Search results for: minimum description length (MDL)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5365

Search results for: minimum description length (MDL)

1825 Effect of Silver Nanoparticles on Seed Germination of Crop Plants

Authors: Zainab M. Almutairi, Amjad Alharbi

Abstract:

The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2, and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.

Keywords: citrullus lanatus, cucurbita pepo, seed germination, seedling growth, silver nanoparticles, zea mays

Procedia PDF Downloads 308
1824 Numerical Analysis of Supersonic Impinging Jets onto Resonance Tube

Authors: Shinji Sato, M. M. A. Alam, Manabu Takao

Abstract:

In recent, investigation of an unsteady flow inside the resonance tube have become a strongly motivated research field for their potential application as high-frequency actuators. By generating a shock wave inside the resonance tube, a high temperature and pressure can be achieved inside the tube, and this high temperature can also be used to ignite a jet engine. In the present research, a computational fluid dynamics (CFD) analysis was carried out to investigate the flow inside the resonance tube. The density-based solver of rhoCentralFoam in OpenFOAM was used to numerically simulate the flow. The supersonic jet that was driven by a cylindrical nozzle with a nominal exit diameter of φd = 20.3 mm impinged onto the resonance tube. The jet pressure ratio was varied between 2.6 and 7.8. The gap s between the nozzle exit and tube entrance was changed between 1.5d and 3.0d. The diameter and length of the tube were taken as D = 1.25d and L=3.0D, respectively. As a result, when a supersonic jet has impinged onto the resonance tube, a compression wave was found generating inside the tube and propagating towards the tube end wall. This wave train resulted in a rise in the end wall gas temperature and pressure. While, in an outflow phase, the gas near tube enwall was found cooling back isentropically to its initial temperature. Thus, the compression waves repeated a reciprocating motion in the tube like a piston, and a fluctuation in the end wall pressures and temperatures were observed. A significant change was found in the end wall pressures and temperatures with a change of jet flow conditions. In this study, the highest temperature was confirmed at a jet pressure ratio of 4.2 and a gap of s=2.0d

Keywords: compressible flow, OpenFOAM, oscillations, a resonance tube, shockwave

Procedia PDF Downloads 149
1823 Developing Pavement Maintenance Management System (PMMS) for Small Cities, Aswan City Case Study

Authors: Ayman Othman, Tallat Ali

Abstract:

A pavement maintenance management system (PMMS) was developed for the city of Aswan as a model of a small city to provide the road maintenance department in Aswan city with the capabilities for comprehensive planning of the maintenance activities needed to put the internal pavement network into desired physical condition in view of maintenance budget constraints. The developed system consists of three main stages. First is the inventory & condition survey stage where the internal pavement network of Aswan city was inventoried and its actual conditions were rated in segments of 100 meters length. Second is the analysis stage where pavement condition index (PCI) was calculated and the most appropriate maintenance actions were assigned for each segment. The total maintenance budget was also estimated and a parameter based ranking criteria were developed to prioritize maintenance activities when the available maintenance budget is not sufficient. Finally comes the packaging stage where approved maintenance budget is packed into maintenance projects for field implementation. System results indicate that, the system output maintenance budget is very reasonable and the system output maintenance programs agree to a great extent with the actual maintenance needs of the network. Condition survey of Aswan city road network showed that roughness is the most dominate distress. In general, the road network can be considered in a fairly reasonable condition, however, the developed PMMS needs to be officially adapted to maintain the road network in a desirable condition and to prevent further deterioration.

Keywords: pavement, maintenance, management, system, distresses, survey, ranking

Procedia PDF Downloads 248
1822 Property of Fermented Sweet Potato Flour and Its Suitability for Composite Noodle

Authors: Neti Yuliana, Srisetyani, Siti Nurdjanah, Dewi Sartika, Yoan Martiansari, Putri Nabila

Abstract:

Naturally sweet potato flour usually requires a modification process to improve its inherent property for expanding its application in food system. The study was aimed to modify sweet potato flour (SPF), to increase its utilization for composite noodle production, trough fermentation of sweet potato slices before its flouring process. Fermentation were prepared with five different starters: pickle brine, Lactobacillus plantarum, Leuconostoc mesenteroides, mixed of Lactobacillus plantarum, Leuconostoc mesenteroides , and mixed of Lactobacillus plantarum, Leuconostoc mesenteroides, and Sacharomyces cerevisiae. Samples were withdrawn every 0, 24, 48, 72 and 96 hours. The fermented flours were characterized for swelling power, solubility, paste transmittance, pH, sensory properties (acidic aroma and whiteness), and the amount of broken composite noodle strips. The results indicated that there was no significant effect of different starters on fermented SPF characteristic and on the amount of broken noodle strip, while length of fermentation significantly affected. Longer fermentation, reaching 48-72 h, increased swelling power, pH, acidic aroma and whiteness of flour and reduced solubility, paste transmittance, and the amount of broken noodle strip. The results suggested that fermentation within 48-72 h period of time could provide great composite SPF for noodle.

Keywords: starters, fermented flour, sweet potato, composite noodle

Procedia PDF Downloads 389
1821 Growing Evaluation Process in Chamaedorea Linearis with Humus from Biosolids of the Wastewater Treatment Plant, Nueva Granada Military University Cajica

Authors: J. Gonzalez, P. Jimenez, C. Isaza

Abstract:

Palms have different characteristics that make them vulnerable; that is the case of the Chamaedorea linearis, with the presence of solitary stems of small diameter and medium leaves, culturally harvested, and in religious festivities used. Additionally, they present a weak apical meristem as the only emergency point, slow development and growth, and an affectation due to the high rate of deforestation in Colombia. Propagation of this species can improve the pressure on wild populations and help their survival in the environment. In this study was used in 177 plants biosolids humus from the Wastewater Treatment Plant (WWTP), located at the UMNG Campus Cajica (Cundinamarca, Colombia). The experiment used a control and two treatments with 10% and 20% of humus. During the process, the variables evaluated were number of leaves, percentage of chlorophyll, stem length, and estimated leaf area. The data set were taking during 14 weeks before the reproductive maturity, evidencing that the most representative development of the palms was in the treatment of 20%, plants in this treatment presented major number of leaves, larger stems, a high quantity of chlorophyll, and was a first treatment that present pinnate leaves them represent an important point in maturity process. The research gives an opportunity to improve times of growth in another species of palms and plants (Product result from INV ING 2986 UMNG).

