Search results for: bacterial leaf spot
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2084

Search results for: bacterial leaf spot

1754 Biofouling Control during the Wastewater Treatment in Self-Support Carbon Nanotubes Membrane: Role of Low Voltage Electric Potential

Authors: Chidambaram Thamaraiselvan, Carlos Dosoretz

Abstract:

This work will explore the influence of low voltage electric field, both alternating (AC) and direct (DC) currents, on biofouling control to highly electrically conductive self-supporting carbon nanotubes (CNT) membranes at conditions which encourage bacterial growth. A mutant strain of Pseudomonas putida S12 was used a model bacterium. The antibiofouling studies were performed with flow-through mode connecting an electric circuit in resistive mode. Major emphasis was placed on AC due to its ability of repulsing and inactivating bacteria. The observations indicate that an AC potential >1500 mV, 1 kHz frequency, 100 Ω external resistance on ground side and pulse wave above the offset (+0.45) almost completely prevented attachment of bacteria (>98.5%) and bacterial inactivation (95.3±2.5%). Findings suggest that at the conditions applied, direct electron transfer might be dominant in a decrease of cell viability. AC resulted more effective than DC, both in terms of biofouling reduction compared to cathodic DC and in terms of cell inactivation compared to anodic DC. This electrically polarized CNT membranes offer a viable antibiofouling strategy to hinder biofouling and simplify membrane care during filtration.

Keywords: bacterial attachment, biofouling control, low electric potential, water treatment

Procedia PDF Downloads 270
1753 Application of Acinetobacter sp. KKU44 for Cellulase Production from Agricultural Waste

Authors: Surasak Siripornadulsil, Nutt Poomai, Wilailak Siripornadulsil

Abstract:

Due to a high ethanol demand, the approach for effective ethanol production is important and has been developed rapidly worldwide. Several agricultural wastes are highly abundant in celluloses and the effective cellulose enzymes do exist widely among microorganisms. Accordingly, the cellulose degradation using microbial cellulose to produce a low-cost substrate for ethanol production has attracted more attention. In this study, the cellulose producing bacterial strain has been isolated from rich straw and identified by 16S rDNA sequence analysis as Acinetobacter sp. KKU44. This strain is able to grow and exhibit the cellulose activity. The optimal temperature for its growth and cellulose production is 37 °C. The optimal temperature of bacterial cellulose activity is 60 °C. The cellulose enzyme from Acinetobacter sp. KKU44 is heat-tolerant enzyme. The bacterial culture of 36 h. showed highest cellulose activity at 120 U/mL when grown in LB medium containing 2% (w/v). The capability of Acinetobacter sp. KKU44 to grow in cellulosic agricultural wastes as a sole carbon source and exhibiting the high cellulose activity at high temperature suggested that this strain could be potentially developed further as a cellulose degrading strain for a production of low-cost substrate used in ethanol production.

Keywords: cellulose enzyme, bagasse, rice straw, rice husk, acinetobacter sp. KKU44

Procedia PDF Downloads 313
1752 Dysbiosis of the Intestinal Microbiome in Colorectal Cancer Patients at Hospital of Amizour, Bejaia, Algeria

Authors: Adjebli Ahmed, Messis Abdelaziz, Ayeche Riad, Tighilet Karim, Talbi Melissa, Smaili Yanis, Lehri Mokrane, Louardiane Mustapha

Abstract:

Colorectal cancer is one of the most common types of cancer worldwide, and its incidence has been increasing in recent years. Data and fecal samples from colorectal cancer patients were collected at the Amizour Public Hospital's oncology department (Bejaia, Algeria). Microbiological and cohort study were conducted at the Biological Engineering of Cancers laboratory at the Faculty of Medicine of the University of Bejaia. All the data showed that patients aged between 50 and 70 years were the most affected by colorectal cancer, while the age categories of [30-40] and [40-50] were the least affected. Males were more likely to be at risk of contracting colorectal cancer than females. The most common types of colorectal cancer among the studied population were sigmoid cancer, rectal cancer, transverse colon cancer, and ascending colon cancer. The hereditary factor was found to be more dominant than other risk factors. Bacterial identification revealed the presence of certain pathogenic and opportunistic bacterial genera, such as E. coli, K. pneumoniae, Shigella sp, and Streptococcus group D. These results led us to conclude that dysbiosis of the intestinal microbiome is strongly present in colorectal cancer patients at the EPH of Amizour.

Keywords: microbiome, colorectal cancer, risk factors, bacterial identification

Procedia PDF Downloads 85
1751 Prevalence of Mycoplasma hominis and Ureaplasma urealyticum as Causative Agents of Non-Gonococcal Urethritis in Men and Determination of Anti-Bacterial Resistance Rates

Authors: Recep Keşli, Cengiz Demir, Onur Türkyılmaz

Abstract:

Objective: The aim of this study was to determine the prevalence of Mycoplasma hominis and Ureaplasma urealyticum as the causative agents in men with non-gonococcal urethtritis, and anti-bacterial resistance rates. Methods: The Study was carried out in the two Medical Microbiology Laboratories belonging to: Konya Education and Research Hospital and ANS Practice and Research Hospital, Afyon Kocatepe University, between January 2012 and December 2015. Urethral samples were obtained from patients by using a swab. Mycoplasma hominis and Ureaplasma urealyticum were detected by using Mycoplasma IST-2 kit (bio-Mérieux, Marcy l'Étoile, France). Neisseria gonorrhoea was excluded by Gram staining and culture methods. Results: Of all the one hundred and eighty-eight male patients with urethritis, forty M. hominis and forty two U. urealyticum were detected. Resistance rates of M. hominis strains against to doxycycline, ofloxacin, erythromycin, tetracycline, ciprofloxacin, azithromycin, clarithromycin, and pristinamycin were found as 5 %, 65 %, 25 %, 5 %, 80 %, 20 %, 20 %, 20 %, 5 %, respectively. Resistance rates of U. urealyticum strains against to doxycycline, ofloxacin, erythromycin, tetracycline, ciprofloxacin, azithromycin, clarithromycin, and pristinamycin were found as 4.7 %, 66.6 %, 23.8 %, 4.75 %, 81 %, 19 %, 19 %, 4.7 % respectively. No resistance was detected against to josamycin, for both the strains. Conclusions: It was concluded that; ciprofloxacin and ofloxacin had the weakest; josamycin, doxycycline, and tetracycline had the strongest in vitro anti-bacterial activity, for treatment of the NGU. So josamycin, doxycycline, and tetracycline should be preferred as the first choice of anti-bacterial agents, for treatment of the patients with non-gonococcal male urethritis.

