Search results for: DNA conductivity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1077

Search results for: DNA conductivity

747 Inverse Prediction of Thermal Parameters of an Annular Hyperbolic Fin Subjected to Thermal Stresses

Authors: Ashis Mallick, Rajeev Ranjan

Abstract:

The closed form solution for thermal stresses in an annular fin with hyperbolic profile is derived using Adomian decomposition method (ADM). The conductive-convective fin with variable thermal conductivity is considered in the analysis. The nonlinear heat transfer equation is efficiently solved by ADM considering insulated convective boundary conditions at the tip of fin. The constant of integration in the solution is to be estimated using minimum decomposition error method. The solution of temperature field is represented in a polynomial form for convenience to use in thermo-elasticity equation. The non-dimensional thermal stress fields are obtained using the ADM solution of temperature field coupled with the thermo-elasticity solution. The influence of the various thermal parameters in temperature field and stress fields are presented. In order to show the accuracy of the ADM solution, the present results are compared with the results available in literature. The stress fields in fin with hyperbolic profile are compared with those of uniform thickness profile. Result shows that hyperbolic fin profile is better choice for enhancing heat transfer. Moreover, less thermal stresses are developed in hyperbolic profile as compared to rectangular profile. Next, Nelder-Mead based simplex search method is employed for the inverse estimation of unknown non-dimensional thermal parameters in a given stress fields. Owing to the correlated nature of the unknowns, the best combinations of the model parameters which are satisfying the predefined stress field are to be estimated. The stress fields calculated using the inverse parameters give a very good agreement with the stress fields obtained from the forward solution. The estimated parameters are suitable to use for efficient and cost effective fin designing.

Keywords: Adomian decomposition, inverse analysis, hyperbolic fin, variable thermal conductivity

Procedia PDF Downloads 325
746 Synthesis and Characterization of Poly(2-[[4-(Dimethylamino)Benzylidene] Amino]Phenol) in Organic Medium: Investigation of Thermal Stability, Conductivity, and Antimicrobial Properties

Authors: Nuray Yilmaz Baran, Mehmet Saçak

Abstract:

Schiff base polymers are one class of conjugated polymers, also called as poly(azomethines). They have drawn the attention of researchers in recent years due to their some properties such as, optoelectronic, semiconductive, and photovoltaic, antimicrobial activities and high thermal stability. In this study, Poly(2-[[4-(dimethylamino)benzylidene]amino] phenol) P(2-DBAP), which is a Schiff base polymer, was synthesized by an oxidative polycondensation reaction of -[[4-(dimethylamino)benzylidene]amino]phenol (2-DBAP) with oxidants NaOCl, H₂O₂ and O₂ in various organic medium. At the end of the polymerizations carried out at various temperatures and time, maximum conversion of the monomer to the polymer could be obtained as around 93.7 %. The structures of the monomer and polymer were characterized by UV-Vis, FTIR and ¹HNMR techniques. Thermal analysis of the polymer was identified by TG-DTG and DTA techniques, and the thermal degradation behavior was supported by Thermo-IR spectra recorded in the temperature range of 25-800 °C. The number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index (PDI) of the polymer were found to be 26337, 9860 g/mol 2.67, respectively. The change of electrical conductivity value of the P(2-DBAP) doped with iodine vapor at different temperatures and time was investigated its maximum was measured by increasing 10¹⁰ fold as 2 x10⁻⁴ Scm⁻¹ after doping for 48 h at 60 °C. Antibacterial and antifungal activities of P(2-DBAP) Schiff base and its polymer were also investigated against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus Faecalis, Klebsiella pneumoniae, Bacillus subtilis, and Candida albicans, Saccharomyces cerevisiae, respectively.

Keywords: conductive properties, polyazomethines, polycondensation reaction, Schiff base polymers, thermal stability

Procedia PDF Downloads 286
745 Effect of Multi-Walled Carbon Nanotubes on Fuel Cell Membrane Performance

Authors: Rabindranath Jana, Biswajit Maity, Keka Rana

Abstract:

The most promising clean energy source is the fuel cell, since it does not generate toxic gases and other hazardous compounds. Again the direct methanol fuel cell (DMFC) is more user-friendly as it is easy to be miniaturized and suited as energy source for automobiles as well as domestic applications and portable devices. And unlike the hydrogen used for some fuel cells, methanol is a liquid that is easy to store and transport in conventional tanks. The most important part of a fuel cell is its membrane. Till now, an overall efficiency for a methanol fuel cell is reported to be about 20 ~ 25%. The lower efficiency of the cell may be due to the critical factors, e.g. slow reaction kinetics at the anode and methanol crossover. The oxidation of methanol is composed of a series of successive reactions creating formaldehyde and formic acid as intermediates that contribute to slow reaction rates and decreased cell voltage. Currently, the investigation of new anode catalysts to improve oxidation reaction rates is an active area of research as it applies to the methanol fuel cell. Surprisingly, there are very limited reports on nanostructured membranes, which are rather simple to manufacture with different tuneable compositions and are expected to allow only the proton permeation but not the methanol due to their molecular sizing effects and affinity to the membrane surface. We have developed a nanostructured fuel cell membrane from polydimethyl siloxane rubber (PDMS), ethylene methyl co-acrylate (EMA) and multi-walled carbon nanotubes (MWNTs). The effect of incorporating different proportions of f-MWNTs in polymer membrane has been studied. The introduction of f-MWNTs in polymer matrix modified the polymer structure, and therefore the properties of the device. The proton conductivity, measured by an AC impedance technique using open-frame and two-electrode cell and methanol permeability of the membranes was found to be dependent on the f-MWNTs loading. The proton conductivity of the membranes increases with increase in concentration of f-MWNTs concentration due to increased content of conductive materials. Measured methanol permeabilities at 60oC were found to be dependant on loading of f-MWNTs. The methanol permeability decreased from 1.5 x 10-6 cm²/s for pure film to 0.8 x 10-7 cm²/s for a membrane containing 0.5wt % f-MWNTs. This is due to increasing proportion of f-MWNTs, the matrix becomes more compact. From DSC melting curves it is clear that the polymer matrix with f-MWNTs is thermally stable. FT-IR studies show good interaction between EMA and f-MWNTs. XRD analysis shows good crystalline behavior of the prepared membranes. Significant cost savings can be achieved when using the blended films which contain less expensive polymers.