Keywords: biosolids, humus, growth, palms, wastewater treatment plant, WWTP

Procedia PDF Downloads 125
1820 Reliability Modeling on Drivers’ Decision during Yellow Phase

Authors: Sabyasachi Biswas, Indrajit Ghosh

Abstract:

The random and heterogeneous behavior of vehicles in India puts up a greater challenge for researchers. Stop-and-go modeling at signalized intersections under heterogeneous traffic conditions has remained one of the most sought-after fields. Vehicles are often caught up in the dilemma zone and are unable to take quick decisions whether to stop or cross the intersection. This hampers the traffic movement and may lead to accidents. The purpose of this work is to develop a stop and go prediction model that depicts the drivers’ decision during the yellow time at signalised intersections. To accomplish this, certain traffic parameters were taken into account to develop surrogate model. This research investigated the Stop and Go behavior of the drivers by collecting data from 4-signalized intersections located in two major Indian cities. Model was developed to predict the drivers’ decision making during the yellow phase of the traffic signal. The parameters used for modeling included distance to stop line, time to stop line, speed, and length of the vehicle. A Kriging base surrogate model has been developed to investigate the drivers’ decision-making behavior in amber phase. It is observed that the proposed approach yields a highly accurate result (97.4 percent) by Gaussian function. It was observed that the accuracy for the crossing probability was 95.45, 90.9 and 86.36.11 percent respectively as predicted by the Kriging models with Gaussian, Exponential and Linear functions.

Keywords: decision-making decision, dilemma zone, surrogate model, Kriging

Procedia PDF Downloads 309
1819 Preparation of Ceramic Hollow Fiber Membranes for CO2 Capture

Authors: Kai-Wei Huang, Yi-Feng Lin

Abstract:

The purpose of this study is to have chemical resistance, high heat resistance and mechanical strength of ceramic hollow fiber membrane into a membrane contactor, and the combustion process is applied (Post-combustion capture) of the carbon dioxide absorption device. In this paper, we would investigate the effect of the ceramic membrane hydrophobicity to the flux of the carbon dioxide adsorption. To improve the applicability of the ceramic film. We use the dry-wet spinning method with the high temperature sintering process for preparing a ceramic hollow fiber membranes to increase the filling density per unit volume of the membrane. The PESf/Al2O3 ratio of 1:5 was prepared ceramic hollow fibers membrane precursors and investigate the relationship of the different sintering temperature to the membrane pore size and porosity. It can be found that the membrane via the sintering temperature of 1400 °C prepared with the highest porosity of 70%, while the membrane via the sintering temperature of 1600 °C prepared although has a minimum porosity of about 54%, but also has the smallest average pore size of about 0.2 μm. The hydrophilic ceramic hollow fiber membranes which after high-temperature sintering were changed into hydrophobic successfully via the 0.02M FAS modifier. The hydrophobic ceramic hollow fiber membranes with different sintering temperature, the membrane which was prepared via 1400 °C sintering has the highest carbon dioxide adsorption about 4.2 × 10-4 (mole/m2s). The membrane prepared via 1500 °C sintering has the carbon dioxide adsorption about 3.8 × 10-3 (mole/m2s),and the membrane prepared via 1600 °C sintering has the lowest carbon dioxide adsorption about 2.68 × 10-3 (mole/m2s).All of them have reusability and in long time operation, the membrane which was prepared via 1600 °C sintering has the smallest pores and also could operate for three days. After the test, the 1600 °C sintering ceramic hollow fiber membrane was most suitable for the factory.

Keywords: carbon dioxide capture, membrane contactor, ceramic membrane, ceramic hollow fiber membrane

Procedia PDF Downloads 350
1818 Determinants of Economic Growth in Pakistan: A Structural Vector Auto Regression Approach

Authors: Muhammad Ajmair

Abstract:

This empirical study followed structural vector auto regression (SVAR) approach proposed by the so-called AB-model of Amisano and Giannini (1997) to check the impact of relevant macroeconomic determinants on economic growth in Pakistan. Before that auto regressive distributive lag (ARDL) bound testing technique and time varying parametric approach along with general to specific approach was employed to find out relevant significant determinants of economic growth. To our best knowledge, no author made such a study that employed auto regressive distributive lag (ARDL) bound testing and time varying parametric approach with general to specific approach in empirical literature, but current study will bridge this gap. Annual data was taken from World Development Indicators (2014) during period 1976-2014. The widely-used Schwarz information criterion and Akaike information criterion were considered for the lag length in each estimated equation. Main findings of the study are that remittances received, gross national expenditures and inflation are found to be the best relevant positive and significant determinants of economic growth. Based on these empirical findings, we conclude that government should focus on overall economic growth augmenting factors while formulating any policy relevant to the concerned sector.

Keywords: economic growth, gross national expenditures, inflation, remittances

Procedia PDF Downloads 199
1817 Adobe Attenuation Coefficient Determination and Its Comparison with Other Shielding Materials for Energies Found in Common X-Rays Procedures

Authors: Camarena Rodriguez C. S., Portocarrero Bonifaz A., Palma Esparza R., Romero Carlos N. A.