Keywords: antimicrobial resistance, Mycoplasma hominis, non-gonococcal urethritis, Ureaplasma urealyticum

Procedia PDF Downloads 249
1750 Biodegradation of Malathion by Acinetobacter baumannii Strain AFA Isolated from Domestic Sewage in Egypt

Authors: Ahmed F. Azmy, Amal E. Saafan, Tamer M. Essam, Magdy A. Amin, Shaban H. Ahmed

Abstract:

Bacterial strains capable of degradation of malathion from the domestic sewage were isolated by an enrichment culture technique. Three bacterial strains were screened and identified as Acinetobacter baumannii (AFA), Pseudomonas aeruginosae (PS1),andPseudomonas mendocina (PS2) based on morphological, biochemical identification and 16S rRNA sequence analysis. Acinetobacter baumannii AFA was the most efficient malathion degrading bacterium, so used for further biodegradation study. AFA was able to grow in mineral salt medium (MSM) supplemented with malathion (100 mg/l) as a sole carbon source, and within 14 days, 84% of the initial dose was degraded by the isolate measured by high performance liquid chromatography. Strain AFA could also degrade other organophosphorus compounds including diazenon, chlorpyrifos and fenitrothion. The effect of different culture conditions on the degradation of malathion like inoculum density, other carbon or nitrogen sources, temperature and shaking were examined. Degradation of malathion and bacterial cell growth were accelerated when culture media were supplemented with yeast extract, glucose and citrate. The optimum conditions for malathion degradation by strain AFA were; an inoculum density of 1.5x 1012CFU/ml at 30°C with shaking. A specific polymerase chain reaction primers were designed manually using multiple sequence alignment of the corresponding carboxylesterase enzymes of Acinetobacter species. Sequencing result of amplified PCR product and phylogenetic analysis showed low degree of homology with the other carboxylesterase enzymes of Acinetobacter strains, so we suggested that this enzyme is a novel esterase enzyme. Isolated bacterial strains may have potential role for use in bioremediation of malathion contaminated.

Keywords: Acinetobacter baumannii, biodegradation, malathion, organophosphate pesticides

Procedia PDF Downloads 487
1749 Experimental Determination of Water Productivity of Improved Cassava Varieties Propagation under Rain-Fed Condition in Tropical Environment

Authors: Temitayo Abayomi Ewemoje, Isaac Olugbemiga Afolayan, Badmus Alao Tayo

Abstract:

Researchers in developing countries have worked on improving cassava resistance to diseases and pests, high yielding and early maturity However, water management has received little or no attention as cassava cultivation in Sub-Saharan Africa depended on available precipitation (rain-fed condition). Therefore the need for water management in Agricultural crop production cannot be overemphasized. As other sectors compete with agricultural sector for fresh water (which is not readily available), there is need to increase water productivity in agricultural production. Experimentation was conducted to examine water use, growth and yield of improved cassava varieties under rain fed condition using Latin- square design with four replications. Four improved disease free stem cassava varieties TMS (30572, 980505, 920326 and 090581) were planted and growth parameters of the varieties were monitored for 90 and 120 days after planting (DAP). Effective rainfall useful for the plant growth was calculated using CROPWAT8 for Windows. Results indicated TMS090581 was having the highest tuber yield and plant height while TMS30572 had highest number of nodes. Tuber stem and leaf water productivities at 90 and 120 DAP of TMS (30572, 980505, 920326 and 090581) are (1.27 and 3.58, 1.44 and 2.35, 0.89 and 1.86, 1.64 and 3.77) kg/m3 (1.56 and 2.59, 1.95 and 2.02, 1.98 and 2.05, 1.95 and 2.18) kg/m3, and (1.34 and 2.32, 1.94 and 2.16, 1.57 and 1.40, 1.27 and 1.80) kg/m3 respectively. Based on tuber water productivity TMS090581 are recommended while TMS30572 are recommended based on leaf and stem productivity in water scarce regions.Experimentation was conducted to examine water use, growth and yield of improved cassava varieties under rain fed condition using Latin- square design with four replications. Four improved disease free stem cassava varieties TMS (30572, 980505, 920326 and 090581) were planted and growth parameters of the varieties were monitored for 90 and 120 days after planting (DAP). Effective rainfall useful for the plant growth was calculated using CROPWAT8 for Windows. Results indicated TMS090581 was having the highest tuber yield and plant height while TMS30572 had the highest number of nodes. Tuber, stem and leaf water productivities at 90 and 120 DAP of TMS (30572, 980505, 920326 and 090581) are (1.27 and 3.58, 1.44 and 2.35, 0.89 and 1.86, 1.64 and 3.77) kg/m3 (1.56 and 2.59, 1.95 and 2.02, 1.98 and 2.05, 1.95 and 2.18) kg/m3, and (1.34 and 2.32, 1.94 and 2.16, 1.57 and 1.40, 1.27 and 1.80) kg/m3 respectively. Based on tuber water productivity TMS090581 are recommended while TMS30572 are recommended based on leaf and stem productivity in water scarce regions

Keywords: improved TMS varieties, leaf productivity, rain-fed cassava production, stem productivity, tuber productivity

Procedia PDF Downloads 344
1748 Determination of 1-Deoxynojirimycin and Phytochemical Profile from Mulberry Leaves Cultivated in Indonesia

Authors: Yasinta Ratna Esti Wulandari, Vivitri Dewi Prasasty, Adrianus Rio, Cindy Geniola

Abstract:

Mulberry is a plant that widely cultivated around the world, mostly for silk industry. In recent years, the study showed that the mulberry leaves have an anti-diabetic effect which mostly comes from the compound known as 1-deoxynojirimycin (DNJ). DNJ is a very potent α-glucosidase inhibitor. It will decrease the degradation rate of carbohydrates in digestive tract, leading to slower glucose absorption and reducing the post-prandial glucose level significantly. The mulberry leaves also known as the best source of DNJ. Since then, the DNJ in mulberry leaves had received a considerable attention, because of the increased number of diabetic patients and the raise of people awareness to find a more natural cure for diabetic. The DNJ content in mulberry leaves varied depend on the mulberry species, leaf’s age, and the plant’s growth environment. Few of the mulberry varieties that were cultivated in Indonesiaare Morus alba var. kanva-2, M. alba var. multicaulis, M. bombycis var. lembang, and M. cathayana. The lack of data concerning phytochemicals contained in the Indonesian mulberry leaves are restraining their use in the medicinal field. The aim of this study is to fully utilize the use of mulberry leaves cultivated in Indonesia as a medicinal herb in local, national, or global community, by determining the DNJ and other phytochemical contents in them. This study used eight leaf samples which are the young leaves and mature leaves of both Morus alba var. kanva-2, M. alba var. multicaulis, M. bombycis var. lembang, and M. cathayana. The DNJ content was analyzed using reverse phase high performance liquid chromatography (HPLC). The stationary phase was silica C18 column and the mobile phase was acetonitrile:acetic acid 0.1% 1:1 with elution rate 1 mL/min. Prior to HPLC analysis the samples were derivatized with FMOC to ensure the DNJ detectable by VWD detector at 254 nm. Results showed that the DNJ content in samples are ranging from 2.90-0.07 mg DNJ/ g leaves, with the highest content found in M. cathayana mature leaves (2.90 ± 0.57 mg DNJ/g leaves). All of the mature leaf samples also found to contain higher amount of DNJ from their respective young leaf samples. The phytochemicals in leaf samples was tested using qualitative test. Result showed that all of the eight leaf samples contain alkaloids, phenolics, flavonoids, tannins, and terpenes. The presence of this phytochemicals contribute to the therapeutic effect of mulberry leaves. The pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) analysis was also performed to the eight samples to quantitatively determine their phytochemicals content. The pyrolysis temperature was set at 400 °C, with capillary column Phase Rtx-5MS 60 × 0.25 mm ID stationary phase and helium gas mobile phase. Few of the terpenes found are known to have anticancer and antimicrobial properties. From all the results, all of four samples of mulberry leaves which are cultivated in Indonesia contain DNJ and various phytochemicals like alkaloids, phenolics, flavonoids, tannins, and terpenes which are beneficial to our health.

