inorganic nanoparticles were designed via ex-situ method, by immersion of never-dried BC membranes into different nanoparticle solutions. On the one hand, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and on the other hand superparamagnetic iron oxide nanoparticles (SPION), Fe2O3-PEO solution. The morphology of designed novel bionanocomposites hybrid materials was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In order to characterized obtained materials from the point of view of future applications different techniques were employed. On the one hand, optical properties were analyzed by UV-vis spectroscopy and spectrofluorimetry and on the other hand electrical properties were studied at nano and macroscale using electric force microscopy (EFM), tunneling atomic force microscopy (TUNA) and Keithley semiconductor analyzer, respectively. Magnetic properties were measured by means of magnetic force microscopy (MFM). Additionally, mechanical properties were also analyzed.

Keywords: bacterial cellulose, block copolymer, advanced characterization techniques, nanoparticles

Procedia PDF Downloads 205
1108 Crop Genotype and Inoculum Density Influences Plant Growth and Endophytic Colonization Potential of Plant Growth-Promoting Bacterium Burkholderia phytofirmans PsJN

Authors: Muhammad Naveed, Sohail Yousaf, Zahir Ahmad Zahir, Birgit Mitter, Angela Sessitsch

Abstract:

Most bacterial endophytes originate from the soil and enter plants via the roots followed by further spread through the inner tissues. The mechanisms allowing bacteria to colonize plants endophytically are still poorly understood for most bacterial and plant species. Specific bacterial functions are required for plant colonization, but also the plant itself is a determining factor as bacterial ability to establish endophytic populations is very often dependent on the plant genotype (cultivar) and inoculums density. The effect of inoculum density (107, 108, 109 CFU mL-1) of Burkholderia phytofirmans strain PsJN was evaluated on growth and endophytic colonization of different maize and potato cultivars under axenic and natural soil conditions. PsJN inoculation significantly increased maize seedling growth and tuber yield of potato at all inoculum density compared to uninoculated control. Under axenic condition, PsJN inoculation (108 CFU mL-1) significantly improved the germination, root/shoot length and biomass up to 62, 115, 98 and 135% of maize seedling compared to uninoculated control. In case of potato, PsJN inoculation (109 CFU mL-1) showed maximum response and significantly increased root/shoot biomass and tuber yield under natural soil condition. We confirmed that PsJN is able to colonize the rhizosphere, roots and shoots of maize and potato cultivars. The endophytic colonization increased linearly with increasing inoculum density (within a range of 8 x 104 – 3 x 107 CFU mL-1) and were highest for maize (Morignon) and potato (Romina) as compared to other cultivars. Efficient colonization of cv. Morignon and Romina by strain PsJN indicates the specific cultivar colonizing capacity of the bacteria. The findings of the study indicate the non-significant relationship between colonization and plant growth promotion in maize under axenic conditions. However, the inoculum level (109 CFU mL-1) that promoted colonization of rhizosphere and plant interior (endophytic) also best promoted growth and tuber yield of potato under natural soil conditions.

Keywords: crop genotype, inoculum density, Burkholderia phytofirmans PsJN, colonization, growth, potato

Procedia PDF Downloads 469
1107 Comparison of Bactec plus Blood Culture Media to BacT/Alert FAN plus Blood Culture Media for Identification of Bacterial Pathogens in Clinical Samples Containing Antibiotics

Authors: Recep Kesli, Huseyin Bilgin, Ela Tasdogan, Ercan Kurtipek

Abstract:

Aim: The aim of this study was to compare resin based Bactec plus aerobic/anaerobic blood culture bottles (Becton Dickinson, MD, USA) and polymeric beads based BacT/Alert FA/FN plus blood culture bottles (bioMerieux, NC, USA) in terms of microorganisms recovery rates and time to detection (TTD) in the patients receiving antibiotic treatment. Method: Blood culture samples were taken from the patients who admitted to the intensive care unit and received antibiotic treatment. Forty milliliters of blood from patients were equally distributed into four types of bottles: Bactec Plus aerobic, Bactec Plus anaerobic, BacT/Alert FA Plus, BacT/Alert FN Plus. Bactec Plus and BacT/Alert Plus media were compared to culture recovery rates and TTD. Results: Blood culture samples were collected from 382 patients hospitalized in the intensive care unit and 245 patients who were diagnosed as having bloodstream infections were included in the study. A total of 1528 Bactec Plus aerobic, Bactec Plus anaerobic, BacT/Alert FA Plus, BacT/Alert FN Plus blood culture bottles analyzed and 176, 144, 154, 126 bacteria or fungi were isolated, respectively. Gram-negative and gram-positive bacteria were significantly more frequently isolated in the resin-based Bactec Plus bottles than in the polymeric beads based BacT/Alert Plus bottles. The Bactec Plus and BacT/Alert Plus media recovery rates were similar for fungi and anaerobic bacteria. The mean TTDs in the Bactec Plus bottles were shorter than those in the BacT/Alert Plus bottles regardless of the microorganisms. Conclusion: The results of this study showed that resin-containing media is a reliable and time-saving tool for patients who are receiving antibiotic treatment due to sepsis in the intensive care unit.