Abstract:

Adobe is a construction material that fulfills the same function as a conventional brick. Widely used since ancient times, it is present in an appreciable percentage of buildings in Latin America. Adobe is a mixture of clay and sand. The interest in the study of the properties of this material arises due to its presence in the infrastructure of hospital´s radiological services, located in places with low economic resources, for the attenuation of radiation. Some materials such as lead and concrete are the most used for shielding and are widely studied in the literature. The present study will determine the mass attenuation coefficient of Adobe. The minimum required thicknesses for the primary and secondary barriers will be estimated for the shielding of radiological facilities where conventional and dental X-rays are performed. For the experimental procedure, an X-ray source emitted direct radiation towards different thicknesses of an Adobe barrier, and a detector was placed on the other side. For this purpose, an UNFORS Xi solid state detector was used, which collected information on the difference of radiation intensity. The initial parameters of the exposure started at 45 kV; and then the tube tension was varied in increments of 5 kV, reaching a maximum of 125 kV. The X-Ray tube was positioned at a distance of 0.5 m from the surface of the Adobe bricks, and the collimation of the radiation beam was set for an area of 0.15 m x 0.15 m. Finally, mathematical methods were applied to determine the mass attenuation coefficient for different energy ranges. In conclusion, the mass attenuation coefficient for Adobe was determined and the approximate thicknesses of the most common Adobe barriers in the hospital buildings were calculated for their later application in the radiological protection.

Keywords: Adobe, attenuation coefficient, radiological protection, shielding, x-rays

Procedia PDF Downloads 157
1816 The Use of Venous Glucose, Serum Lactate and Base Deficit as Biochemical Predictors of Mortality in Polytraumatized Patients: Acomparative with Trauma and Injury Severity Score and Acute Physiology and Chronic Health Evalution IV

Authors: Osama Moustafa Zayed

Abstract:

Aim of the work: To evaluate the effectiveness of venous glucose, levels of serum lactate and base deficit in polytraumatized patients as simple parameters to predict the mortality in these patients. Compared to the predictive value of Trauma and injury severity (TRISS) and Acute Physiology And Chronic Health Evaluation IV (APACHE IV). Introduction: Trauma is a serious global health problem, accounting for approximately one in 10 deaths worldwide. Trauma accounts for 5 million deaths per year. Prediction of mortality in trauma patients is an important part of trauma care. Several trauma scores have been devised to predict injury severity and risk of mortality. The trauma and injury severity score (TRISS) was most common used. Regardless of the accuracy of trauma scores, is based on an anatomical description of every injury and cannot be assigned to the patients until a full diagnostic procedure has been performed. So we hypothesized that alterations in admission glucose, lactate levels and base deficit would be an early and easy rapid predictor of mortality. Patient and Method: a comparative cross-sectional study. 282 Polytraumatized patients attended to the Emergency Department(ED) of the Suez Canal university Hospital constituted. The period from 1/1/2012 to 1/4/2013 was included. Results: We found that the best cut off value of TRISS probability of survival score for prediction of mortality among poly-traumatized patients is = 90, with 77% sensitivity and 89% specificity using area under the ROC curve (0.89) at (95%CI). APACHE IV demonstrated 67% sensitivity and 95% specificity at 95% CI at cut off point 99. The best cutoff value of Random Blood Sugar (RBS) for prediction of mortality was>140 mg/dl, with 89%, sensitivity, 49% specificity. The best cut off value of base deficit for prediction of mortality was less than -5.6 with 64% sensitivity, 93% specificity. The best cutoff point of lactate for prediction of mortality was > 2.6 mmol/L with 92%, sensitivity, 42% specificity. Conclusion: According to our results from all evaluated predictors of mortality (laboratory and scores) and mortality based on the estimated cutoff values using ROC curves analysis, the highest risk of mortality was found using a cutoff value of 90 in TRISS score while with laboratory parameters the highest risk of mortality was with serum lactate > 2.6 . Although that all of the three parameter are accurate in predicting mortality in poly-traumatized patients and near with each other, as in serum lactate the area under the curve 0.82, in BD 0.79 and 0.77 in RBS.

Keywords: APACHE IV, emergency department, polytraumatized patients, serum lactate

Procedia PDF Downloads 294
1815 Ultrasound-Assisted Extraction of Bioactive Compounds from Cocoa Shell and Their Encapsulation in Gum Arabic and Maltodextrin: A Technology to Produce Functional Food Ingredients

Authors: Saeid Jafari, Khursheed Ahmad Sheikh, Randy W. Worobo, Kitipong Assatarakul

Abstract:

In this study, the extraction of cocoa shell powder (CSP) was optimized, and the optimized extracts were spray-dried for encapsulation purposes. Temperature (45-65 ◦C), extraction time (30–60 min), and ethanol concentration (60–100%) were the extraction parameters. The response surface methodology analysis revealed that the model was significant (p ≤ 0.05) in interactions between all variables (total phenolic compound, total flavonoid content, and antioxidant activity as measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP assays), with a lack of fit test for the model being insignificant (p > 0.05). Temperature (55 ◦C), time (45 min), and ethanol concentration (60%) were found to be the optimal extraction conditions. For spray-drying encapsulation, some quality metrics (e.g., water solubility, water activity) were insignificant (p > 0.05). The microcapsules were found to be spherical in shape using a scanning electron microscope. Thermogravimetric and differential thermogravimetric measurements of the microcapsules revealed nearly identical results. The gum arabic + maltodextrin microcapsule (GMM) showed potential antibacterial (zone of inhibition: 11.50 mm; lower minimum inhibitory concentration: 1.50 mg/mL) and antioxidant (DPPH: 1063 mM trolox/100g dry wt.) activities (p ≤ 0.05). In conclusion, the microcapsules in this study, particularly GMM, are promising antioxidant and antibacterial agents to be fortified as functional food ingredients for the production of nutraceutical foods with health-promoting properties.