Keywords: Morus, 1-deoxynojirimycin, HPLC, Py-GC-MS

Procedia PDF Downloads 330
1747 Grain Yield, Morpho-Physiological Parameters and Growth Indices of Wheat (Triticum Aestivum L.) Varieties Exposed to High Temperature under Late Sown Condition

Authors: Shital Bangar, Chetana Mandavia

Abstract:

A field experiment was carried out in Factorial Randomized Block Design (FRBD) with three replications at Instructional Farm Krushigadh, Junagadh Agricultural University, Junagadh, India to assess the biochemical parameters of wheat in order to assess the thermotolerance. Nine different wheat varieties GW 433, GW 431, HI 1571, GW 432, RAJ 3765, HD 2864, HI 1563, HD 3091 and PBW 670 sown in timely and late sown conditions (i.e., 22 Nov and 6 Dec 2012) were analysed. All the varieties differed significantly with respect to grain yield morpho-physiological parameters and growth indices for time of sowing, varieties and varieties x time of sowing interactions. The observations on morpho-physiological parameters viz., germination percentage, canopy temperature depression and growth indices viz., leaf area index (LAI), leaf area ratio (LAR) were recorded. Almost all the morpho-physiological parameters, growth indices and grain yield studied were affected adversely by late sowing, registering reduction in their magnitude. Germination percentage was reduced under late sown condition but variety PBW 670 was the best. Varieties GW 432 performed better with respect to canopy temperature depression while sown late. Under late sown condition, variety GW 431 recorded higher LAI while HI 1563 had maximum LAR. Considering yield performance, HD 2864 was best under timely sown condition, while GW 433 was best under late sown condition. Varieties HI 1571, GW 433 and GW 431 could be labelled as thermo-tolerant because there was least reduction in grain yield under late sown condition (1.75 %, 7.90 % and13.8 % respectively). Considering correlation coefficient, grain yield showed very strong significant positive association with germination percentage. Leaf area ratio was strongly and significantly correlated with grain yield but in negative direction. Canopy temperature depression and leaf area index also had positive correlation with grain yield but were non-significant.

Keywords: growth indices, morpho-physiological parametrs, thermo-tolerance, wheat

Procedia PDF Downloads 440
1746 Biological Treatment of Bacterial Biofilms from Drinking Water Distribution System in Lebanon

Authors: A. Hamieh, Z. Olama, H. Holail

Abstract:

Drinking Water Distribution Systems provide opportunities for microorganisms that enter the drinking water to develop into biofilms. Antimicrobial agents, mainly chlorine, are used to disinfect drinking water, however, there are not yet standardized disinfection strategies with reliable efficacy and development of novel anti-biofilm strategies is still of major concern. In the present study the ability of Lactobacillus acidophilus and Streptomyces sp. cell free supernatants to inhibit the bacterial biofilm formation in Drinking Water Distribution System in Lebanon was investigated. Treatment with cell free supernatants of Lactobacillus acidophilus and Streptomyces sp. at 20% concentration resulted in average biofilm inhibition (52.89 and 39.66% respectively). A preliminary investigation about the mode of action of biofilm inhibition revealed that cell free supernatants showed no bacteriostatic or bactericidal activity against all the tested isolates. Pre-coating wells with supernatants revealed that Lactobacillus acidophilus cell free supernatant inhibited average biofilm formation (62.53%) by altering the adhesion of bacterial isolates to the surface, preventing the initial attachment step, which is important for biofilm production.

Keywords: biofilm, cell free supernatant, distribution system, drinking water, lactobacillus acidophilus, streptomyces sp, adhesion

Procedia PDF Downloads 434
1745 Descriptive Epidemiology of Mortality in Certain Species of Captive Deer in Pakistan

Authors: Musadiq Idris, Sajjad Ali, Syed A. Khaliq, Umer Farooq

Abstract:

Postmortem record of 217 captive ungulates including Black-buck (n=31), Chinkara (n=20), Hog deer (n=116), Spotted deer (n=35), Red Deer n=(04), and Rusa deer (n=11) submitted to the Veterinary Research Institute, Lahore, Pakistan was analyzed to determine the primary cause of mortality in these animals. The submissions included temporal distribution from Government wildlife captive farms, zoo, and private ownerships, over a three year period (2007-2009). The most common cause of death was found to be trauma (20.27%), followed by parasitic diseases (15.67%), bacterial diseases (11.98%), stillbirths (9.21%), snakebites (2.76%), gut affections (2.30%), neoplasia (1.38%) and starvation (0.92%). The exact cause of death could not be determined in 77 of 217 animals. Pneumonia (8.29%) and tuberculosis (3.69%) were the most common bacterial diseases. Analyses for parasitic infestation revealed tapeworms to be highest (11.05%), followed by roundworms (8.29%) and hemoparasitism (5.07%) (babesiosis and theileriosis). The mortality rate in young ungulates was lower as compared to adults (32.26% and 67.74%). Gender wise data presented higher mortality in females (55.30%) compared to males (44.70%). In conclusion, highest mortality factor in captive ungulates was trauma, followed by parasitic and bacterial infestations/infections of tapeworms and pneumonia, respectively. Furthermore, necropsies provided substantial information on etiology of death and other related epidemiological aspects.

Keywords: age, epidemiology, gender, mortality, ungulates

Procedia PDF Downloads 471
1744 Role of Autophagic Lysosome Reformation for Cell Viability in an in vitro Infection Model

Authors: Muhammad Awais Afzal, Lorena Tuchscherr De Hauschopp, Christian Hübner

Abstract:

Introduction: Autophagy is an evolutionarily conserved lysosome-dependent degradation pathway, which can be induced by extrinsic and intrinsic stressors in living systems to adapt to fluctuating environmental conditions. In the context of inflammatory stress, autophagy contributes to the elimination of invading pathogens, the regulation of innate and adaptive immune mechanisms, and regulation of inflammasome activity as well as tissue damage repair. Lysosomes can be recycled from autolysosomes by the process of autophagic lysosome reformation (ALR), which depends on the presence of several proteins including Spatacsin. Thus ALR contributes to the replenishment of lysosomes that are available for fusion with autophagosomes in situations of increased autophagic turnover, e.g., during bacterial infections, inflammatory stress or sepsis. Objectives: We aimed to assess whether ALR plays a role for cell survival in an in-vitro bacterial infection model. Methods: Mouse embryonic fibroblasts (MEFs) were isolated from wild-type mice and Spatacsin (Spg11-/-) knockout mice. Wild-type MEFs and Spg11-/- MEFs were infected with Staphylococcus aureus (multiplication of infection (MOI) used was 10). After 8 and 16 hours of infection, cell viability was assessed on BD flow cytometer through propidium iodide intake. Bacterial intake by cells was also calculated by plating cell lysates on blood agar plates. Results: in-vitro infection of MEFs with Staphylococcus aureus showed a marked decrease of cell viability in ALR deficient Spatacsin knockout (Spg11-/-) MEFs after 16 hours of infection as compared to wild-type MEFs (n=3 independent experiments; p < 0.0001) although no difference was observed for bacterial intake by both genotypes. Conclusion: Suggesting that ALR is important for the defense of invading pathogens e.g. S. aureus, we observed a marked increase of cell death in an in-vitro infection model in cells with compromised ALR.