Keywords: fuel cell membrane, polydimethyl siloxane rubber, carbon nanotubes, proton conductivity, methanol permeability

Procedia PDF Downloads 410
744 Influence of Organic Modifier Loading on Particle Dispersion of Biodegradable Polycaprolactone/Montmorillonite Nanocomposites

Authors: O. I. H. Dimitry, N. A. Mansour, A. L. G. Saad

Abstract:

Natural sodium montmorillonite (NaMMT), Cloisite Na+ and two organophilic montmorillonites (OMMTs), Cloisites 20A and 15A were used. Polycaprolactone (PCL)/MMT composites containing 1, 3, 5, and 10 wt% of Cloisite Na+ and PCL/OMMT nanocomposites containing 5 and 10 wt% of Cloisites 20A and 15A were prepared via solution intercalation technique to study the influence of organic modifier loading on particle dispersion of PCL/ NaMMT composites. Thermal stabilities of the obtained composites were characterized by thermal analysis using the thermogravimetric analyzer (TGA) which showed that in the presence of nitrogen flow the incorporation of 5 and 10 wt% of filler brings some decrease in PCL thermal stability in the sequence: Cloisite Na+>Cloisite 15A > Cloisite 20A, while in the presence of air flow these fillers scarcely influenced the thermoxidative stability of PCL by slightly accelerating the process. The interaction between PCL and silicate layers was studied by Fourier transform infrared (FTIR) spectroscopy which confirmed moderate interactions between nanometric silicate layers and PCL segments. The electrical conductivity (σ) which describes the ionic mobility of the systems was studied as a function of temperature and showed that σ of PCL was enhanced on increasing the modifier loading at filler content of 5 wt%, especially at higher temperatures in the sequence: Cloisite Na+<Cloisite 20A<Cloisite 15A, and was then decreased to some extent with a further increase to 10 wt%. The activation energy Eσ obtained from the dependency of σ on temperature using Arrhenius equation was found to be lowest for the nanocomposite containing 5 wt% of Cloisite 15A. The dispersed behavior of clay in PCL matrix was evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses which revealed partial intercalated structures in PCL/NaMMT composites and semi-intercalated/semi-exfoliated structures in PCL/OMMT nanocomposites containing 5 wt% of Cloisite 20A or Cloisite 15A.

Keywords: electrical conductivity, montmorillonite, nanocomposite, organoclay, polycaprolactone

Procedia PDF Downloads 373
743 Using Complete Soil Particle Size Distributions for More Precise Predictions of Soil Physical and Hydraulic Properties

Authors: Habib Khodaverdiloo, Fatemeh Afrasiabi, Farrokh Asadzadeh, Martinus Th. Van Genuchten

Abstract:

The soil particle-size distribution (PSD) is known to affect a broad range of soil physical, mechanical and hydraulic properties. Complete descriptions of a PSD curve should provide more information about these properties as opposed to having only information about soil textural class or the soil sand, silt and clay (SSC) fractions. We compared the accuracy of 19 different models of the cumulative PSD in terms of fitting observed data from a large number of Iranian soils. Parameters of the six most promising models were correlated with measured values of the field saturated hydraulic conductivity (Kfs), the mean weight diameter of soil aggregates (MWD), bulk density (ρb), and porosity (∅). These same soil properties were correlated also with conventional PSD parameters (SSC fractions), selected geometric PSD parameters (notably the mean diameter dg and its standard deviation σg), and several other PSD parameters (D50 and D60). The objective was to find the best predictions of several soil physical quality indices and the soil hydraulic properties. Neither SSC nor dg, σg, D50 and D60 were found to have a significant correlation with both Kfs or logKfs, However, the parameters of several cumulative PSD models showed statistically significant correlation with Kfs and/or logKfs (|r| = 0.42 to 0.65; p ≤ 0.05). The correlation between MWD and the model parameters was generally also higher than either with SSC fraction and dg, or with D50 and D60. Porosity (∅) and the bulk density (ρb) also showed significant correlation with several PSD model parameters, with ρb additionally correlating significantly with various geometric (dg), mechanical (D50 and D60), and agronomic (clay and sand) representations of the PSD. The fitted parameters of selected PSD models furthermore showed statistically significant correlations with Kfs,, MWD and soil porosity, which may be viewed as soil quality indices. Results of this study are promising for developing more accurate pedotransfer functions.

Keywords: particle size distribution, soil texture, hydraulic conductivity, pedotransfer functions

Procedia PDF Downloads 274
742 Geotechnical Challenges for the Use of Sand-sludge Mixtures in Covers for the Rehabilitation of Acid-Generating Mine Sites

Authors: Mamert Mbonimpa, Ousseynou Kanteye, Élysée Tshibangu Ngabu, Rachid Amrou, Abdelkabir Maqsoud, Tikou Belem

Abstract:

The management of mine wastes (waste rocks and tailings) containing sulphide minerals such as pyrite and pyrrhotite represents the main environmental challenge for the mining industry. Indeed, acid mine drainage (AMD) can be generated when these wastes are exposed to water and air. AMD is characterized by low pH and high concentrations of heavy metals, which are toxic to plants, animals, and humans. It affects the quality of the ecosystem through water and soil pollution. Different techniques involving soil materials can be used to control AMD generation, including impermeable covers (compacted clays) and oxygen barriers. The latter group includes covers with capillary barrier effects (CCBE), a multilayered cover that include the moisture retention layer playing the role of an oxygen barrier. Once AMD is produced at a mine site, it must be treated so that the final effluent at the mine site complies with regulations and can be discharged into the environment. Active neutralization with lime is one of the treatment methods used. This treatment produces sludge that is usually stored in sedimentation ponds. Other sludge management alternatives have been examined in recent years, including sludge co-disposal with tailings or waste rocks, disposal in underground mine excavations, and storage in technical landfill sites. Considering the ability of AMD neutralization sludge to maintain an alkaline to neutral pH for decades or even centuries, due to the excess alkalinity induced by residual lime within the sludge, valorization of sludge in specific applications could be an interesting management option. If done efficiently, the reuse of sludge could free up storage ponds and thus reduce the environmental impact. It should be noted that mixtures of sludge and soils could potentially constitute usable materials in CCBE for the rehabilitation of acid-generating mine sites, while sludge alone is not suitable for this purpose. The high sludge water content (up to 300%), even after sedimentation, can, however, constitute a geotechnical challenge. Adding lime to the mixtures can reduce the water content and improve the geotechnical properties. The objective of this paper is to investigate the impact of the sludge content (30, 40 and 50%) in sand-sludge mixtures (SSM) on their hydrogeotechnical properties (compaction, shrinkage behaviour, saturated hydraulic conductivity, and water retention curve). The impact of lime addition (dosages from 2% to 6%) on the moisture content, dry density after compaction and saturated hydraulic conductivity of SSM was also investigated. Results showed that sludge adding to sand significantly improves the saturated hydraulic conductivity and water retention capacity, but the shrinkage increased with sludge content. The dry density after compaction of lime-treated SSM increases with the lime dosage but remains lower than the optimal dry density of the untreated mixtures. The saturated hydraulic conductivity of lime-treated SSM after 24 hours of cure decreases by 3 orders of magnitude. Considering the hydrogeotechnical properties obtained with these mixtures, it would be possible to design CCBE whose moisture retention layer is made of SSM. Physical laboratory models confirmed the performance of such CCBE.