Keywords: functional foods, coco shell powder, antioxidant activity, encapsulation, extraction

Procedia PDF Downloads 57
1814 Evaluation of Forming Properties on AA 5052 Aluminium Alloy by Incremental Forming

Authors: A. Anbu Raj, V. Mugendiren

Abstract:

Sheet metal forming is a vital manufacturing process used in automobile, aerospace, agricultural industries, etc. Incremental forming is a promising process providing a short and inexpensive way of forming complex three-dimensional parts without using die. The aim of this research is to study the forming behaviour of AA 5052, Aluminium Alloy, using incremental forming and also to study the FLD of cone shape AA 5052 Aluminium Alloy at room temperature and various annealing temperature. Initially the surface roughness and wall thickness through incremental forming on AA 5052 Aluminium Alloy sheet at room temperature is optimized by controlling the effects of forming parameters. The central composite design (CCD) was utilized to plan the experiment. The step depth, feed rate, and spindle speed were considered as input parameters in this study. The surface roughness and wall thickness were used as output response. The process performances such as average thickness and surface roughness were evaluated. The optimized results are taken for minimum surface roughness and maximum wall thickness. The optimal results are determined based on response surface methodology and the analysis of variance. Formability Limit Diagram is constructed on AA 5052 Aluminium Alloy at room temperature and various annealing temperature by using optimized process parameters from the response surface methodology. The cone has higher formability than the square pyramid and higher wall thickness distribution. Finally the FLD on cone shape and square pyramid shape at room temperature and the various annealing temperature is compared experimentally and simulated with Abaqus software.

Keywords: incremental forming, response surface methodology, optimization, wall thickness, surface roughness

Procedia PDF Downloads 338
1813 Numerical Study of Microdrops Manipulation by MicroFluidic Oscillator

Authors: Tawfiq Chekifi, Brahim Dennai, Rachid Khelfaoui

Abstract:

Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops and numerous other functions. for this purpose Several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device haven’t well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator, The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases.

Keywords: fluidic oscillator, microdrops manipulation, volume of fluid method, microfluidic oscillator

Procedia PDF Downloads 488
1812 Fabrication of Pure and Doped MAPbI3 Thin Films by One Step Chemical Vapor Deposition Method for Energy Harvesting Applications

Authors: S. V. N. Pammi, Soon-Gil Yoon

Abstract:

In the present study, we report a facile chemical vapor deposition (CVD) method for Perovskite MAPbI3 thin films by doping with Br and Cl. We performed a systematic optimization of CVD parameters such as deposition temperature, working pressure and annealing time and temperature to obtain high-quality films of CH3NH3PbI3, CH3NH3PbI3-xBrx and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and X-ray Diffraction pattern showed that the perovskite films have a large grain size when compared to traditional spin coated thin films. To the best of our knowledge, there are very few reports on highly quality perovskite thin films by various doping such as Br and Cl using one step CVD and there is scope for significant improvement in device efficiency. In addition, their band-gap can be conveniently and widely tuned via doping process. This deposition process produces perovskite thin films with large grain size, long diffusion length and high surface coverage. The enhancement of the output power, CH3NH3PbI3 (MAPbI3) dye films when compared to spin coated films and enhancement in output power by doping in doped films was demonstrated in detail. The facile one-step method for deposition of perovskite thin films shows a potential candidate for photovoltaic and energy harvesting applications.

Keywords: perovskite thin films, chemical vapor deposition, energy harvesting, photovoltaics

Procedia PDF Downloads 308
1811 Increase in Specificity of MicroRNA Detection by RT-qPCR Assay Using a Specific Extension Sequence

Authors: Kyung Jin Kim, Jiwon Kwak, Jae-Hoon Lee, Soo Suk Lee

Abstract:

We describe an innovative method for highly specific detection of miRNAs using a specially modified method of poly(A) adaptor RT-qPCR. We use uniquely designed specific extension sequence, which plays important role in providing an opportunity to affect high specificity of miRNA detection. This method involves two steps of reactions as like previously reported and which are poly(A) tailing and reverse-transcription followed by real-time PCR. Firstly, miRNAs are extended by a poly(A) tailing reaction and then converted into cDNA. Here, we remarkably reduced the reaction time by the application of short length of poly(T) adaptor. Next, cDNA is hybridized to the 3’-end of a specific extension sequence which contains miRNA sequence and results in producing a novel PCR template. Thereafter, the SYBR Green-based RT-qPCR progresses with a universal poly(T) adaptor forward primer and a universal reverse primer. The target miRNA, miR-106b in human brain total RNA, could be detected quantitatively in the range of seven orders of magnitude, which demonstrate that the assay displays a dynamic range of at least 7 logs. In addition, the better specificity of this novel extension-based assay against well known poly(A) tailing method for miRNA detection was confirmed by melt curve analysis of real-time PCR product, clear gel electrophoresis and sequence chromatogram images of amplified DNAs.

Keywords: microRNA(miRNA), specific extension sequence, RT-qPCR, poly(A) tailing assay, reverse transcription

Procedia PDF Downloads 308
1810 Analysis of Two-Phase Flow Instabilities in Conventional Channel of Nuclear Power Reactor

Authors: M. Abdur Rashid Sarkar, Riffat Mahmud

Abstract:

Boiling heat transfer plays a crucial role in cooling nuclear reactor for safe electricity generation. A two phase flow is susceptible to thermal-hydrodynamic instabilities, which may cause flow oscillations of constant amplitude or diverging amplitude. These oscillations may induce boiling crisis, disturb control systems, or cause mechanical damage. Based on their mechanisms, various types of instabilities can be classified for a nuclear reactor. From a practical engineering point of view one of the major design difficulties in dealing with multiphase flow is that the mass, momentum, and energy transfer rates and processes may be quite sensitive to the geometric configuration of the heat transfer surface. Moreover, the flow within each phase or component will clearly depend on that geometric configuration. The complexity of this two-way coupling presents a major challenge in the study of multiphase flows and there is much that remains to be done. Yet, the parametric effects on flow instability such as the effect of aspect ratio, pressure drop, channel length, its orientation inlet subcooling and surface roughness etc. have been analyzed. Another frequently occurring instability, known as the Kelvin–Helmholtz instability has been briefly reviewed. Various analytical techniques for predicting parametric effect on the instability are analyzed in terms of their applicability and accuracy.