Keywords: autophagy, autophagic lysosome reformation, bacterial infections, Staphylococcus aureus

Procedia PDF Downloads 144
1743 Mathematical Modelling of Bacterial Growth in Products of Animal Origin in Storage and Transport: Effects of Temperature, Use of Bacteriocins and pH Level

Authors: Benjamin Castillo, Luis Pastenes, Fernando Cordova

Abstract:

The pathogen growth in animal source foods is a common problem in the food industry, causing monetary losses due to the spoiling of products or food intoxication outbreaks in the community. In this sense, the quality of the product is reflected by the population of deteriorating agents present in it, which are mainly bacteria. The factors which are likely associated with freshness in animal source foods are temperature and processing, storage, and transport times. However, the level of deterioration of products depends, in turn, on the characteristics of the bacterial population, causing the decomposition or spoiling, such as pH level and toxins. Knowing the growth dynamics of the agents that are involved in product contamination allows the monitoring for more efficient processing. This means better quality and reasonable costs, along with a better estimation of necessary time and temperature intervals for transport and storage in order to preserve product quality. The objective of this project is to design a secondary model that allows measuring the impact on temperature bacterial growth and the competition for pH adequacy and release of bacteriocins in order to describe such phenomenon and, thus, estimate food product half-life with the least possible risk of deterioration or spoiling. In order to achieve this objective, the authors propose an analysis of a three-dimensional ordinary differential which includes; logistic bacterial growth extended by the inhibitory action of bacteriocins including the effect of the medium pH; change in the medium pH levels through an adaptation of the Luedeking-Piret kinetic model; Bacteriocin concentration modeled similarly to pH levels. These three dimensions are being influenced by the temperature at all times. Then, this differential system is expanded, taking into consideration the variable temperature and the concentration of pulsed bacteriocins, which represent characteristics inherent of the modeling, such as transport and storage, as well as the incorporation of substances that inhibit bacterial growth. The main results lead to the fact that temperature changes in an early stage of transport increased the bacterial population significantly more than if it had increased during the final stage. On the other hand, the incorporation of bacteriocins, as in other investigations, proved to be efficient in the short and medium-term since, although the population of bacteria decreased, once the bacteriocins were depleted or degraded over time, the bacteria eventually returned to their regular growth rate. The efficacy of the bacteriocins at low temperatures decreased slightly, which equates with the fact that their natural degradation rate also decreased. In summary, the implementation of the mathematical model allowed the simulation of a set of possible bacteria present in animal based products, along with their properties, in various transport and storage situations, which led us to state that for inhibiting bacterial growth, the optimum is complementary low constant temperatures and the initial use of bacteriocins.

Keywords: bacterial growth, bacteriocins, mathematical modelling, temperature

Procedia PDF Downloads 135
1742 Antibacterial Activity of Silver Nanoparticles of Extract of Leaf of Nauclea latifolia (Sm.) against Some Selected Clinical Isolates

Authors: Mustapha Abdulsalam, R. N. Ahmed

Abstract:

Nauclea latifolia is one of the medicinal plants used in traditional Nigerian medicine in the treatment of various diseases such as fever, toothaches, malaria, diarrhea among several other conditions. Nauclea latifolia leaf extract acts as a capping and reducing agent in the formation of silver nanoparticles. Silver nanoparticles (AgNPs) were synthesized using a combination of aqueous extract of Nauclea latifolia and 1mM of silver nitrate (AgNO₃) solution to obtain concentrations of 100mg/ml-400mg/ml. Characterization of the particles was done by UV-Vis spectroscopy and Fourier transform infrared (FTIR). In this study, aqueous as well as ethanolic extract of leaf of Nauclea latifolia were investigated for antibacterial activity using the standard agar well diffusion technique against three clinical isolates (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa). The Minimum Inhibitory Concentration (MIC) was achieved by microbroth dilution method and Minimum Bactericidal Concentration (MBC) was also determined by plate assay. Characterization by UV-visible spectrometry revealed peak absorbance of 0.463 at 450.0nm, while FTIR showed the presence of two functional groups. At 400mg/ml, the highest inhibitory activities were observed with S.aureus and E.coli with zones of inhibition measuring 20mm and 18mm respectively. The MIC was obtained at 400mg/ml while MBC was at a higher concentration. The data from this study indicate the potential of silver nanoparticle of Nauclea latifolia as a suitable alternative antibacterial agent for incorporation into orthodox medicine in health care delivery in Nigeria.

Keywords: agar well diffusion, antimicrobial activity, Nauclea latifolia, silver nanoparticles

Procedia PDF Downloads 206
1741 Inter-Specific Differences in Leaf Phenology, Growth of Seedlings of Cork OAK (Quercus suber L.), Zeen Oak (Quercus canariensis Willd.) and Their Hybrid Afares Oak (Quercus afares Pomel) in the Nursery

Authors: S. Mhamdi, O. Brendel, P. Montpied, K. Ben Yahia, N. Saouyah, B. Hasnaoui, E. Dreyer

Abstract:

Leaf Life Span (LLS) is used to classify trees into two main groups: evergreen and deciduous species. It varies according to the forms of life between taxonomic groups. Co-occurrence of deciduous and evergreen oaks is common in some Mediterranean type climate areas. Nevertheless, in the Tunisian forests, there is no enough information about the functional inter-specific diversity among oak species, especially in the mixed stand marked by the simultaneous presence of Q. suber L., Q. canariensis Willd. and their hybrid (Q. afares), the latter being an endemic oak species threatened with extinction. This study has been conducted to estimate the LLS, the relative growth rate, and the count of different growth flushes of samplings in semi-controlled conditions. Our study took 17 months, with an observation's interval of 4 weeks. The aim is to characterize and compare the hybrid species to the parental ones. Differences were observed among species, both for phenology and growth. Indeed, Q. suber saplings reached higher total height and number of growth flushes then Q. canariensis, while Q. afares showed much less growth flushes than the parental species. The LLS of parental species has exceeded the duration of the experiment, but their hybrid lost all leaves on all cohorts. The short LLSs of hybrid species are in accordance with this phenology in the field, but for Q. canariensis there was a contrast with observations in the field where phenology is strictly annual. This study allowed us to differentiate the hybrid from both parental species.