Keywords: mine waste, AMD neutralization sludge, sand-sludge mixture, hydrogeotechnical properties, mine site reclamation, CCBE

Procedia PDF Downloads 47
741 The Proton Flow Battery for Storing Renewable Energy: Hydrogen Storage Capacity of Selected Activated Carbon Electrodes Made from Brown Coal

Authors: Amandeep Singh Oberoi, John Andrews, Alan L. Chaffee, Lachlan Ciddor

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. Activated carbons with high internal surface area, high pore volume, light weight and easy availability have attracted considerable research interest as a solid-state hydrogen storage medium. This paper compares the physical characteristics and hydrogen storage capacities of four activated carbon electrodes made by different methods from brown coal. The fabrication methods for these samples are explained. Their proton conductivity was measured using electrochemical impedance spectroscopy, and their hydrogen storage capacity by galvanostatic charging and discharging in a three-electrode electrolytic cell with 1 mol sulphuric acid as electrolyte. The highest hydrogen storage capacity obtained was 1.29 wt%, which compares favourably with metal hydrides used in commercially available solid-state hydrogen storages. The hydrogen storage capacity of the samples increased monotonically with increasing BET surface area (calculated from CO2 adsorption method). The results point the way towards selecting high-performing electrodes for proton flow batteries that the competitiveness of this energy storage technology.

Keywords: activated carbon, electrochemical hydrogen storage, proton flow battery, proton conductivity

Procedia PDF Downloads 569
740 Studies on the Physico-Chemical Parameters of Jebba Lake, Niger State, Nigeria

Authors: M. B. Mshelia, J. K. Balogun, J. Auta, N. O. Bankole

Abstract:

Studies on some aspects of the physico-chemical parameters of Jebba Lake, Niger State, Nigeria was carried out from January to December, 2011. The aim was to investigate some of the physico-chemical parameters relevant to life and health of fish in the water body. Six (6) sampling sites were selected at random which covered Northern (Faku and Awuru), middle (Old Gbajibo and Shankade) and southern zones (New Gbajibo and Jebba dam} of Jebba Lake. Sampling was carried out for the period of 12 Months. The Physico-chemical parameters that were considered were water temperature, pH, dissolved oxygen, electrical conductivity, water transparency, phosphate and nitrate. They were all measured using standard methods. The results showed that water temperature values ranged between 26.06 ± 0.15a in Jebba lake site to 27.34 ± 0.12b in Shankade sampling site, depth varied from 8.08m to 31.64m, water current was between 20.10.62 cm/sec and 26.46 cm/sec, Secchi disc transparency ranged from0.46±0.01 m in New Gbajibo, while the highest mean value was 0.53 ± 0.04 m in Jebba dam., pH varied from 6.49 ± 0.01 and 7.59,5.35±0.03a mg/l in New Gbajibo and 6.75 ± 0.03 mg/l in Faku.The dissolved oxygen varied between 5.35±0.03a mg/l in New Gbajibo and 6.75 ± 0.03 mg/l in Faku.,The mean conductivity value was highest in Faku and Jebba with 128.8 ± 0.32 and 128.8 ± 0.42homs/cm) respectively, Alkalinity ranged 43.00±0.02 to33.30±0.32 mg/l., The nitrate-nitrogen range (2.37 ± 0.08 – 6.40 ± 0.50mg/l)., The mean values of phosphate-phosphorus (PO4-P) recorded varied between 0.18 ± 0.00 mg/l in Faku to 0.47 + 0.10 mg/l in Old Gbajibo.The highest mean value for total dissolved solids was 57.88 ± 0.28 mg/l in Shankade, while the lowest mean value of 39.17 ± 0.42 mg/l was recorded in Faku. Free CO2 ranged from 1.75 mg/l to 2.94 mg/l, Biochemical oxygen demand (BOD) was between 4.25 mg/l and 5.41 mg/l and nitrate-nitrogen concentration was between 2.37 mg/l and 6.40 mg/l. There were significant differences (P < 0.05) between these parameters in relation to stations. Generally, the physico-chemical characteristics of Lake Jebba were within the productive values for aquatic systems, and strongly indicate that the lake is unpolluted.

Keywords: Jebba Lake, water quality, secchi disc, DO meter, sampling sites, physico-chemical parameters

Procedia PDF Downloads 431
739 Assessing the Geothermal Parameters by Integrating Geophysical and Geospatial Techniques at Siwa Oasis, Western Desert, Egypt

Authors: Eman Ghoneim, Amr S. Fahil

Abstract:

Many regions in Egypt are facing a reduction in crop productivity due to environmental degradation. One factor of crop deterioration includes the unsustainable drainage of surface water, leading to salinized soil conditions. Egypt has exerted time and effort to identify solutions to mitigate the surface water drawdown problem and its resulting effects by exploring renewable and sustainable sources of energy. Siwa Oasis represents one of the most favorable regions in Egypt for geothermal exploitation since it hosts an evident cluster of superficial thermal springs. Some of these hot springs are characterized by high surface temperatures and bottom hole temperatures (BHT) ranging between 20°C to 40 °C and 21 °C to 121.7°C, respectively. The depth to the Precambrian basement rock is commonly greater than 440 m, ranging from 440 m to 4724.4 m. It is this feature that makes the locality of Siwa Oasis sufficient for industrial processes and geothermal power production. In this study, BHT data from 27 deep oil wells were processed by applying the widely used Horner and Gulf of Mexico correction methods to obtain formation temperatures. BHT, commonly used in geothermal studies, remains the most abundant and readily available data source for subsurface temperature information. Outcomes of the present work indicated a geothermal gradient ranging from 18 to 42 °C/km, a heat flow ranging from 24.7 to 111.3 m.W.k⁻¹, and a thermal conductivity of 1.3–2.65 W.m⁻¹.k⁻¹. Remote sensing thermal infrared, topographic, geologic, and geothermal data were utilized to provide geothermal potential maps for the Siwa Oasis. Important physiographic variables (including surface elevation, lineament density, drainage density), geological and geophysical parameters (including land surface temperature, depth to basement, bottom hole temperature, magnetic, geothermal gradient, heat flow, thermal conductivity, and main rock units) were incorporated into GIS to produce a geothermal potential map (GTP) for the Siwa Oasis region. The model revealed that both the northeastern and southeastern sections of the study region are of high geothermal potential. The present work showed that combining bottom-hole temperature measurements and remote sensing data with the selected geospatial methodologies is a useful tool for geothermal prospecting in geologically and tectonically comparable settings in Egypt and East Africa. This work has implications for identifying sustainable resources needed to support food production and renewable energy resources.