Keywords: two phase flows, boiling crisis, thermal-hydrodynamic instabilities, water cooled nuclear reactors, kelvin–helmholtz instability

Procedia PDF Downloads 397
1809 Transperineal Repair Is Ideal for the Management of Rectocele with Faecal Incontinence

Authors: Tia Morosin, Marie Shella De Robles

Abstract:

Rectocele may be associated with symptoms of both obstructed defecation and faecal incontinence. Currently, numerous operative techniques exist to treat patients with rectocele; however, no single technique has emerged as the optimal approach in patients with post-partum faecal incontinence. The purpose of this study was to evaluate the clinical outcome in a consecutive series of patients who underwent transperineal repair of rectocele for patients presenting with faecal incontinence as the predominant symptom. Twenty-three consecutive patients from April 2000 to July 2015 with symptomatic rectocele underwent transperineal repair by a single surgeon. All patients had a history of vaginal delivery, with or without evidence of associated anal sphincter injury at the time. The median age of the cohort was 53 years (range 21 to 90 years). The median operating time and length of hospital stay were 2 hours and 7 days, respectively. Two patients developed urinary retention post-operatively, which required temporary bladder catheterization. One patient had wound dehiscence, which was managed by absorbent dressing applied by the patient and her carer. There was no operative mortality. In all patients with rectocele, there was a concomitant anal sphincter disruption. All patients had satisfactory improvement with regard to faecal incontinence on follow-up. This study suggests this method provides excellent anatomic and physiologic results with minimal morbidity. However, because none of the patients gained full continence postoperatively, pelvic floor rehabilitation might be also needed to achieve better sphincter function in patients with incontinence.

Keywords: anal sphincter defect, faecal incontinence, rectocele, transperineal repair

Procedia PDF Downloads 127
1808 Mobile Number Portability

Authors: R. Geetha, J. Arunkumar, P. Gopal, D. Loganathan, K. Pavithra, C. Vikashini

Abstract:

Mobile Number Portability is an attempt to switch over from one network to another network facility for mobile based on applications. This facility is currently not available for mobile handsets. This application is intended to assist the mobile network and its service customers in understanding the criteria; this will serve as a universal set of requirements which must be met by the customers. This application helps the user's network portability. Accessing permission from the network provider to enable services to the user and utilizing the available network signals. It is enabling the user to make a temporary switch over to other network. The main aim of this research work is to adapt multiple networks at the time of no network coverage. It can be accessed at rural and geographical areas. This can be achieved by this mobile application. The application is capable of temporary switch over between various networks. With this application both the service provider and the network user are benefited. The service provider is benefited by charging a minimum cost for utilizing other network. It provides security in terms of password that is unique to avoid unauthorized users and to prevent loss of balance. The goal intended to be attained is a complete utilization of available network at significant situations and to provide feature that satisfy the customer needs. The temporary switch over is done to manage emergency calls when user is in rural or geographical area, where there will be a very low network coverage. Since people find it trend in using Android mobile, this application is designed as an Android applications, which can be freely downloaded and installed from Play store. In the current scenario, the service provider enables the user to change their network without shifting their mobile network. This application affords a clarification for users while they are jammed in a critical situation. This application is designed by using Android 4.2 and SQLite Version3.

Keywords: mobile number, random number, alarm, imei number, call

Procedia PDF Downloads 361
1807 Designing Floor Planning in 2D and 3D with an Efficient Topological Structure

Authors: V. Nagammai

Abstract:

Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining thousands of transistors into a single chip. Development of technology increases the complexity in IC manufacturing which may vary the power consumption, increase the size and latency period. Topology defines a number of connections between network. In this project, NoC topology is generated using atlas tool which will increase performance in turn determination of constraints are effective. The routing is performed by XY routing algorithm and wormhole flow control. In NoC topology generation, the value of power, area and latency are predetermined. In previous work, placement, routing and shortest path evaluation is performed using an algorithm called floor planning with cluster reconstruction and path allocation algorithm (FCRPA) with the account of 4 3x3 switch, 6 4x4 switch, and 2 5x5 switches. The usage of the 4x4 and 5x5 switch will increase the power consumption and area of the block. In order to avoid the problem, this paper has used one 8x8 switch and 4 3x3 switches. This paper uses IPRCA which of 3 steps they are placement, clustering, and shortest path evaluation. The placement is performed using min – cut placement and clustering are performed using an algorithm called cluster generation. The shortest path is evaluated using an algorithm called Dijkstra's algorithm. The power consumption of each block is determined. The experimental result shows that the area, power, and wire length improved simultaneously.

Keywords: application specific noc, b* tree representation, floor planning, t tree representation

Procedia PDF Downloads 393
1806 Effect of Hydraulic Diameter on Flow Boiling Instability in a Single Microtube with Vertical Upward Flow

Authors: Qian You, Ibrahim Hassan, Lyes Kadem

Abstract:

An experiment is conducted to fundamentally investigate flow oscillation characteristics in different sizes of single microtubes in vertical upward flow direction. Three microtubes have 0.889 mm, 0.533 mm, and 0.305 mm hydraulic diameters with 100 mm identical heated length. The mass flux of the working fluid FC-72 varies from 700 kg/m2•s to 1400 kg/m2•s, and the heat flux is uniformly applied on the tube surface up to 9.4 W/cm2. The subcooled inlet temperature is maintained around 24°C during the experiment. The effect of hydraulic diameter and mass flux are studied. The results showed that they have interactions on the flow oscillations occurrence and behaviors. The onset of flow instability (OFI), which is a threshold of unstable flow, usually appears in large microtube with diversified and sustained flow oscillations, while the transient point, which is the point when the flow turns from one stable state to another suddenly, is more observed in small microtube without characterized flow oscillations due to the bubble confinement. The OFI/transient point occurs early as hydraulic diameter reduces at a given mass flux. The increased mass flux can delay the OFI/transient point occurrence in large hydraulic diameter, but no significant effect in small size. Although the only transient point is observed in the smallest tube, it appears at small heat flux and is not sensitive to mass flux; hence, the smallest microtube is not recommended since increasing heat flux may cause local dryout.