Keywords: leaf life span, growth, hybrid, Q. afares Pomel, Q. suber L., Q.canariensis Willd

Procedia PDF Downloads 362
1740 Phylogenetic Differential Separation of Environmental Samples

Authors: Amber C. W. Vandepoele, Michael A. Marciano

Abstract:

Biological analyses frequently focus on single organisms, however many times, the biological sample consists of more than the target organism; for example, human microbiome research targets bacterial DNA, yet most samples consist largely of human DNA. Therefore, there would be an advantage to removing these contaminating organisms. Conversely, some analyses focus on a single organism but would greatly benefit from the additional information regarding the other organismal components of the sample. Forensic analysis is one such example, wherein most forensic casework, human DNA is targeted; however, it typically exists in complex non-pristine sample substrates such as soil or unclean surfaces. These complex samples are commonly comprised of not just human tissue but also microbial and plant life, where these organisms may help gain more forensically relevant information about a specific location or interaction. This project aims to optimize a ‘phylogenetic’ differential extraction method that will separate mammalian, bacterial and plant cells in a mixed sample. This is accomplished through the use of size exclusion separation, whereby the different cell types are separated through multiple filtrations using 5 μm filters. The components are then lysed via differential enzymatic sensitivities among the cells and extracted with minimal contribution from the preceding component. This extraction method will then allow complex DNA samples to be more easily interpreted through non-targeting sequencing since the data will not be skewed toward the smaller and usually more numerous bacterial DNAs. This research project has demonstrated that this ‘phylogenetic’ differential extraction method successfully separated the epithelial and bacterial cells from each other with minimal cell loss. We will take this one step further, showing that when adding the plant cells into the mixture, they will be separated and extracted from the sample. Research is ongoing, and results are pending.

Keywords: DNA isolation, geolocation, non-human, phylogenetic separation

Procedia PDF Downloads 112
1739 The Possible Double-Edged Sword Effects of Online Learning on Academic Performance: A Quantitative Study of Preclinical Medical Students

Authors: Atiwit Sinyoo, Sekh Thanprasertsuk, Sithiporn Agthong, Pasakorn Watanatada, Shaun Peter Qureshi, Saknan Bongsebandhu-Phubhakdi

Abstract:

Background: Since the SARS-CoV-2 virus became extensively disseminated throughout the world, online learning has become one of the most hotly debated topics in educational reform. While some studies have already shown the advantage of online learning, there are still questions concerning how online learning affects students’ learning behavior and academic achievement when each student learns in a different way. Hence, we aimed to develop a guide for preclinical medical students to avoid drawbacks and get benefits from online learning that possibly a double-edged sword. Methods: We used a multiple-choice questionnaire to evaluate the learning behavior of second-year Thai medical students in the neuroscience course. All traditional face-to-face lecture classes were video-recorded and promptly posted to the online learning platform throughout this course. Students could pick and choose whatever classes they wanted to attend, and they may use online learning as often as they wished. Academic performance was evaluated as summative score, spot exam score and pre-post-test improvement. Results: More frequently students used online learning platform, the less they attended lecture classes (P = 0.035). High proactive online learners (High PO) who were irregular attendee (IrA) had significantly lower summative scores (P = 0.026), spot exam score (P = 0.012) and pre-post-test improvement (P = 0.036). In the meanwhile, conditional attendees (CoA) who only attended classes with attendance check had significantly higher summative score (P = 0.025) and spot exam score (P = 0.001) if they were in the High PO group. Conclusions: The benefit and drawbacks edges of using an online learning platform were demonstrated in our research. Based on this double-edged sword effect, we believe that online learning is a valuable learning strategy, but students must carefully plan their study schedule to gain the “benefit edge” meanwhile avoiding its “drawback edge”.

Keywords: academic performance, assessment, attendance, online learning, preclinical medical students

Procedia PDF Downloads 158
1738 Effects of Temperature and the Use of Bacteriocins on Cross-Contamination from Animal Source Food Processing: A Mathematical Model

Authors: Benjamin Castillo, Luis Pastenes, Fernando Cerdova

Abstract:

The contamination of food by microbial agents is a common problem in the industry, especially regarding the elaboration of animal source products. Incorrect manipulation of the machinery or on the raw materials can cause a decrease in production or an epidemiological outbreak due to intoxication. In order to improve food product quality, different methods have been used to reduce or, at least, to slow down the growth of the pathogens, especially deteriorated, infectious or toxigenic bacteria. These methods are usually carried out under low temperatures and short processing time (abiotic agents), along with the application of antibacterial substances, such as bacteriocins (biotic agents). This, in a controlled and efficient way that fulfills the purpose of bacterial control without damaging the final product. Therefore, the objective of the present study is to design a secondary mathematical model that allows the prediction of both the biotic and abiotic factor impact associated with animal source food processing. In order to accomplish this objective, the authors propose a three-dimensional differential equation model, whose components are: bacterial growth, release, production and artificial incorporation of bacteriocins and changes in pH levels of the medium. These three dimensions are constantly being influenced by the temperature of the medium. Secondly, this model adapts to an idealized situation of cross-contamination animal source food processing, with the study agents being both the animal product and the contact surface. Thirdly, the stochastic simulations and the parametric sensibility analysis are compared with referential data. The main results obtained from the analysis and simulations of the mathematical model were to discover that, although bacterial growth can be stopped in lower temperatures, even lower ones are needed to eradicate it. However, this can be not only expensive, but counterproductive as well in terms of the quality of the raw materials and, on the other hand, higher temperatures accelerate bacterial growth. In other aspects, the use and efficiency of bacteriocins are an effective alternative in the short and medium terms. Moreover, an indicator of bacterial growth is a low-level pH, since lots of deteriorating bacteria are lactic acids. Lastly, the processing times are a secondary agent of concern when the rest of the aforementioned agents are under control. Our main conclusion is that when acclimating a mathematical model within the context of the industrial process, it can generate new tools that predict bacterial contamination, the impact of bacterial inhibition, and processing method times. In addition, the mathematical modeling proposed logistic input of broad application, which can be replicated on non-meat food products, other pathogens or even on contamination by crossed contact of allergen foods.

Keywords: bacteriocins, cross-contamination, mathematical model, temperature

Procedia PDF Downloads 144
1737 Utilization of Extracted Spirogyra sp. Media Fermented by Gluconacetobacter Xylinum for Cellulose Production as Raw Material for Paper Product

Authors: T. S. Desak Ketut, A.n. Isna, A.a. Ayu, D. P. Ririn, Suharjono Hadiatullah

Abstract:

The requirement of paper from year to year rise rapidly. The raising of cellulose requirement in paper production caused increasing of wood requirement with the effect that limited forest areal because of deforestation. Alternative cellulose that can be used for making paper is microbial cellulose. The objective of this research are to know the effectivity fermentation media Spirogyra sp. by Gluconacetobacter xylinum for cellulose production as material for the making of paper and to know effect composition bacterial cellulose composite product of Gluconacetobacter xylinum in Spirogyra sp. The method, was used, is as follow, 1) the effect assay from variation composition of fermentation media to bacterial cellulose production by Gluconacetobacter xylinum. 2) The effect assay of composition bacterial cellulose fermentation producted by Gluconacetobacter xylinum in extracted Spirogyra media to paper quality. The result of this research is variation fermentation media Spirogyra sp. affect to production of cellulose by Gluconacetobacter xylinum. Thus, result showed by the highest value and significantly different in thickness parameter, dry weight and wet weight of nata in sucrose concentration 7,5 % and urea 0,75 %. Composition composite of bacterial cellulose from fermentation product by Gluconacetobacter xylinum in media Spirogyra sp. affect to paper quality from wet nata and dry nata. Parameters thickness, weight, water absorpsion, density and gramatur showed highest result in sucrose concentration 7,5 % and urea concentration 0,75 %, except paper density from dry nata had highest result in sucrose and urea concentration 0%.