Keywords: BHT, geothermal potential map, geothermal gradient, heat flow, thermal conductivity, satellite imagery, GIS

Procedia PDF Downloads 107
738 Chemical Composition and Biological Properties of Algerian Honeys

Authors: Ouchemoukh Salim, Amessis-Ouchemoukh Nadia, Guenaoui Nawel, Moumeni Lynda, Zaidi Hicham, Otmani Amar, Sadou Dyhia

Abstract:

Honey is a hive food rich in carbohydrates and water and it also has a lot of nutrients (enzymes, minerals, organic acids, phytochemicals...). It is used in different nutritional and therapeutic fields. Algerian honey was studied for its physicochemical parameters, nutritional values (moisture, brix, pH, electrical conductivity, and amounts of HMF, proteins, proline, total phenolic compounds and flavonoids) and some biological activities (antioxidant, anti-inflammatory and enzymatic anti-browning). The antioxidant activities of the samples were estimated using different methods (ABTS, DPPH free radicals scavenging, reducing power, and chelating ferrous activity). All honeys were acidic (3.45≤pH≤4.65). The color varied from mimosa yellow to dark brown. The specific rotation was levorotatory in most honey samples, and the electrical conductivity, hydroxymethylfurfural, and proline values agreed with the international honey requirements. For anti-inflammatory activity, the results showed that the inhibiting capacity of the denaturation of the BSA of the honey analyzed varied from 15 to 75 % with a maximum of activity at the concentration of 0,5 mg/ml. All honey exhibited enzymatic anti-browning on different slices of fruits. In fact, the results showed that the controls have the greatest browning unit compared to the honeys studied and PPO and POD enzymes had the lowest enzyme activity. High significant correlations were found between the color of honey, its antioxidant content and its biological activities (antioxidant, anti-inflammatory and enzymatic anti-browning). The dark color of honey is a good indicator of the best biological properties, therefore, the best nutritional and therapeutic values.

Keywords: honey, physico-chemical parameters, bioactive compounds, biological properties

Procedia PDF Downloads 45
737 Determination of Temperature Dependent Characteristic Material Properties of Commercial Thermoelectric Modules

Authors: Ahmet Koyuncu, Abdullah Berkan Erdogmus, Orkun Dogu, Sinan Uygur

Abstract:

Thermoelectric modules are integrated to electronic components to keep their temperature in specific values in electronic cooling applications. They can be used in different ambient temperatures. The cold side temperatures of thermoelectric modules depend on their hot side temperatures, operation currents, and heat loads. Performance curves of thermoelectric modules are given at most two different hot surface temperatures in product catalogs. Characteristic properties are required to select appropriate thermoelectric modules in thermal design phase of projects. Generally, manufacturers do not provide characteristic material property values of thermoelectric modules to customers for confidentiality. Common commercial software applied like ANSYS ICEPAK, FloEFD, etc., include thermoelectric modules in their libraries. Therefore, they can be easily used to predict the effect of thermoelectric usage in thermal design. Some software requires only the performance values in different temperatures. However, others like ICEPAK require three temperature-dependent equations for material properties (Seebeck coefficient (α), electrical resistivity (β), and thermal conductivity (γ)). Since the number and the variety of thermoelectric modules are limited in this software, definitions of characteristic material properties of thermoelectric modules could be required. In this manuscript, the method of derivation of characteristic material properties from the datasheet of thermoelectric modules is presented. Material characteristics were estimated from two different performance curves by experimentally and numerically in this study. Numerical calculations are accomplished in ICEPAK by using a thermoelectric module exists in the ICEPAK library. A new experimental setup was established to perform experimental study. Because of similar results of numerical and experimental studies, it can be said that proposed equations are approved. This approximation can be suggested for the analysis includes different type or brand of TEC modules.

Keywords: electrical resistivity, material characteristics, thermal conductivity, thermoelectric coolers, seebeck coefficient

Procedia PDF Downloads 177
736 Habitat Studies of Etheria elliptica in Some Water Bodies (River Ogbese and Owena Reservoir) in Ondo State, Nigeria

Authors: O. O. Olawusi-Peters, M. O. Adediran, O. A. Ajibare

Abstract:

Etheria elliptica population is declining due to various human activities on the freshwater habitat. This necessitate the habitat study of the mussel in river Ogbese and Owena reservoir in Ondo state, Nigeria in order to know the status of the organism within the ecosystem. Thirty (30) specimens each from River Ogbese and Owena reservoir were sampled between May and August 2012. The meristic variables such as length, breadth, shell thickness and weight of the mussel were measured. Also, some physico-chemical parameters, flow rate and soil profile of the two rivers were studied. In River Ogbese, the weight, length, breadth and thickness variables obtained were; 49.73g, 8.42cm, 3.78cm and 0.53cm respectively. In Owena reservoir, the values were; 111.17g, 8.80cm, 6.64cm, 0.22cm respectively. The condition factor showed that the samples from Owena reservoir (K = 16.33) were healthier than River Ogbese (K = 8.34). Also, the length-weight relationship indicated isometric growth in both water bodies (Ogbese r2 = 0.68; Owena r2 = 0.66). In River Ogbese, the physico-chemical parameters obtained were; temperature (24.3oC), pH (7.12), TDS (72ppm), DO (3.2mg/l), conductivity (145µ), BOD (0.7mg/l). The mean temperature (24.1oC), pH (7.69), TDS (102ppm), DO (3.1mg/l), conductivity (183µ), BOD (0.8mg/l) were obtained from Owena reservoir. The soil samples values obtained from both water bodies are; River Ogbese –phosphorus; 78.78, calcium; 3.60, magnesium; 1.90 and organic matter; 0.17. Owena reservoir - Phosphorus; 3.34, calcium; 4.40, magnesium; 1.20 and organic matter; 0.66. The river flow rate was 0.22m/s for Owena reservoir and 0.26m/s for river Ogbese. The study revealed that Etheria elliptica in Owena reservoir and Ogbese were in good and healthy conditions despite the various human activities on the water bodies. The water quality parameters obtained were within the preferred requirements of the mussels.

Keywords: Etheria elliptica, mussels, Owena reservoir, River Ogbese

Procedia PDF Downloads 502
735 Geoelectical Resistivity Method in Aquifer Characterization at Opic Estate, Isheri-Osun River Basin, South Western Nigeria

Authors: B. R. Faleye, M. I. Titocan, M. P. Ibitola

Abstract:

Investigation was carried out at Opic Estate in Isheri-Osun River Basin environment using Electrical Resistivity method to study saltwater intrusion into a fresh water aquifer system from the proximal estuarine water body. The investigation is aimed at aquifer characterisation using electrical resistivity method in order to provide the depth to which fresh water fit for both domestic and industrial consumption. The 2D Electrical Resistivity and Vertical Electrical Resistivity techniques alongside Laboratory analysis of water samples obtained from the boreholes were adopted. Three traverses were investigated using Wenner and Pole-Dipole array with multi-electrode system consisting of 84 electrodes and a spread of 581 m, 664 m and 830 m were attained on the traverses. The main lithologies represented in the study area are Sand, Clay and Clayey Sand of which Sand constitutes the aquifer in the study area. Vertical Electrical Sounding data obtained at different lateral distance on the traverses have indicated that the water in the aquifer in the subsurface is brackish. Brackish water is represented by lowelectrical resistivity value signature while fresh water is characterized by relatively high electrical resistivity and in some regionfresh water is existent at depth greater than 200 m. Results of laboratory analysis of samples showed that the pH, Salinity, Total Dissolved Solid and Conductivity indicated existence of water with poor quality, indicating that salinity, TDS and Conductivity is higher in the Northern part of the study area. The 2D electrical resistivity and Vertical Electrical Sounding methods indicate that fresh water region is at ≥200m depth. Aquifers not fit for domestic use in the study area occur downwards to about 200 m in depth. In conclusion, it is recommended that wells should be sunkbeyond 220 m for the possible procurement of portable fresh water.