Keywords: flow boiling instability, hydraulic diameter effect, a single microtube, vertical upward flow

Procedia PDF Downloads 600
1805 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium

Authors: Nidhal Jamia, Sami El-Borgi

Abstract:

In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.

Keywords: functionally graded piezoelectric material (FGPM), mixed-mode crack, non-local theory, Schmidt method

Procedia PDF Downloads 308
1804 Effect of Size, Geometry and Tensile Strength of Fibers on the Flexure of Hooked Steel Fiber Reinforced Concrete

Authors: Chuchai Sujivorakul

Abstract:

This research focused on the study of various parameters of fiber itself affecting on the flexure of hooked steel fiber reinforced concrete (HSFRC). The size of HSFRC beams was 150x150 mm in cross section and 550 mm in length, and the flexural test was carried out in accordance with EN-14651 standard. The test result was the relationship between centre-point load and crack-mount opening displacement (CMOD) at the centre notch. Controlled concrete had a compressive strength of 42 MPa. The investigated variables related to the hooked fiber itself were: (a) 3 levels of aspect ratio of fibers (65, 80 and 100); (b) 2 different fiber lengths (35 mm and 60 mm); (c) 2 different tensile strength of fibers (1100 MPa and 1500 MPa); and (d) 3 different fiber-end geometries (3D 4D and 5D fibers). The 3D hooked fibers have two plastic hinges at both ends, while the 4D and 5D hooked fibers are the newly developed steel fibers by Bekaert, and they have three and four plastic hinges at both ends, respectively. The hooked steel fibers were used in concrete with three different fiber contents, i.e., 20 30 and 40 kg/m³. From the study, it was found that all variables did not seem to affect the flexural strength at limit of proportionality (LOP) of HSFRC. However, they affected the residual flexural tensile strength (fR,j). It was observed that an increase in fiber lengths and the tensile strength the fibers would significantly increase in the fR,j of HSFRC, while the aspect ratio of the fiber would slightly effect the fR,j of HSFRC. Moreover, it was found that using 5D fibers would better enhance the fR,j and flexural behavior of HSFRC than 3D and 4D fibers, because they gave highest mechanical anchorage effect created by their hooked-end geometry.

Keywords: hooked steel fibers, fiber reinforced concrete, EN-14651, flexural test

Procedia PDF Downloads 170
1803 The Effects of Different Sowing Times on Seed Yield and Quality of Fenugreek (Trigonella foenum graecum L.) in East Mediterranean Region of Turkey

Authors: Lale Efe, Zeynep Gokce

Abstract:

In this study carried out in 2013-14 growing season in East Mediterranean Region of Turkey, it was aimed to investigate the effects of different sowing times on the seed yield and quality of fenugreek (Trigonella foenum graceum L.). Three fenugreek genotypes (Gürarslan, Candidate Line-1 and Genotype-1) were sown on 13.11.2013 and 07.03.2014 according to factorial randomized block design with 3 replications. Plant height (cm), branch number per plant, first pod height (cm), pod length (mm), seed number per pod (g), seed yield per plant (g), seed yield per decar (kg), thousand seed weight (g), mucilage rate (%), seed protein ratio (%), seed oil ratio (%), oleic acid (%), linoleic acid (%), palmitic acid (%) and stearic acid (%) were investigated. Among genotypes, while the highest seed yield per plant was obtained from Genotype-1 (5 g/plant), the lowest seed yield per plant was obtained from cv. Gürarslan (3.4 g/plant). According to genotype x sowing date interactions, it can be said that the highest seed yield per plant was taken in autumn sowing from Genotype-1 (6.6 g/plant) and the lowest seed yield per plant was taken in spring sowing from cv. Gürarslan (2.9 g/plant). Genotype-1 had the highest linoleic acid ratio (41.6 %). Cv. Gürarslan and Candidate Line-1 had the highest oleic acid ratio (respectively 17.8 % and 17.6%).

Keywords: fenugreek, seed yield and quality, sowing times, Trigonella foenum graecum L.

Procedia PDF Downloads 205
1802 Exploring the Safety of Sodium Glucose Co-Transporter-2 Inhibitors at the Imperial College London Diabetes Centre, UAE

Authors: Raad Nari, Maura Moriaty, Maha T. Barakat

Abstract:

Introduction: Sodium-glucose co-transporter-2 (SGLT2) inhibitors are a new class of oral anti-diabetic drugs with a unique mechanism of action. They are used to improve glycaemic control in adults with type 2 diabetes by enhancing urinary glucose excretion. In the UAE, there has been certainly an increased use of these medications. As with any new medication, there are safety considerations related to their use in patients with type two diabetes. A retrospective study was conducted at the three main centres of the Imperial College London Diabetes Centre. Methodology: All patients in electronic database (Diamond) from October 2014 to October 2017 were included with a minimum of six months usage of sodium glucose co-transporter inhibitors that comprise canagliflozin, dapagliflozin and empagliflozin. There were 15 paired sample biochemical and clinical correlations. The analysis was done at the start of the study, three months and six months apart. SPSS version 24 was used for this study. Conclusion: This study of sodium glucose co-transporter-2 inhibitors used showed significant reductions in weight, glycated haemoglobin A1C, systolic and diastolic blood pressures. As the case with systematic reviews, there were similar changes in liver enzymes, raised total cholesterol, low density lipopoptein and high density lipoprotein. There was slight improvement in estimated glomerular filtration rate too. Our analysis also showed that they increased in the incidence of urinary tract symptoms and incidence of urinary tract infections.