Keywords: cellulose, fermentation media, , Gluconacetobacter xylinum, paper, Spirogyra sp.

Procedia PDF Downloads 343
1736 Rapid Detection of the Etiology of Infection as Bacterial or Viral Using Infrared Spectroscopy of White Blood Cells

Authors: Uraib Sharaha, Guy Beck, Joseph Kapelushnik, Adam H. Agbaria, Itshak Lapidot, Shaul Mordechai, Ahmad Salman, Mahmoud Huleihel

Abstract:

Infectious diseases cause a significant burden on the public health and the economic stability of societies all over the world for several centuries. A reliable detection of the causative agent of infection is not possible based on clinical features, since some of these infections have similar symptoms, including fever, sneezing, inflammation, vomiting, diarrhea, and fatigue. Moreover, physicians usually encounter difficulties in distinguishing between viral and bacterial infections based on symptoms. Therefore, there is an ongoing need for sensitive, specific, and rapid methods for identification of the etiology of the infection. This intricate issue perplex doctors and researchers since it has serious repercussions. In this study, we evaluated the potential of the mid-infrared spectroscopic method for rapid and reliable identification of bacterial and viral infections based on simple peripheral blood samples. Fourier transform infrared (FTIR) spectroscopy is considered a successful diagnostic method in the biological and medical fields. Many studies confirmed the great potential of the combination of FTIR spectroscopy and machine learning as a powerful diagnostic tool in medicine since it is a very sensitive method, which can detect and monitor the molecular and biochemical changes in biological samples. We believed that this method would play a major role in improving the health situation, raising the level of health in the community, and reducing the economic burdens in the health sector resulting from the indiscriminate use of antibiotics. We collected peripheral blood samples from young 364 patients, of which 93 were controls, 126 had bacterial infections, and 145 had viral infections, with ages lower than18 years old, limited to those who were diagnosed with fever-producing illness. Our preliminary results showed that it is possible to determine the infectious agent with high success rates of 82% for sensitivity and 80% for specificity, based on the WBC data.

Keywords: infectious diseases, (FTIR) spectroscopy, viral infections, bacterial infections.

Procedia PDF Downloads 138
1735 The Effect on Some Plant Traits of Cutting Frequency Applied in Species of Grass

Authors: Mehmet Ali Avcı, Medine Çopur Doğrusöz

Abstract:

This study has been carried out in the Selcuk University, Department of Fields Crops Research and Application Greenhouse. 4 different grass genotypes (1 Lolium perenne L., 1 Poa trivialis L., 1 Festuca ovina L., and 1 Festuca arundinacea Scheb.) have been used in the application. It has been done with four repetition according to design of random parcel test. The research have been started with the implementation of 3 clones to each pot of each kind on 07.12.2009. It has been processed normally. When the plants have filled % 80 of the pot and have grown to the height of 7-10 cm, 5 cm has cut. After the first cutting, there have been applied 4 cutting frequency within the periods of 5, 10, 15, 20 days. Number of tillers, the degree of filling the bottom, the height of plant, the length of leaf and the width of the leaf have been measured. This procedure have been repeated in once a-five-day-periods, once a-ten-day-periods, once a-fifteen-day-periods, once a-twenty-day-periods, the data have been taken, and it has completed in 60 days. All the plants in the pots have been reaped from the 5cm height on 16.08.2010. The first measures have been taken for each quality. It is aimed to set the effects of different cutting frequency on the some grass kinds’ some plant characteristics.

Keywords: cutting frequency, Festuca, Lolium, Poa

Procedia PDF Downloads 338
1734 Application of Bacteriophages as Natural Antibiotics in Aquaculture

Authors: Chamilani Nikapitiya, Mahanama De Zoysa, Jehee Lee

Abstract:

Most of the bacterial diseases are associated with high mortalities in aquaculture species and causing huge economic losses. Different approaches have been taken to prevent or control of bacterial diseases including use of vaccines, probiotics, chemotherapy, water quality management, etc. Antibiotics are widely applying as chemotherapy to control bacterial diseases, however, it has been shown that frequent use of antibiotics is favored to develop multi-drug resistance bacteria. Therefore, phages and phage encoded lytic proteins are known to be one of the most promising alternatives for antibiotics to avoid the emergence of antibiotic-resistant bacteria. We isolated and characterized the two lytic phages, namely pAh-1 and pAs-1 against pathogenic Aeromonas hydrophila and Aeromonas salmonicida, respectively. Morphological characteristics were analyzed by Transmission electron microscopy (TEM) and host strain specificities were tested with Aeromonas and other closely related bacterial strains. TEM analysis revealed that both pAh-1 and pAsm-1 are composed of an icosahedral head and a segmented tail, and we suggest that, they are new members of Myoviridae family. Genome sizes of isolated phages were estimated by restriction enzyme digestion of genomic DNA using selected endonucleases followed by agarose gel electrophoresis. Estimated genome size of pAh-1 and pAs-1 were approximately 64 Kbp and 120 Kbp, respectively. Both pAh-1 and pAs-1 have shown narrow host specificity. Moreover, protective effects of phage therapy against fish pathogenic A. hydrophila were investigated in zebrafish model. The survival rate was 40% higher when zebrafish received intra-peritoneal injection (i.p.) of pAh-1 were simultaneously challenge A. hydrophila (2 x 106 CFU/fish) compared to that without phage treatment. Overall results suggest that both pAh-1 and pAs-1 can be used as a potential phage therapy to control Aeromonas infections in aquaculture.