Keywords: 2D electrical resistivity, aquifer, brackish water, lithologies

Procedia PDF Downloads 427
734 Ion Beam Writing and Implantation in Graphene Oxide, Reduced Graphene Oxide and Polyimide Through Polymer Mask for Sensorics Applications

Authors: Jan Luxa, Vlastimil Mazanek, Petr Malinsky, Alexander Romanenko, Mariapompea Cutroneo, Vladimir Havranek, Josef Novak, Eva Stepanovska, Anna Mackova, Zdenek Sofer

Abstract:

Using accelerated energetic ions is an interesting method for the introduction of structural changes in various carbon-based materials. This way, the properties can be altered in two ways: a) the ions lead to the formation of conductive pathways in graphene oxide structures due to the elimination of oxygen functionalities and b) doping with selected ions to form metal nanoclusters, thus increasing the conductivity. In this work, energetic beams were employed in two ways to prepare capacitor structures in graphene oxide (GO), reduced graphene oxide (rGO) and polyimide (PI) on a micro-scale. The first method revolved around using ion beam writing with a focused ion beam, and the method involved ion implantation via a polymeric mask. To prepare the polymeric mask, a direct spin-coating of PMMA on top of the foils was used. Subsequently, proton beam writing and development in isopropyl alcohol were employed. Finally, the mask was removed using acetone solvent. All three materials were exposed to ion beams with an energy of 2.5-5 MeV and an ion fluence of 3.75x10¹⁴ cm-² (1800 nC.mm-²). Thus, prepared microstructures were thoroughly characterized by various analytical methods, including Scanning electron microscopy (SEM) with Energy-Dispersive X-ray spectroscopy (EDS), X-ray Photoelectron spectroscopy (XPS), micro-Raman spectroscopy, Rutherford Back-scattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) spectroscopy. Finally, these materials were employed and tested as sensors for humidity using electrical conductivity measurements. The results clearly demonstrate that the type of ions, their energy and fluence all have a significant influence on the sensory properties of thus prepared sensors.

Keywords: graphene, graphene oxide, polyimide, ion implantation, sensors

Procedia PDF Downloads 79
733 Development of Innovative Nuclear Fuel Pellets Using Additive Manufacturing

Authors: Paul Lemarignier, Olivier Fiquet, Vincent Pateloup

Abstract:

In line with the strong desire of nuclear energy players to have ever more effective products in terms of safety, research programs on E-ATF (Enhanced-Accident Tolerant Fuels) that are more resilient, particularly to the loss of coolant, have been launched in all countries with nuclear power plants. Among the multitude of solutions being developed internationally, carcinoembryonic antigen (CEA) and its partners are investigating a promising solution, which is the realization of CERMET (CERamic-METal) type fuel pellets made of a matrix of fissile material, uranium dioxide UO2, which has a low thermal conductivity, and a metallic phase with a high thermal conductivity to improve heat evacuation. Work has focused on the development by powder metallurgy of micro-structured CERMETs, characterized by networks of metallic phase embedded in the UO₂ matrix. Other types of macro-structured CERMETs, based on concepts proposed by thermal simulation studies, have been developed with a metallic phase with a specific geometry to optimize heat evacuation. This solution could not be developed using traditional processes, so additive manufacturing, which revolutionizes traditional design principles, is used to produce these innovative prototype concepts. At CEA Cadarache, work is first carried out on a non-radioactive surrogate material, alumina, in order to acquire skills and to develop the equipment, in particular the robocasting machine, an additive manufacturing technique selected for its simplicity and the possibility of optimizing the paste formulations. A manufacturing chain was set up, with the pastes production, the 3D printing of pellets, and the associated thermal post-treatment. The work leading to the first elaborations of macro-structured alumina/molybdenum CERMETs will be presented. This work was carried out with the support of Framatome and EdF.

Keywords: additive manufacturing, alumina, CERMET, molybdenum, nuclear safety

Procedia PDF Downloads 73
732 Electrical Investigations of Polyaniline/Graphitic Carbon Nitride Composites Using Broadband Dielectric Spectroscopy

Authors: M. A. Moussa, M. H. Abdel Rehim, G.M. Turky

Abstract:

Polyaniline composites with carbon nitride, to overcome compatibility restriction with graphene, were prepared with the solution method. FTIR and Uv-vis spectra were used for structural conformation. While XRD and XPS confirmed the structures in addition to estimation of nitrogen atom surroundings, the pore sizes and the active surface area were determined from BET adsorption isotherm. The electrical and dielectric parameters were measured and calculated with BDS .

Keywords: carbon nitride, dynamic relaxation, electrical conductivity, polyaniline

Procedia PDF Downloads 138
731 A Constructed Wetland as a Reliable Method for Grey Wastewater Treatment in Rwanda

Authors: Hussein Bizimana, Osman Sönmez

Abstract:

Constructed wetlands are current the most widely recognized waste water treatment option, especially in developing countries where they have the potential for improving water quality and creating valuable wildlife habitat in ecosystem with treatment requirement relatively simple for operation and maintenance cost. Lack of grey waste water treatment facilities in Kigali İnstitute of Science and Technology in Rwanda, causes pollution in the surrounding localities of Rugunga sector, where already a problem of poor sanitation is found. In order to treat grey water produced at Kigali İnstitute of Science and Technology, with high BOD concentration, high nutrients concentration and high alkalinity; a Horizontal Sub-surface Flow pilot-scale constructed wetland was designed and can operate in Kigali İnstitute of Science and Technology. The study was carried out in a sedimentation tank of 5.5 m x 1.42 m x 1.2 m deep and a Horizontal Sub-surface constructed wetland of 4.5 m x 2.5 m x 1.42 m deep. The grey waste water flow rate of 2.5 m3/d flew through vegetated wetland and sandy pilot plant. The filter media consisted of 0.6 to 2 mm of coarse sand, 0.00003472 m/s of hydraulic conductivity and cattails (Typha latifolia spp) were used as plants species. The effluent flow rate of the plant is designed to be 1.5 m3/ day and the retention time will be 24 hrs. 72% to 79% of BOD, COD, and TSS removals are estimated to be achieved, while the nutrients (Nitrogen and Phosphate) removal is estimated to be in the range of 34% to 53%. Every effluent characteristic will meet exactly the Rwanda Utility Regulatory Agency guidelines primarily because the retention time allowed is enough to make the reduction of contaminants within effluent raw waste water. Treated water reuse system was developed where water will be used in the campus irrigation system again.