Keywords: SGLT2 inhibitors dapagliflozin empagliflozin canagliflozin, adverse effects, amputation diabetic ketoacidosis DKA, urinary tract infection

Procedia PDF Downloads 229
1801 Nexus Between Agricultural Insurance Scheme and Performance of Agribusiness in Nigeria

Authors: Festus Epetimehin

Abstract:

Agriculture remains the dominant sector in the rural areas where over 70% of Nigerian reside and it’s still the backbone of our economy. The observed poor performance of farmers in agricultural productivity is due to the nature of risks and uncertainties in agriculture.Agricultural insurance is one of the mechanisms by which farmers can stabilize farm income and investment. The study examined the relationship between agricultural insurance scheme (AIS) and performance of agribusiness in Nigeria. The study adopted exploratory research design which is an ex-ante research approach. One hundred copies of structured questionnaire were administered for the purpose of the study. Correlation analysis and regression analysis were employed for the study. The correlation analysis of the finding revealed that the independent variable; agricultural insurance scheme (AIS) is positively and significantly correlated with the set of dependent variables; where turnover (ABT)=0.582**, profitability (ABP)=0.321**, solvency (ABS)=0.418**and cost of production (ABC)=0.23** respectively. The regression analysis result also revealed the degree of relationship between the independent variable (AIS) and set of dependent variables where one(1%) percent increase in independent variable will lead to 33.9% (ABT), 9.7% (ABP), 17.5%(ABS) and 1.5%(ABC).The study recommended that the Federal Government in collaboration with the participating Agricultural insurers embark on awareness campaign through to the length and breadth of Nigeria on government support and insurance scheme for farmers. Government should also ensure that the loan and insurance scheme should extend beyond the mechanized farmers and include the intensive subsistence farmers in view of the fact that they are the dominants in most of the farm produce markets.

Keywords: agribusiness, agricultural insurance, performance, turnover, solvency, agricultural risks

Procedia PDF Downloads 92
1800 Experimental Investigation of Heat Pipe with Annular Fins under Natural Convection at Different Inclinations

Authors: Gangacharyulu Dasaroju, Sumeet Sharma, Sanjay Singh

Abstract:

Heat pipe is characterised as superconductor of heat because of its excellent heat removal ability. The operation of several engineering system results in generation of heat. This may cause several overheating problems and lead to failure of the systems. To overcome this problem and to achieve desired rate of heat dissipation, there is need to study the performance of heat pipe with annular fins under free convection at different inclinations. This study demonstrates the effect of different mass flow rate of hot fluid into evaporator section on the condenser side heat transfer coefficient with annular fins under natural convection at different inclinations. In this study annular fins are used for the experimental work having dimensions of length of fin, thickness of fin and spacing of fin as 10 mm, 1 mm and 6 mm, respectively. The main aim of present study is to discover at what inclination angles the maximum heat transfer coefficient shall be achieved. The heat transfer coefficient on the external surface of heat pipe condenser section is determined by experimental method and then predicted by empirical correlations. The results obtained from experimental and Churchill and Chu relation for laminar are in fair agreement with not more than 22% deviation. It is elucidated the maximum heat transfer coefficient of 31.2 W/(m2-K) at 25˚ tilt angle and minimal condenser heat transfer coefficient of 26.4 W/(m2-K) is seen at 45˚ tilt angle and 200 ml/min mass flow rate. Inclination angle also affects the thermal performance of heat pipe. Beyond 25o inclination, heat transport rate starts to decrease.

Keywords: heat pipe, annular fins, natural convection, condenser heat transfer coefficient, tilt angle

Procedia PDF Downloads 154
1799 Radio Frequency Heating of Iron-Filled Carbon Nanotubes for Cancer Treatment

Authors: L. Szymanski, S. Wiak, Z. Kolacinski, G. Raniszewski, L. Pietrzak, Z. Staniszewska

Abstract:

There exist more than one hundred different types of cancer, and therefore no particular treatment is offered to people struggling with this disease. The character of treatment proposed to a patient will depend on a variety of factors such as type of the cancer diagnosed, advancement of the disease, its location in the body, as well as personal preferences of a patient. None of the commonly known methods of cancer-fighting is recognised as a perfect cure, however great advances in this field have been made over last few decades. Once a patient is diagnosed with cancer, he is in need of medical care and professional treatment for upcoming months, and in most cases even for years. Among the principal modes of treatment offered by medical centres, one can find radiotherapy, chemotherapy, and surgery. All of them can be applied separately or in combination, and the relative contribution of each is usually determined by medical specialist in agreement with a patient. In addition to the conventional treatment option, every day more complementary and alternative therapies are integrated into mainstream care. There is one promising cancer modality - hyperthermia therapy which is based on exposing body tissues to high temperatures. This treatment is still being investigated and is not widely available in hospitals and oncological centres. There are two kinds of hyperthermia therapies with direct and indirect heating. The first is not commonly used due to low efficiency and invasiveness, while the second is deeply investigated and a variety of methods have been developed, including ultrasounds, infrared sauna, induction heating and magnetic hyperthermia. The aim of this work was to examine possibilities of heating magnetic nanoparticles under the influence of electromagnetic field for cancer treatment. For this purpose, multiwalled carbon nanotubes used as nanocarriers for iron particles were investigated for its heating properties. The samples were subjected to an alternating electromagnetic field with frequency range between 110-619 kHz. Moreover, samples with various concentrations of carbon nanotubes were examined. The lowest frequency of 110 kHz and sample containing 10 wt% of carbon nanotubes occurred to influence the most effective heating process. Description of hyperthermia therapy aiming at enhancing currently available cancer treatment was also presented in this paper. Most widely applied conventional cancer modalities such as radiation or chemotherapy were also described. Methods for overcoming the most common obstacles in conventional cancer modalities, such as invasiveness and lack of selectivity, has been presented in magnetic hyperthermia characteristics, which explained the increasing interest of the treatment.