Keywords: Aeromonas infections, antibiotic resistance, bacteriophage, bio-control, lytic phage

Procedia PDF Downloads 193
1733 Winners and Losers of Severe Drought and Grazing on a Dryland Grassland in Limpopo Province

Authors: Vincent Mokoka, Kai Behn, Edwin Mudongo, Jan Ruppert, Kingsley Ayisi, Anja Linstädter

Abstract:

Severe drought may trigger a transition of vegetation composition in dryland grasslands, with productive perennial grasses often being replaced by annual grasses. Grazing pressure is thought to exacerbate drought effects, but little is known on the joint effects of grazing and drought on the functional and taxonomic composition of the herbaceous vegetation in African savannas. This study thus aimed to elucidate which herbaceous species and plant functional types (PFTs) are most resistant to prolonged drought and grazing and whether resting plays a role in this context. Thus, we performed a six-year field experiment in South Africa’s Limpopo province, combining drought and grazing treatments. Aboveground herbaceous biomass was harvested annually and separated into species. We grouped species into five PFTs, i.e. very broad-leaved perennial grasses, broad-leaved perennial grasses, narrow-leaved perennial grasses, annual grasses, and forbs. For all species, we also recorded three-leaf traits (leaf area - LA, specific leaf area – SLA, and leaf dry matter content – LDM) to describe their resource acquisition strategies. We used generalized linear models to test for treatment effects and their interaction. Association indices were used to detect the relationship between species and treatments. We found that there were no absolute winner species or PFTs, as the six-year severe drought had a pronounced negative impact on the biomass production of all species and PFTs. However, we detected relative winners with increases in relative abundances, mainly forbs and less palatable narrow-leafed grasses with comparatively low LA and high LDMC, such as Aristida stipidata Hack. These species and PFTs also tended to be favored by grazing. Although few species profited from resting, for most species, the combination of drought and resting proved to be particularly unfavorable. Winners and losers can indicate ecological transition and may be used to guide management decisions.

Keywords: aboveground net primary production, drought, functional diversity, winner and loser species

Procedia PDF Downloads 174
1732 Genomic and Transcriptomic Analysis of Antibiotic Resistance Genes in Biological Wastewater Treatment Systems Treating Domestic and Hospital Effluents

Authors: Thobela Conco, Sheena Kumari, Chika Nnadozie, Mahmoud Nasr, Thor A. Stenström, Mushal Ali, Arshad Ismail, Faizal Bux

Abstract:

The discharge of antibiotics and its residues into the wastewater treatment plants (WWTP’s) create a conducive environment for the development of antibiotic resistant pathogens. This presents a risk of potential dissemination of antibiotic resistant pathogens and antibiotic resistance genes into the environment. It is, therefore, necessary to study the level of antibiotic resistance genes (ARG’s) among bacterial pathogens that proliferate in biological wastewater treatment systems. In the current study, metagenomic and meta-transcriptomic sequences of samples collected from the influents, secondary effluents and post chlorinated effluents of three wastewater treatment plants treating domestic and hospital effluents in Durban, South Africa, were analyzed for profiling of ARG’s among bacterial pathogens. Results show that a variety of ARG’s, mostly, aminoglycoside, β-lactamases, tetracycline and sulfonamide resistance genes were harbored by diverse bacterial genera found at different stages of treatment. A significant variation in diversity of pathogen and ARGs between the treatment plant was observed; however, treated final effluent samples from all three plants showed a significant reduction in bacterial pathogens and detected ARG’s. Both pre- and post-chlorinated samples showed the presence of mobile genetic elements (MGE’s), indicating the inefficiency of chlorination to remove of ARG’s integrated with MGE’s. In conclusion, the study showed the wastewater treatment plant efficiently caused the reduction and removal of certain ARG’s, even though the initial focus was the removal of biological nutrients.

Keywords: antibiotic resistance, mobile genetic elements, wastewater, wastewater treatment plants

Procedia PDF Downloads 218
1731 The Understanding of Biochemical and Molecular Analysis of Diabetic Rats Treated with Andrographis paniculata and Erythrina indica Methanol Extract

Authors: Chakrapani Pullagummi, Arun Jyothi Bheemagani, B. Chandra Sekhar Singh, Prem Kumar, A. Roja Rani

Abstract:

Diabetes mellitus describes a metabolic disorder of multiple aetiology characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion and its action. The objective of present study was alloxan induced diabetes in S.D (Sprague Dawley) rats, treated with leaf extract of Andrographis paniculata and bark extract of Erythrina indica. Plant extract treated rats were analyzed biochemically and molecularly. on normal and diabetic rats. The changes in MDA (lipid peroxidation) and glucose (by GOD method) levels in blood of both normal and diabetic rat were analyzed. Diabetes induced rats were treated with methanolic extracts of Andrographis paniculata leaf and Erythrina indica bark which are of medicinal importance. Later after inducing diabetes the rats were treated with medicinal plant extracts, Andrographis paniculata leaf and Erythrina indica bark which are well known for their anti diabetic and antioxidative property in order to control the glucose and MDA levels. The blood plasma of diabetic and normal rats was analyzed for the levels of MDA (lipid peroxidation) and glucose levels. Results of this study suggested that the Andrographis paniculata leaf and Erythrina indica can be used as a potential natural antidiabetic agent for treating and postponing the appearance of complications that arise due to Diabetes. Molecular study deals with the analysis of binding mechanism of 2 selected natural compounds from Andrographis and Erythrina extracts against the novel target for type T2D namely PPAR-γ compared with Rosiglitazone (standard compound). The results revealed that most of the selected herbal lead compounds were effective targets against the receptors. These compounds showed favorable interactions with the amino acid residues thereby substantiating their proven efficacy as anti-diabetic compounds.

Keywords: andrographis paniculata, erythrina indica, alloxan, lipid peroxidation, blood glucose level, PPAR-γ

Procedia PDF Downloads 476
1730 Improvement in Drought Stress Tolerance in Wheat by Arbuscular Mycorrhizal Fungi

Authors: Seema Sangwan, Ekta Narwal, Kannepalli Annapurna

Abstract:

The aim of this study was to determine the effect of arbuscular mycorrhizal fungi (AMF) inoculation on drought stress tolerance in 3 genotypes of wheat subjected to moderate water stress, i.e. HD 3043 (drought tolerant), HD 2987 (drought tolerant), and HD 2967 (drought sensitive). Various growth parameters were studied, e.g. total dry weight, total shoot and root length, root volume, root surface area, grain weight and number, leaf area, chlorophyll content in leaves, relative water content, number of spores and percent colonisation of roots by arbuscular mycorrhizal fungi. Total dry weight, root surface area and chlorophyll content were found to be significantly high in AMF inoculated plants as compared to the non-mycorrhizal ones and also higher in drought-tolerant varieties of wheat as compared to the sensitive variety HD 2967, in moderate water stress treatments. Leakage of electrolytes was lower in case of AMF inoculated stressed plants. Under continuous water stress, leaf water content and leaf area were significantly increased in AMF inoculated plants as compared to un-inoculated stressed plants. Overall, the increased colonisation of roots of wheat by AMF in inoculated plants weather drought tolerant or sensitive could have a beneficial effect in alleviating the harmful effects of water stress in wheat and delaying its senescence.