Keywords: constructed wetlands, hydraulic conductivity, grey waste water, cattails

Procedia PDF Downloads 603
730 Two Major Methods to Control Thermal Resistance of Focus Ring for Process Uniformity Enhance

Authors: Jin-Uk Park

Abstract:

Recently, the semiconductor industry is rapidly demanding complicated structures and mass production. From the point of view of mass production, the ETCH industry is concentrating on maintaining the ER (Etch rate) of the wafer edge constant regardless of changes over time. In this study, two major thermal factors affecting process were identified and controlled. First, the filler of the thermal pad was studied. Second, the significant difference of handling the thermal pad during PM was studied.

Keywords: etcher, thermal pad, wet cleaning, thermal conductivity

Procedia PDF Downloads 188
729 The Experimental House: A Case Study to Assess the Long-Term Performance of Waste Tires Used as Replacement for Natural Material in Backfill Applications for Basement Walls in Manitoba

Authors: M. Shokry Rashwan

Abstract:

This study follows a number of experiments conducted at Red River College (RRC) to investigate the short term properties of tire derived aggregate (TDA) produced from shredding off-the-road (OTR) wasted tires in a proposed new application. The application targets replacing natural material used under concrete slabs and as backfills for residential homes’ basement slabs and walls, respectively, with TDA. The experimental work included determining: compressibility, gradation distribution, unit weight, hydraulic conductivity and lateral pressure. Based on the results of those short term properties; it was decided to move forward to study the long-term performance of this otherwise waste material through on-site demonstration. A full-scale basement replicating a typical Manitoba home was therefore built at RRC where both TDA and Natural Materials (NM) were used side-by-side. A large number of sensing and measuring systems are used to compare between the performances of each material when exposed to the typical ground and weather conditions. Parameters monitored and measured include heat losses, moisture migration, drainage ability, lateral pressure, relative movements of slabs and walls, an integrity of ground water and radon emissions. Up-to-date results have confirmed part of the conclusions reached from the earlier laboratory experiments. However, other results have shown that construction practices; such as placing and compaction, may need some adjustments to achieve more desirable outcomes. This presentation provides a review of both short-term tests as well as up-to-date analysis of the on-site demonstration.

Keywords: tire derived aggregate (TDA), basement construction, TDA material properties, lateral pressure of TDA, hydraulic conductivity of TDA

Procedia PDF Downloads 210
728 Pilot Study of Determining the Impact of Surface Subsidence at The Intersection of Cave Mining with the Surface Using an Electrical Impedance Tomography

Authors: Ariungerel Jargal

Abstract:

: Cave mining is a bulk underground mining method, which allows large low-grade deposits to be mined underground. This method involves undermining the orebody to make it collapse under its own weight into a series of chambers from which the ore extracted. It is a useful technique to extend the life of large deposits previously mined by open pits, and it is a method increasingly proposed for new mines around the world. We plan to conduct a feasibility study using Electrical impedance tomography (EIT) technology to show how much subsidence there is at the intersection with the cave mining surface. EIT is an imaging technique which uses electrical measurements at electrodes attached on the body surface to yield a cross-sectional image of conductivity changes within the object. EIT has been developed in several different applications areas as a simpler, cheaper alternative to many other imaging methods. A low frequency current is injected between pairs of electrodes while voltage measurements are collected at all other electrode pairs. In the difference EIT, images are reconstructed of the change in conductivity distribution (σ) between the acquisition of the two sets of measurements. Image reconstruction in EIT requires the solution of an ill-conditioned nonlinear inverse problem on noisy data, typically requiring make simpler assumptions or regularization. It is noted that the ratio of current to voltage represents a complex value according to Ohm’s law, and that it is theoretically possible to re-express EIT. The results of the experiment were presented on the simulation, and it was concluded that it is possible to conduct further real experiments. Drill a certain number of holes in the top wall of the cave to attach the electrodes, flow a current through them, and measure and acquire the potential through these electrodes. Appropriate values should be selected depending on the distance between the holes, the frequency and duration of the measurements, the surface characteristics and the size of the study area using an EIT device.

Keywords: impedance tomography, cave mining, soil, EIT device

Procedia PDF Downloads 122
727 Carbon Nanotubes and Novel Applications for Textile

Authors: Ezgi Ismar

Abstract:

Carbon nanotubes (CNTs) are different from other allotropes of carbon, such as graphite, diamond and fullerene. Replacement of metals in flexible textiles has an advantage. Particularly in the last decade, both their electrical and mechanical properties have become an area of interest for Li-ion battery applications where the conductivity has a major importance. While carbon nanotubes are conductive, they are also less in weight compared to convectional conductive materials. Carbon nanotubes can be used inside the fiber so they can offer to create 3-D structures. In this review, you can find some examples of how carbon nanotubes adapted to textile products.

Keywords: carbon nanotubes, conductive textiles, nanotechnology, nanotextiles

Procedia PDF Downloads 377
726 Recycling Broken Photovoltaic Cells into Anodes for Lithium-Ion Batteries Using Open-Source 3D Printing

Authors: Maryam Mottaghi, Joshua M. Pearce

Abstract:

The increasing volume of end-of-life photovoltaic (PV) cells presents a significant environmental challenge and offers an opportunity for resource recovery. This work explores the use of broken silicon PV cells as a sustainable source of silicon for the fabrication of anodes in lithium-ion (Li-ion) batteries. An open-source toolchain provides a low-cost and accessible method for 3D printing anode composites. The silicon used in PV cells has already undergone energy-intensive purification and processing, which enhances its reuse in batteries as a more resource-efficient approach. While silicon is abundant and offers potential for high-capacity anodes, it faces challenges such as low conductivity and significant volume changes during cycling, which can lead to mechanical degradation and reduced battery performance. In this work, silicon PV waste is first ground into particles smaller than 50 microns using an open-source ball mill. The silicon particles mix with a UV-curable resin through an open-source bottle roller to form a printable slurry. This slurry is used to fabricate an acrylate-silicon composite via stereolithography (SLA) 3D printing. SLA 3D printing offers the advantage of high precision and the ability to create complex geometries, which can enhance the performance of the anode. The printed parts are then pyrolyzed in an inert nitrogen atmosphere, which burns away the volatile components of the resin and leaves behind a carbon residue that enhances conductivity and helps alleviate silicon volume expansion during cycling. The results demonstrate the feasibility of using broken solar cell anodes in batteries. This approach is a promising candidate for advancing recycling solutions. Additionally, the use of open-source toolchain promotes resource recovery and shows potential for future developments in circular economy within energy storage.