Keywords: hyperthermia, carbon nanotubes, cancer colon cells, ligands

Procedia PDF Downloads 266
1798 Rheology and Structural Arrest of Dense Dairy Suspensions: A Soft Matter Approach

Authors: Marjan Javanmard

Abstract:

The rheological properties of dairy products critically depend on the underlying organisation of proteins at multiple length scales. When heated and acidified, milk proteins form particle gel that is viscoelastic, solvent rich, ‘soft’ material. In this work recent developments on the rheology of soft particles suspensions were used to interpret and potentially define the properties of dairy gel structures. It is discovered that at volume fractions below random close packing (RCP), the Maron-Pierce-Quemada (MPQ) model accurately predicts the viscosity of the dairy gel suspensions without fitting parameters; the MPQ model has been shown previously to provide reasonable predictions of the viscosity of hard sphere suspensions from the volume fraction, solvent viscosity and RCP. This surprising finding demonstrates that up to RCP, the dairy gel system behaves as a hard sphere suspension and that the structural aggregates behave as discrete particulates akin to what is observed for microgel suspensions. At effective phase volumes well above RCP, the system is a soft solid. In this region, it is discovered that the storage modulus of the sheared AMG scales with the storage modulus of the set gel. The storage modulus in this regime is reasonably well described as a function of effective phase volume by the Evans and Lips model. Findings of this work has potential to aid in rational design and control of dairy food structure-properties.

Keywords: dairy suspensions, rheology-structure, Maron-Pierce-Quemada Model, Evans and Lips Model

Procedia PDF Downloads 219
1797 A Facile Nanocomposite of Graphene Oxide Reinforced Chitosan/Poly-Nitroaniline Polymer as a Highly Efficient Adsorbent for Extracting Polycyclic Aromatic Hydrocarbons from Tea Samples

Authors: Adel M. Al-Shutairi, Ahmed H. Al-Zahrani

Abstract:

Tea is a popular beverage drunk by millions of people throughout the globe. Tea has considerable health advantages, in-cluding antioxidant, antibacterial, antiviral, chemopreventive, and anticarcinogenic properties. As a result of environmental pollution (atmospheric deposition) and the production process, tealeaves may also include a variety of dangerous substances, such as polycyclic aromatic hydrocarbons (PAHs). In this study, graphene oxide reinforced chitosan/poly-nitroaniline polymer was prepared to develop a sensitive and reliable solid phase extraction method (SPE) for extraction of PAH7 in tea samples, followed by high-performance liquid chromatography- fluorescence detection. The prepared adsorbent was validated in terms of linearity, the limit of detection, the limit of quantification, recovery (%), accuracy (%), and precision (%) for the determination of the PAH7 (benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, chrysene, benzo[b]fluoranthene, Dibenzo[a,h]anthracene and Benzo[g,h,i]perylene) in tea samples. The concentration was determined in two types of tea commercially available in Saudi Arabia, including black tea and green tea. The maximum mean of Σ7PAHs in black tea samples was 68.23 ± 0.02 ug kg-1 and 26.68 ± 0.01 ug kg-1 in green tea samples. The minimum mean of Σ7PAHs in black tea samples was 37.93 ± 0.01 ug kg-1 and 15.26 ± 0.01 ug kg-1 in green tea samples. The mean value of benzo[a]pyrene in black tea samples ranged from 6.85 to 12.17 ug kg-1, where two samples exceeded the standard level (10 ug kg-1) established by the European Union (UE), while in green tea ranged from 1.78 to 2.81 ug kg-1. Low levels of Σ7PAHs in green tea samples were detected in comparison with black tea samples.

Keywords: polycyclic aromatic hydrocarbons, CS, PNA and GO, black/green tea, solid phase extraction, Saudi Arabia

Procedia PDF Downloads 96
1796 Feasibility of Online Health Coaching for Canadian Armed Forces Personnel Receiving Treatment for Depression, Anxiety and PTSD

Authors: Noah Wayne, Andrea Tuka, Adrian Norbash, Bryan Garber, Paul Ritvo

Abstract:

Program/Intervention Description: The Canadian Armed Forces(CAF) Mental Health Clinicstreat a full spectrum of mental disorder, addictions, and psychosocial issues that include Major Depressive Disorder, Post-Traumatic Stress Disorder, Generalized Anxiety Disorder, and other diagnoses. We evaluated the feasibility of an online health coach interventiondelivering mindfulness based cognitive behavioral therapy (M-CBT) and behaviour changesupport for individuals receiving treatment at CAF Clinics. Participants were provided accounts on NexJ Connected Wellness, a digital health platform, and 16 weeks of phone-based health coaching,emphasizingmild to moderate aerobic exercise, a healthy diet, and M-CBT content. The primary objective was to assess the feasibility of the online deliverywith CAF members. Evaluation Methods: Feasibility was evaluated in terms of recruitment, engagement, and program satisfaction. Weadditionallyevaluatedhealth behavior change, program completion, and mental health symptoms (i.e. PHQ-9, GAD-7, PCL-5) at three time points. Results: Service members were referred from Vancouver, Esquimalt, and Edmonton CAF bases between August 2020 and January 2021. N=106 CAF personnel were referred, and n=77 consented.N=66 participated, and n=44 completed 4-month and follow-up measures. The platform received a mean rating of76.5 on the System Usability Scale, and health coaching was judged the most helpful program feature (95.2% endorsement), while reminders (53.7%), secure messaging (51.2%), and notifications (51.2%) were also identified. Improvements in mental health status during active interventions were observed on the PHQ-9 (-5.4, p<0.001), GAD-7 (-4.0, p<0.001), and PCL-5 (-4.1, p<0.05). Conclusion: Online health coaching was well-received amidst the COVID-19 pandemic and related lockdowns. Uptake and engagement were positively reported. Participants valuedcontacts and reported strong therapeutic alliances with coaches. Healthy diet, regular exercise, and mindfulness practice are important for physical and mental health. Engagements in these behaviors are associated with reduced symptoms. An online health coach program appears feasible for assisting Canadian Armed Forces personnel.

Keywords: coaching, CBT, military, depression, mental health, digital

Procedia PDF Downloads 160