Keywords: Arbuscular mycorrhizal fungi, wheat, drought, stress

Procedia PDF Downloads 197
1729 Growth Comparison and Intestinal Health in Broilers Fed Scent Leaf Meal (Ocimum gratissimum) and Synthetic Antibiotic

Authors: Adedoyin Akintunde Adedayo, Onilude Abiodun Anthony

Abstract:

The continuous usage of synthetic antibiotics in livestock production has led to the resistance of microbial pathogens. This has prompted research to find alternative sources. This study aims to compare the growth and intestinal health of broilers fed scent leaf meal (SLM) as an alternative to synthetic antibiotics. The study used a completely randomized design (CRD) with 300 one-week-old Arbor Acres broiler chicks. The chicks were divided into six treatments with five replicates of ten birds each. The feeding trial lasted 49 days, including a one-week acclimatization period. Commercial broiler diets were used. The diets included a negative control (no leaf meal or antibiotics), a positive control (0.10% oxy-tetracycline), and four diets with different levels of SLM (0.5%, 1.0%, 1.5%, and 2.0%). The supplementation of both oxy-tetracycline and SLM improved feed intake during the finisher phase. Birds fed SLM at a 1% inclusion level showed significantly (P<0.05) improved average body weight gain (ABWG), lowered feed-to-gain ratio, and cost per kilogram of weight gain compared to other diets. The mortality (2.0%) rate was significantly higher in the negative control group. White blood cell levels varied significantly (P<0.05) in birds fed SLM-supplemented diets, and the use of 2% SLM led to an increase in liver weight. However, welfare indices were not compromised.

Keywords: Arbor Acres, phyto-biotic, synthetic antibiotic, white blood cell, liver weight

Procedia PDF Downloads 74
1728 Bacterial Diversity Reports Contamination around the Ichkeul Lake in Tunisia

Authors: Zeina Bourhane, Anders Lanzen, Christine Cagnon, Olfa Ben Said, Cristiana Cravo-Laureau, Robert Duran

Abstract:

The anthropogenic pressure in coastal areas increases dramatically with the exploitation of environmental resources. Biomonitoring coastal areas are crucial to determine the impact of pollutants on bacterial communities in soils and sediments since they provide important ecosystem services. However, relevant biomonitoring tools allowing fast determination of the ecological status are yet to be defined. Microbial ecology approaches provide useful information for developing such microbial monitoring tools reporting on the effect of environmental stressors. Chemical and microbial molecular approaches were combined in order to determine microbial bioindicators for assessing the ecological status of soil and river ecosystems around the Ichkeul Lake (Tunisia), an area highly impacted by human activities. Samples were collected along soil/river/lake continuums in three stations around the Ichkeul Lake influenced by different human activities at two seasons (summer and winter). Contaminant pressure indexes (PI), including PAHs (Polycyclic aromatic hydrocarbons), alkanes, and OCPs (Organochlorine pesticides) contents, showed significant differences in the contamination level between the stations with seasonal variation. Bacterial communities were characterized by 16S ribosomal RNAs (rRNA) gene metabarcoding. Although microgAMBI indexes, determined from the sequencing data, were in accordance with contaminant contents, they were not sufficient to fully explain the PI. Therefore, further microbial indicators are still to be defined. The comparison of bacterial communities revealed the specific microbial assemblage for soil, river, and lake sediments, which were significantly correlated with contaminant contents and PI. Such observation offers the possibility to define a relevant set of bioindicators for reporting the effects of human activities on the microbial community structure. Such bioindicators might constitute useful monitoring tools for the management of microbial communities in coastal areas.

Keywords: bacterial communities, biomonitoring, contamination, human impacts, microbial bioindicators

Procedia PDF Downloads 164
1727 Development of a Steam or Microwave-Assisted Sequential Salt-Alkali Pretreatment for Sugarcane Leaf Waste

Authors: Preshanthan Moodley

Abstract:

This study compares two different pretreatments for sugarcane leaf waste (SLW): steam salt-alkali (SSA) and microwave salt-alkali (MSA). The two pretreatment types were modelled, optimized, and validated with R² > 0.97. Reducing sugar yields of 1.21g/g were obtained with optimized SSA pretreatment using 1.73M ZnCl₂, 1.36M NaOH and 9.69% solid loading, and 1.17g/g with optimized MSA pretreatment using 1.67M ZnCl₂, 1.52M NaOH at 400W for 10min. A lower pretreatment time (10min) was required for the MSA model (83% lower). The structure of pretreated SLW was assessed using scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR). The optimized SSA and MSA models showed lignin removal of 80.5 and 73% respectively. The MSA pretreatment was further examined on sorghum leaves and Napier grass and showed yield improvements of 1.9- and 2.8-fold compared to recent reports. The developed pretreatment methods demonstrated high efficiency at enhancing enzymatic hydrolysis on various lignocellulosic substrates.

Keywords: lignocellulosic biomass, pretreatment, salt, sugarcane leaves

Procedia PDF Downloads 264
1726 Molluscicidal Effects of Ageratum conyzoids and Datura stramonium on Bulinus globosus and Lymnea natalensis

Authors: Olofintoye Lawrence Kayode, Olorunniyi Omojola Felix

Abstract:

Schistosomiasis is a vector-borne water-based disease transmitted by Bulinus globosus, causing haematuria in the urine of man, while fascioliasis is a trematode zoonosis infectious transmitted by Lymnaea natalensis causing liver disease in man and animals. Adult Bulinus globosus and Lymnaea natalensis were used for the experiment. Aqueous leaf extract of Ageratum conyzoides and Datura stramonium were prepared into 25, 50, 75, 100, 200 and 400 ppm concentrations. Ten snails of each species were exposed to different concentrations in triplicates, and dechlorinated water was used as control at 24h, 48h, and 72h exposure. The results revealed that 100 ppm of both plants leaves extracts indicated mortality rates between 76.7% and 100% at 24h, 48h, and 72h for both snail species. (P<0.05). In conclusion, the extract exercised molluscicidal activity to control the snail vector at lethal doses LC₅₀ (66.611- 72.021 ppm), CI = 63.083-77.90ppm and LC₉₀ (92.623-102.350), CI = 87.715 -110.12 ppm.

Keywords: snail, plant leaf, aqueous extract, mortality

Procedia PDF Downloads 86
1725 Properties of Bacterial Nanocellulose for Scenic Arts

Authors: Beatriz Suárez López, Gabriela Forman

Abstract:

Kombucha (a symbiotic culture of bacteria and yeast) produces material capable of acquiring multiple shapes and textures that change significantly under different environment or temperature variations (e.g., when it is exposed to wet conditions), properties that may be explored in the scenic industry. This paper presents an analysis of its specific characteristics, exploring them as a non-conventional material for arts and performance. Costume Design uses surfaces as a powerful way of expression to represent concepts and stories; it may apply the unique features of nano bacterial cellulose (NBC) as assets in this artistic context. A mix of qualitative and quantitative (interventionist) methodology approaches were used -review of relevant literature to deepen knowledge on the research topic (crossing bibliography from different fields of studies: Biology, Art, Costume Design, etc.); as well as descriptive methods: laboratorial experiments, document quantities, observation to identify material properties and possibilities used to express a multiple narrative ideas, concepts and feelings. The results confirmed that NBC is an interactive and versatile material viable to be used in an alternative scenic context; its unique aesthetic and performative qualities, which change in contact to moisture, is a resource that can be used to show a visual and poetic impact on stage.

Keywords: biotechnological materials, contemporary dance, costume design, nano bacterial cellulose, performing arts

Procedia PDF Downloads 101