Keywords: recycling, silicon anode, Li-ion battery, 3D printing

Procedia PDF Downloads 13
725 Designing Function Knitted and Woven Upholstery Textile With SCOPY Film

Authors: Manar Y. Abd El-Aziz, Alyaa E. Morgham, Amira A. El-Fallal, Heba Tolla E. Abo El Naga

Abstract:

Different textile materials are usually used in upholstery. However, upholstery parts may become unhealthy when dust accrues and bacteria raise on the surface, which negatively affects the user's health. Also, leather and artificial leather were used in upholstery but, leather has a high cost and artificial leather has a potential chemical risk for users. Researchers have advanced vegie leather made from bacterial cellulose a symbiotic culture of bacteria and yeast (SCOBY). SCOBY remains a gelatinous, cellulose biofilm discovered floating at the air-liquid interface of the container. But this leather still needs some enhancement for its mechanical properties. This study aimed to prepare SCOBY, produce bamboo rib knitted fabrics with two different stitch densities, and cotton woven fabric then laminate these fabrics with the prepared SCOBY film to enhance the mechanical properties of the SCOBY leather at the same time; add anti-microbial function to the prepared fabrics. Laboratory tests were conducted on the produced samples, including tests for function properties; anti-microbial, thermal conductivity and light transparency. Physical properties; thickness and mass per unit. Mechanical properties; elongation, tensile strength, young modulus, and peel force. The results showed that the type of the fabric affected significantly SCOBY properties. According to the test results, the bamboo knitted fabric with higher stitch density laminated with SCOBY was chosen for its tensile strength and elongation as the upholstery of a bed model with antimicrobial properties and comfortability in the headrest design. Also, the single layer of SCOBY was chosen regarding light transparency and lower thermal conductivity for the creation of a lighting unit built into the bed headboard.

Keywords: anti-microbial, bamboo, rib, SCOPY, upholstery

Procedia PDF Downloads 61
724 Carbon Nanotube-Based Catalyst Modification to Improve Proton Exchange Membrane Fuel Cell Interlayer Interactions

Authors: Ling Ai, Ziyu Zhao, Zeyu Zhou, Xiaochen Yang, Heng Zhai, Stuart Holmes

Abstract:

Optimizing the catalyst layer structure is crucial for enhancing the performance of proton exchange membrane fuel cells (PEMFCs) with low Platinum (Pt) loading. Current works focused on the utilization, durability, and site activity of Pt particles on support, and performance enhancement has been achieved by loading Pt onto porous support with different morphology, such as graphene, carbon fiber, and carbon black. Some schemes have also incorporated cost considerations to achieve lower Pt loading. However, the design of the catalyst layer (CL) structure in the membrane electrode assembly (MEA) must consider the interactions between the layers. Addressing the crucial aspects of water management, low contact resistance, and the establishment of effective three-phase boundary for MEA, multi-walled carbon nanotubes (MWCNTs) are promising CL support due to their intrinsically high hydrophobicity, high axial electrical conductivity, and potential for ordered alignment. However, the drawbacks of MWCNTs, such as strong agglomeration, wall surface chemical inertness, and unopened ends, are unfavorable for Pt nanoparticle loading, which is detrimental to MEA processing and leads to inhomogeneous CL surfaces. This further deteriorates the utilization of Pt and increases the contact resistance. Robust chemical oxidation or nitrogen doping can introduce polar functional groups onto the surface of MWCNTs, facilitating the creation of open tube ends and inducing defects in tube walls. This improves dispersibility and load capacity but reduces length and conductivity. Consequently, a trade-off exists between maintaining the intrinsic properties and the degree of functionalization of MWCNTs. In this work, MWCNTs were modified based on the operational requirements of the MEA from the viewpoint of interlayer interactions, including the search for the optimal degree of oxidation, N-doping, and micro-arrangement. MWCNT were functionalized by oxidizing, N-doping, as well as micro-alignment to achieve lower contact resistance between CL and proton exchange membrane (PEM), better hydrophobicity, and enhanced performance. Furthermore, this work expects to construct a more continuously distributed three-phase boundary by aligning MWCNT to form a locally ordered structure, which is essential for the efficient utilization of Pt active sites. Different from other chemical oxidation schemes that used HNO3:H2SO4 (1:3) mixed acid to strongly oxidize MWCNT, this scheme adopted pure HNO3 to partially oxidize MWCNT at a lower reflux temperature (80 ℃) and a shorter treatment time (0 to 10 h) to preserve the morphology and intrinsic conductivity of MWCNT. The maximum power density of 979.81 mw cm-2 was achieved by Pt loading on 6h MWCNT oxidation time (Pt-MWCNT6h). This represented a 59.53% improvement over the commercial Pt/C catalyst of 614.17 (mw cm-2). In addition, due to the stronger electrical conductivity, the charge transfer resistance of Pt-MWCNT6h in the electrochemical impedance spectroscopy (EIS) test was 0.09 Ohm cm-2, which was 48.86% lower than that of Pt/C. This study will discuss the developed catalysts and their efficacy in a working fuel cell system. This research will validate the impact of low-functionalization modification of MWCNTs on the performance of PEMFC, which simplifies the preparation challenges of CL and contributing for the widespread commercial application of PEMFCs on a larger scale.

Keywords: carbon nanotubes, electrocatalyst, membrane electrode assembly, proton exchange membrane fuel cell

Procedia PDF Downloads 63
723 Dielectric Study of Ethanol Water Mixtures at Different Concentration Using Hollow Channel Cantilever Platform

Authors: Maryam S. Ghoraishi, John E. Hawk, Thomas Thundat

Abstract:

Understanding liquid properties in small scale has become important in recent decades as immerging new microelectromechanical systems (MEMS) devices have been widely used for micro pumps, drug delivery, and many other laboratory-on-microchips analysis. Often in microfluidic devices, fluids are transported electrokinetically. Therefore, extensive knowledge of fluid flow, heat transport, electrokinetics and electrochemistry are key to successful lab on a chip design. Among different microfluidic devices, recently developed hollow channel cantilever offers an ideal platform to study different fluid properties simultaneously without drastic decrease in quality factor which normally occurs when traditional cantilevers operate in the liquid phase. Using hollow channel cantilever, we monitor changes in density and viscosity of liquid while simultaneously investigating dielectric properties of alcohol water binary mixtures. Considerable research has been conducted on alcohol-water mixtures since such a mixture is a typical prototype for biomolecules, Micelle formation, and structural stability of proteins (to name a few). Here we show that hollow channel cantilever can be employed to investigate dielectric properties of ethanol/water mixtures in different concentrations. We study dynamic amplitude shifts of hollow channel cantilever oscillation at different concentrations of ethanol/water for different voltages. Our results show how interactions between solute and solvent, and possibly cluster formation, could change dielectric properties and dipole reorientation of the mixture, as well as the resulting force on the hollow cantilever. For comparison, we also examine higher conductivity ionic mixtures of sodium sulfate solution under the same conditions as low conductivity ethanol/water mixtures. We will show the results from systematic investigation of solvent effects on dielectric properties of the binary mixture. We will also address the question of resolution limits in dielectric study of analyte molecules imposed by solvent concentrations.

Keywords: dielectric constant, cantilever sensors, ethanol water mixtures, low frequency

Procedia PDF Downloads 200
722 Properties of Hot-Pressed Alumina-Graphene Composites

Authors: P. Rutkowski, G. Górny, L. Stobierski, D. Zientara, W. Piekarczyk, K. Tran

Abstract:

The polycrystalline dense alumina shows thermal conductivity about 30 W/mK and very high electrical resistivity. These last two properties can be modified by introducing commercial relatively cheap graphene nanoparticles which, as two-dimensional flakes show very high thermal and electrical properties. The aim of this work is to show that it is possible to manufacture the anisotropic alumina-graphene material with directed multilayer graphene particles. Such materials can show the anisotropic properties mentioned before.