Keywords: Bactec Plus, BacT/Alert Plus, blood culture, antibiotic

Procedia PDF Downloads 126
1106 Bacteria Flora in the Gut and Respiratory Organs of Clarias gariepinus in Fresh and Brackish Water Habitats of Ondo State, South/West Nigeria

Authors: Nelson R. Osungbemiro, Rafiu O. Sanni, Rotimi F. Olaniyan, Abayomi O. Olajuyigbe

Abstract:

Bacteria flora of Clarias gariepinus collected from two natural habitats namely Owena River (freshwater) and Igbokoda lagoon (brackish water) were examined using standard microbiological procedures. Thirteen bacterial species were identified. The result indicated that from the identified bacteria isolated, Vibrio sp, Proteus sp. Shigella sp. and E. coli were present in both habitats (fresh and brackish waters). Others were habitat-selective such as Salmonella sp., Pseudomonas sp, Enterococcus sp, Staphylococcus sp. that were found only in freshwater habitat. While Branhamella sp, Streptococcus sp. and Micrococcus sp. were found in brackish water habitat. Bacteria load from Owena river (freshwater) was found to be the highest load recorded at 6.21 x 104cfu. T-test analysis also revealed that there was a marked significant difference between bacterial load in guts of sampled Clarias from fresh water and brackish water habitats.

Keywords: bacteria flora, gut, Clarias gariepinus, Owena river

Procedia PDF Downloads 436
1105 Insights into Insect Vectors: Liberibacter Interactions

Authors: Murad Ghanim

Abstract:

The citrus greening disease, also known as Huanglongbing, caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) has resulted in tremendous losses and the death of millions of citrus trees worldwide. CLas is transmitted by the Asian citrus psyllid (ACP) Diaphorina citri. The closely-related bacterium Candidatus Liberibacter solanacearum (CLso), which is associated with vegetative disorders in carrots and the zebra chips disease in potatoes, is transmitted by other psyllid species including Bactericera trigonica in carrots and B. ckockerelli in potatoes. Chemical sprays are currently the prevailing method for managing these diseases for limiting psyllid populations; however, they are limited in their effectiveness. A promising approach to prevent the transmission of these pathogens is to interfere with the vector-pathogen interactions, but our understanding of these processes is very limited. CLas induces changes in the nuclear architecture in the midgut of ACP and activates programmed cell death (apoptosis) in this organ. Strikingly, CLso displayed an opposite effect in the gut of B. trigonica, showing limited apoptosis, but widespread necrosis. Electron and fluorescent microscopy further showed that CLas induced the formation of Endoplasmic reticulum (ER) inclusion- and replication-like bodies, in which it increases and multiplies. ER involvement in bacterial replication is hypothesized to be the first stage of an immune response leading to the apoptotic and necrotic responses. ER exploitation and the subsequent events that lead to these cellular and stress responses might activate a cascade of molecular responses ending up with apoptosis and necrosis. Understanding the molecular interactions that underlay the necrotic/apoptotic responses to the bacteria will increase our knowledge of ACP-CLas, and BT-CLso interactions, and will set the foundation for developing novel, and efficient strategies to disturb these interactions and inhibit the transmission.

Keywords: Liberibacter, psyllid, transmission, apoptosis, necrosis

Procedia PDF Downloads 130
1104 Molecular Detection of Tuberculosis in Dogs in the Three North-Eastern States Assam, Mizoram and Nagaland of India

Authors: A. G. Barua, Uttam Rajkhowa, Pranjal Moni Nath, Nur Abdul Kadir

Abstract:

Mycobacterium tuberculosis (MTB) is one of the most closely-related intracellular bacterial pathogens, grouped as the M. tuberculosis complex (MTC). MTB, the primary agent of human tuberculosis (TB), can develop clinical TB in animals as 75 percent of canine mycobacterial infection is caused by close contact with an infected human being. In the present study, molecular detection of TB in dogs in three North-eastern states of India, Assam Mizoram, and Nagaland was carried out. So far, there has been a lack of systematic study in these regions, hampered by slow diagnostic methods and poor infrastructure. In an attempt to rectify this situation, molecular epidemiology was carried out for nine months to detect canine TB in a sample of 340 dogs. Isolation of DNA was done with swabs (throat/nasal), nodules of lungs and fluids from 100 suspected dogs and the molecular study were carried out with the help of conventional and real-time PCR. Post-mortem study was also carried out. Our results showed that the prevalence of clinical TB in dogs from a high-risk setting was 1 percent. However, the prevalence of immunological sensitization to M. tuberculosis antigen in dogs living in contact with sputum smeared positive TB cases was almost 50 percent. The latter setting had the maximum impact in terms of TB transmission. During the study period, a survey with a standard questionnaire was carried out in the TB hospitals to study reverse zoonosis. It was observed that an infected human being was one of the major risk factors for dogs to contract the infection. This observation was drawn by examining the probable airborne transmission from humans to their pets or strays. The present study helped to discover the nuances of TB transmission more clearly and systematically as compared to other sporadic tests to detect MTB in canine.

Keywords: Assam and Nagaland, canine TB, India, molecular detection, tuberculosis

Procedia PDF Downloads 124
1103 Efficacy of Different Soil-Applied Fungicides to Manage Phytophthora Root Rot of Chili (Solanum annum) in Pakistan

Authors: Kiran Nawaz, Ahmad Ali Shahid, Sehrish Iftikhar, Waheed Anwar, Muhammad Nasir Subhani

Abstract:

Chili (Solanum annum L.) attacks by many fungal pathogens, including members of Oomycetes which are responsible for root rot in different chili growing areas of the world. Oomycetes pathogens cause economic losses in different regions of the Pakistan. Most of the plant tissues, including roots, crowns, fruit, and leaves, are vulnerable to Phytophthora capsici. It is very difficult to manage the Phytophthora root rot of chili as many commercial varieties are tremendously vulnerable to P. capsici. The causal agent of the disease was isolated on corn meal agar (CMA) and identified on a morphological basis by using available taxonomic keys. The pathogen was also confirmed on the molecular basis through internal transcribed spacer region and with other molecular markers.The Blastn results showed 100% homology with already reported sequences of P. capsici in NCBI database. Most of the farmers have conventionally relied on foliar fungicide applications to control Phytophthora root rot in spite of their incomplete effectiveness. In this study, in vitro plate assay, seed soaking and foliar applications of 6 fungicides were evaluated against root rot of chili. In vitro assay revealed that significant inhibition of linear growth was obtained with Triflumizole at 7.0%, followed by Thiophanate methyl (8.9%), Etridiazole (6.0%), Propamocarb (5.9%) and 7.5% with Mefenoxam and Iprodione for P. capsici. The promising treatments of in vitro plate bioassay were evaluated in pot experiments under controlled conditions in the greenhouse. All fungicides were applied after at 6-day intervals. Results of pot experiment showed that all treatments considerably inhibited the percentage of P. capsici root rot incidence. In addition, application of seed soaking with all six fungicides combined with the foliar spray of the same components showed the significant reduction in root rot incidence. The combine treatments of all fungicides as in vitro bioassay, seed soaking followed by foliar spray is considered non-harmful control methods which have advantages and limitation. Hence, these applications proved effective and harmless for the management of soil-borne plant pathogens.

Keywords: blastn, bioassay, corn meal agar(CMA), oomycetes

Procedia PDF Downloads 217
1102 Determination of the Presence of Antibiotic Resistance from Vibrio Species in Northern Italy

Authors: Tramuta Clara, Masotti Chiara, Pitti Monica, Adriano Daniela, Battistini Roberta, Serraca Laura, Decastelli Lucia

Abstract:

Oysters are considered filter organisms, and their raw consumption may increase health risks for consumers: it is often associated with outbreaks of gastroenteritis or enteric illnesses. Most of these foodborne diseases are caused by Vibrio strains, enteric pathogens also involved in the diffusion of genetic determinants of antibiotic resistance and their entrance along the food chain. The European Food Safety Authority (EFSA), during the European Union report on antimicrobial resistance in 2017, focused the attention about the role of food as a possible carrier of antibiotic-resistant bacteria or antibiotic-resistance genes that determine health risks for humans. This study wants to determine antibiotic resistance and antibiotic-resistance genes in Vibrio spp. isolated from Crassostrea gigas oysters collected in the Golfo della Spezia (Liguria, Italy). A total of 47 Vibrio spp. strains were isolated (ISO21872-2:2017) during the summer of 2021 from oysters of Crassostrea gigas. The strains were identified by MALDI-TOF (Bruker, Germany) mass spectrometry and tested for antibiotic susceptibility using a broth microdiluition method (ISO20776-1:2019) using Sensititre EUVSEC plates (Thermo-Fisher Scientific) to obtain the Minimum Inhibitory Concentration (MIC). The strains were tested with PCR-based biomolecular methods, according to previous works, to define the presence of 23 resistance genes of the main classes of antibiotics used in human and veterinary medicine: tet (B), tet (C), tet (D), tet (A), tet (E), tet (G ), tet (K), tet (L), tet (M), tet (O), tet (S) (tetracycline resistance); blaCTX-M, blaTEM, blaOXA, blaSHV (β-lactam resistance); mcr-1 and mcr-2 (colistin resistance); qnrA, qnrB, and qnrS (quinolone resistance); sul1, sul2 and sul3 (sulfonamide resistance). Six different species have been identified: V. alginolyticus 34% (n=16), V. harveyi 28% (n=13), V. fortis 15% (n=7), V. pelagius 8% (n=4), V. parahaemolyticus 11% (n=5) e V. chagasii 4% (n=2). The PCR assays showed the presence of the blaTEM gene on 40% of the strains (n=19). All the other genes were not detected, except for a V. alginolyticus positive for anrS gene. The broth microdiluition method results showed an high level of resistance for ciprofloxacin (62%; n=29), ampicillin (47%; n=22), and colistin (49%; n=23). Furthermore, 32% (n=15) of strains can be considered multiresistant bacteria for the simultaneous presence of resistance for three different antibiotic classes. Susceptibility towards meropenem, azithromycin, gentamicin, ceftazidime, cefotaxime, chloramphenicol, tetracycline and sulphamethoxazole reached 100%. The Vibrio species identified in this study are widespread in marine environments and can cause gastrointerstinal infections after the ingestion of raw fish products and bivalve molluscs. The level of resistance to antibiotics such as ampicillin, ciprofloxacin and colistin can be connected to anthropic factors (industrial, agricultural and domestic wastes) that promote the spread of resistance to these antibiotics. It can be also observed a strong correlation between phenotypic (resistant MIC) and genotypic (positive blaTEM gene) resistance for ampicillin on the same strains, probably due to the transfer of genetic material between bacterial strains. Consumption of raw bivalve molluscs can represent a risk for consumers heath due to the potentially presence of foodborne pathogens, highly resistant to different antibiotics and source of transferable antibiotic-resistant genes.

Keywords: vibrio species, blaTEM genes, antimicrobial resistance, PCR

Procedia PDF Downloads 54
1101 Effect of Nano Packaging Containing Ag-TiO₂ in Inactivating the Selected Bacteria Experimentally Exposed to the Chicken-Eggshell

Authors: Hamed Ahari, Sepideh Farokhi, Mohamad Reza Abedini

Abstract:

This paper focuses on inactivation of the growth of the bacterial mixture, Salmonella enteritidis, Staphylococcus aureus, Bacillus cereus and Escherichia coli, experimentally subjected to the chicken eggshell by two types of nano particle-Ag, composite film and colloidal spray carried out at concentrations of 500, 1000 and 2000 ppm over 28 days. The GLM, Repeated Measurement-ANOVA procedure was used to analyze the effect of time and concentration of nano groups on inactivation of bacteria, simultaneously. The maximum reduction of the bacterial growth was respected to the group “spray 2000 ppm” for which the value of the bacteria reached the minimum (0.93±0.42) on day 7, calculated to be 0.0 on days14 and 28 and followed by the group “spray 1000 ppm”. It was obviously concluded that increasing the dilution of nano coating in spray and film created a significant decrease in the number of bacteria colonies on the eggshells but the effect of packaging in different concentrations of nanocomposite was not statistically significant in different days of the study.

Keywords: nano particle, composite film, eggshell, bacteria

Procedia PDF Downloads 374
1100 Coordination Behavior, Theoretical Studies, and Biological Activity of Some Transition Metal Complexes with Oxime Ligands

Authors: Noura Kichou, Manel Tafergguenit, Nabila Ghechtouli, Zakia Hank

Abstract:

The aim of this work is to synthesize, characterize and evaluate the biological activity of two Ligands : glyoxime and dimethylglyoxime, and their metal Ni(II) chelates. The newly chelates were characterized by elemental analysis, IR, EPR, nuclear magnetic resonances (1H and 13C), and biological activity. The antibacterial and antifungal activities of the ligands and its metal complexes were screened against bacterial species (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) and fungi (Candida albicans). Ampicillin and amphotericin were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with parent free ligand against bacterial and fungal species. A structural, energetic, and electronic theoretical study was carried out using the DFT method, with the functional B3LYP and the gaussian program 09. A complete optimization of geometries was made, followed by a calculation of the frequencies of the normal modes of vibration. The UV spectrum was also interpreted. The theoretical results were compared with the experimental data.

Keywords: glyoxime, dimetylglyoxime, nickel, antibacterial activity

Procedia PDF Downloads 78