Keywords: alumina, composite, hot-pressed, graphene, properties

Procedia PDF Downloads 265
721 Investigation of Supercapacitor Properties of Nanocomposites Obtained from Acid and Base-functionalized Multi-walled Carbon Nanotube (MWCNT) and Polypyrrole (PPy)

Authors: Feridun Demir, Pelin Okdem

Abstract:

Polymers are versatile materials with many unique properties, such as low density, reasonable strength, flexibility, and easy processability. However, the mechanical properties of these materials are insufficient for many engineering applications. Therefore, there is a continuous search for new polymeric materials with improved properties. Polymeric nanocomposites are an advanced class of composite materials that have attracted great attention in both academic and industrial fields. Since nano-reinforcement materials are very small in size, they provide ultra-large interfacial area per volume between the nano-element and the polymer matrix. This allows the nano-reinforcement composites to exhibit enhanced toughness without compromising hardness or optical clarity. PPy and MWCNT/PPy nanocomposites were synthesized by the chemical oxidative polymerization method and the supercapacitor properties of the obtained nanocomposites were investigated. In addition, pure MWCNT was functionalized with acid (H₂SO₄/H₂O₂) and base (NH₄OH/H₂O₂) solutions at a ratio of 3:1 and a-MWCNT/d-PPy, and b-MWCNT/d-PPy nanocomposites were obtained. The homogeneous distribution of MWCNTs in the polypyrrole matrix and shell-core type morphological structures of the nanocomposites was observed with SEM images. It was observed with SEM, FTIR and XRD analyses that the functional groups formed by the functionalization of MWCNTs caused the MWCNTs to come together and partially agglomerate. It was found that the conductivity of the nanocomposites consisting of MWCNT and d-PPy was higher than that of pure d-PPy. CV, GCD and EIS results show that the use of a-MWCNT and b-MWCNTs in nanocomposites with low particle content positively affects the supercapacitor properties of the materials but negatively at high particle content. It was revealed that the functional MWCNT particles combined in nanocomposites with high particle content cause a decrease in the conductivity and distribution of ions in the electrodes and, thus, a decrease in their energy storage capacity.

Keywords: polypyrrole, multi-walled carbon nanotube (MWCNT), conducting polymer, chemical oxidative polymerization, nanocomposite, supercapacitor

Procedia PDF Downloads 13
720 Light Weight Fly Ash Based Composite Material for Thermal Insulation Applications

Authors: Bharath Kenchappa, Kunigal Shivakumar

Abstract:

Lightweight, low thermal conductivity and high temperature resistant materials or the system with moderate mechanical properties and capable of taking high heating rates are needed in both commercial and military applications. A single material with these attributes is very difficult to find and one needs to come with innovative ideas to make such material system using what is available. To bring down the cost of the system, one has to be conscious about the cost of basic materials. Such a material system can be called as the thermal barrier system. This paper focuses on developing, testing and characterization of material system for thermal barrier applications. The material developed is porous, low density, low thermal conductivity of 0.1062 W/m C and glass transition temperature about 310 C. Also, the thermal properties of the developed material was measured in both longitudinal and thickness direction to highlight the fact that the material shows isotropic behavior. The material is called modified Eco-Core which uses only less than 9% weight of high-char resin in the composite. The filler (reinforcing material) is a component of fly ash called Cenosphere, they are hollow micro-bubbles made of ceramic materials. Special mixing-technique is used to surface coat the fillers with a thin layer of resin to develop a point-to-point contact of particles. One could use commercial ceramic micro-bubbles instead of Cenospheres, but it is expensive. The bulk density of Cenospheres is about 0.35 g/cc and we could accomplish the composite density of about 0.4 g/cc. One percent filler weight of 3mm length standard drywall grade fibers was used to bring the added toughness. Both thermal and mechanical characterization was performed and properties are documented. For higher temperature applications (up to 1,000 C), a hybrid system was developed using an aerogel mat. Properties of combined material was characterized and documented. Thermal tests were conducted on both the bare modified Eco-Core and hybrid materials to assess the suitability of the material to a thermal barrier application. The hybrid material system was found to meet the requirement of the application.

Keywords: aerogel, fly ash, porous material, thermal barrier

Procedia PDF Downloads 106
719 The Study of the Absorption and Translocation of Chromium by Lygeum spartum in the Mining Region of Djebel Hamimat and Soil-Plant Interaction

Authors: H. Khomri, A. Bentellis

Abstract:

Since century of the Development Activities extraction and a dispersed mineral processing Toxic metals and much more contaminated vast areas occupied by what they natural outcrops. New types of metalliferous habitats are so appeared. A species that is Lygeum spartum attracted our curiosity because apart from its valuable role in desertification, it is apparently able to exclude antimony and other metals can be. This species, green leaf blades which are provided as cattle feed, would be a good subject for phytoremediation of mineral soils. The study of absorption and translocation of chromium by the Lygeum spartum in the mining region of Djebel Hamimat and the interaction soil-plant, revealed that soils of this species living in this region are alkaline, calcareous majority in their fine texture medium and saline in their minority. They have normal levels of organic matter. They are moderately rich in nitrogen. They contain total chromium content reaches a maximum of 66,80 mg Kg^(-1) and a total absence of soluble chromium. The results of the analysis of variance of the difference between bare soils and soils appear Lygeum spartum made a significant difference only for the silt and organic matter. But for the other variables analyzed this difference is not significant. Thus, this plant has only one action on the amendment, only the levels of silt and organic matter in soils. The results of the multiple regression of the chromium content of the roots according to all soil variables studied did appear that among the studied variables included in the model, only the electrical conductivity and clay occur in the explanation of contents chromium in roots. The chromium content of the aerial parts analyzed by regression based on all studied soil variables allows us to see only the variables: electrical conductivity and content of chromium in the root portion involved in the explanation of the content chromium in the aerial part.

Keywords: absorption, translocation, analysis of variance, chrome, Lygeum spartum, multiple regression, the soil variables

Procedia PDF Downloads 262
718 Corellation between Soil Electrical Resistivity and Metal Corrosion Based on Soil Types for Structure Designs

Authors: L. O. A. Oyinkanola, J.A. Fajemiroye

Abstract:

Soil resistivity measurements are an important parameter employed in the designing earthing installations. Thus, The knowledge of soil resistivity with respect to how it varies with related parameters such as moisture content, Temperature and depth at the intended site is very vital to determine how the desired earth resistance value can be attained and sustained over the life of the installation with the lowest cost and effort. The relationship between corrosion and soil resistivity has been investigated in this work. Varios soil samples: Sand, Gravel, Loam, Clay and Silt were collected from different spot within the vicinity.

Keywords: Corrosion, resistivity, clay, hydraulic conductivity

Procedia PDF Downloads 554